
DAI in Engineering Design

Michael N. Huhns
Microelectronics and Computer Technology Corporation

Enterprise Integration Division
3500 West Balcones Center Drive
Austin, TX, U.S.A. 78759-6509

huhns@mcc.com

There are three evolving facets to design: 1) the artifact to be designed,
2) the design process, and 3) the tools available to aid the design process.
They are evolving because first, the design process is becoming more complex
due to the need to consider the entire product life-cycle—from conception
to manufacturing to sales to maintenance. Second, the artifacts of design
are changing in that many products that used to be standardized are being
specially designed for each customer, and more complicated artifacts, such
as space stations and fusion power plants, are being attempted. Third, there
are now a plethora of tools for aiding the design process, including tools for
simulation, visualization, layout, test, aesthetics, compliance with standards,
and manufacturability. In addition, as more and different artifacts are be-
ing designed, large amounts of data, knowledge, and experience are being
accumulated that can be used to aid future design processes. The overall
trend in each of the three facets of design has been towards increasing the
complexity of a designer’s task. This is turn has placed additional demands
on the computational aids for design, with the foremost demand being for
assistance with the increased complexity that has ensued.

There are several known ways to deal with complexity, including

• abstraction, whereby performing design at a more general level can
focus the subsequent detailed design stages and vastly improve their
efficiency;

• speed, whereby faster design techniques or faster implementations of
these techniques can lead to solutions of larger design problems;

1

• better representation, whereby considering a design problem from the
right viewpoint can lead to vast simplifications;

• past experience via learning, cases, and analogy, which can reduce the
need for experimentation or trial-and-error, and focus the search for a
solution;

• modularity and parallelism, whereby problems can be decomposed into
independent subproblems that can be solved in parallel.

A result of this last factor is that design is often performed by teams
of designers. Computational aids for design should similarly be distributed,
both to mirror the way humans perform design—and thus easily fit into ex-
isting human design teams—and to take advantage of the reduced complexity
engendered by modularity. Consider the following example:

At a large chemical plant in rural Texas, dozens of expert
systems are used to control the processing of petroleum-based
chemicals. These expert systems are small, consisting of 10–100
rules each, and were written within a few months by the engineers
at this plant. Each expert system successfully controls a single
aspect of some larger process, replacing manual control with a
tremendous savings in cost.

Alternatively, a single large system to control all aspects of the
plant could have been constructed, but it would have had roughly
the complexity of DEC’s XCON, making it prohibitively expen-
sive, requiring a development time of many years, and putting it
well beyond the knowledge-engineering and software-maintenance
capabilities of the local engineers.

Similarly, design should be automated through the introduction of nu-
merous small computational aids, involving a variety of reasoning and repre-
sentation techniques, including knowledge bases, neural nets, and databases.
However, new problems will arise involving interactions among these. Con-
sider more of the above example:

Typical of many chemical plants of this type, the processing
is highly interconnected, with chemicals made in one part of the
plant used in producing the chemicals made in another part of

2

the plant. Recently, a boiler failure caused an expert system to
shut down the production of a solvent that was needed in another
process producing latex paint. Unfortunately, the expert system
controlling the paint process did not find out about the shut down
until the solvent in the input pipe to the column dried up. After
the dried paint was cleaned from the column six months and $2
million later, the paint process was back on line.

The problem was that the processes in this plant were connected at the
physical level, but the expert systems were not connected at the knowledge
level, even though they were written in the same language, ran on the same
hardware, and were connected by ethernet. They were not designed to com-
municate! They were unaware of the decisions being made by the other
expert systems, so they were unable to take corrective action until, as in this
case, it was too late.

The key problem for intelligent design tools will thus be to integrate and
use all available information resources, including knowledge bases, databases,
and application programs. The information resources may have been inde-
pendently developed, but they must interact productively with the others.

Distributed artificial intelligence (DAI) [Huhns 87, Gasser & Huhns 89]
provides some of the technology needed for this integration and interaction.
DAI is concerned with how a decentralized group of intelligent computa-
tional agents should coordinate their activities to achieve their goals. When
pursuing common or overlapping goals, they should act cooperatively so as
to accomplish more as a group than individually; when pursuing conflict-
ing goals, they should compete intelligently. Interconnected agents can co-
operate in solving problems, share expertise, work in parallel on common
problems, be developed, implemented, and maintained modularly, be fault
tolerant through redundancy, represent multiple viewpoints and the knowl-
edge of multiple human experts, and be reusable. DAI is the appropriate
technology for applications where

• expertise is distributed, as in design;

• information is distributed, as in office automation;

• data are distributed, as in distributed sensing;

• rewards are distributed, as in automated markets;

3

• decisions are distributed, as in manufacturing control; and

• knowledge bases are developed independently but must be intercon-
nected or reused, as in next-generation knowledge engineering.

But in order for agents to coordinate their activities and cooperate in
solving mutual problems, it is essential that they be able not only to commu-
nicate with each other, but also to assess and maintain the integrity of the
communicated information, as well as of their own knowledge. Consistency
maintenance is thus crucial. However, there are many types of inconsistencies
that can arise among a group of agents, such as

1. one agent could believe a datum, while another agent could disbelieve
it;

2. one agent could believe a datum, while another agent could believe its
negation, and these beliefs could be used to justify a datum they share;

3. two agents could believe an object to be of two incompatible types, i.e.,
they could use different terms for the same object;

4. two agents could believe two different objects are of the same type, i.e.,
they could use the same term for two different objects;

5. the agents’ beliefs may be inconsistent at a semantic level, e.g., one
agent could believe that an object is made out of plastic, while another
believes that it is made out of steel.

What technology is needed to achieve the requisite consistency among
the different information resources?

Distributed truth maintenance: There are many desirable properties for
a knowledge base, such as completeness, conciseness, accuracy, and
efficiency. For an agent that can reason nonmonotonically, there are
additional properties used to describe the integrity of the knowledge
base: stability, well-foundedness, and logical consistency. In addition,
any algorithm that attempts to maintain well-founded stable states of
a knowledge base should be complete, in that the algorithm should
find a well-founded stable state if it exists. We desire each agent in a

4

multiagent environment to have a complete algorithm for maintaining
the integrity of its own knowledge base.

Truth maintenance systems are a common way to achieve knowledge
base integrity in a single agent system, because they deal with the
frame problem, they deal with atomicity, and they lead to efficient
search. Furthermore, the justification networks they create can be used
for nonmonotonic reasoning, problem-solving explanations to a user,
explanation-based learning, and multiagent negotiation.

However, the above definitions of properties for a single knowledge base
are insufficient to characterize the multiple knowledge bases in a mul-
tiagent environment. When agents that are nonmonotonic reasoners
exchange beliefs and then make inferences based on the exchanged be-
liefs, then concepts of distributed knowledge-base integrity are needed.

Nonmonotonic reasoning: Agents need to be able to maintain indepen-
dent viewpoints and skepticism until they receive convincing evidence
otherwise, but they should then be able to revise their beliefs consis-
tently.

Negotiation: A few researchers have explored negotiation as a means to
mediate among conflicting agents. The systems they developed in-
volved either monotonic reasoners, or nonmonotonic, but memoryless,
reasoners, i.e., reasoners that simply discard old solutions and re-solve
in the face of conflicts. Negotiation is likely the correct approach, but
the agents must be able to revise their plans incrementally as they in-
teract. They must be able to communicate directly, with each other
and with human agents, and they must be able to assess and main-
tain the integrity of both the communicated information and their own
knowledge. Then they can successfully coordinate their activities and
cooperate in solving mutual problems.

Semantic integration: Where the semantics of a resource are expressed
(partially) in the form of data dictionary or schema information, this
information must be interrelated with the semantics of the other re-
sources through the use of class servers or global schemas, such as the
Cyc knowledge base. It is essential that a common semantics be avail-
able and provided computationally.

5

Federated databases: Where it is necessary to retain the autonomy of
individual information resources, mappings must be generated to yield
interoperability.

Database management systems for design: Design DBMSs are needed
that support large and long-duration transactions, relaxed transactions,
large structured composite objects, versions, and aggregation.

Intentionality: Representations for agents and their actions must be de-
veloped that can express their intentions and commitments through
communicative acts.

Background

Knowledge-based systems have become an important part of computing.
There are estimates of over 100,000 fielded systems to date. These sys-
tems are mostly small, independent, and developed for specific applications
using off-the-shelf expert system shells. These shells are most suitable for
monolithic applications involving the knowledge of a single human expert.
But applications in larger and more complicated domains, and attempts to
use several small systems in concert when their application domains over-
lap argue for knowledge-based systems to be developed in a modular and
distributed fashion.

Early attempts to develop systems of cooperating agents, involved agents
with independent knowledge bases. The independence was achieved by re-
stricting agent interactions to modifications of a global data structure—a
blackboard—and by minimizing overlap in the agents’ knowledge. Later sys-
tems allowed richer agent interactions and overlapping knowledge, but the
agents were required to have consistent knowledge and to reason monotoni-
cally. This led to representational problems, because different experts in the
same domain often have different perspectives and conflicting knowledge,
making it difficult to construct a coherent problem-solving system for that
domain.

MCC is addressing the above problems through the development of RAD
[Arni et al. 90]. RAD enables a set of knowledge-based systems, constructed
independently, to act as a set of cooperating agents, working together to
solve a problem. Developers of distributed reasoning systems can exploit a

6

divide-and-conquer approach to development; they can build smaller, more
manageable knowledge-based agents. These smaller agents might represent
alternative points of view on a problem; there is no longer a need for global
consistency across an entire large system. These smaller agents can also be
reused in different combinations for solving additional problems as they arise.
They can be physically distributed in the world, just as the problems that
they address are. The intelligence needed for such problems can be embedded
throughout a computer network and made available where appropriate.

The RAD agents operate within this network asynchronously and, in
general, autonomously. RAD permits the collection of agents to be dynamic,
allowing agents to come and go. The agents can be either reactive or ingen-
uous, i.e., they can either respond to questions and commands from another
agent or initiate dialogs with another agent. RAD also allows other types of
agents, including OPS5 expert systems and human agents, to interact with
RAD agents.

RAD incorporates a distributed TMS [Huhns & Bridgeland 91] that al-
lows each agent to rely on the results of another’s reasoning without having to
keep track of the details of that reasoning. However, there is no requirement
for two agents to agree completely. The DTMS enforces local consistency
within each agent, while enabling negotiation about inconsistencies among
agents. When two or more agents disagree about belief in a datum and when
this disagreement is encountered during problem solving, then negotiation
among the agents will ensue to resolve the disagreement. The negotiation
procedure involves an exchange of justifications among the agents. The nego-
tiation is necessary to ensure that the global solutions to the problems posed
to the agents are coherent.

The DTMS is agnostic about what data should be shared among agents.
The research of [Courand 90] and [Galliers 90] has produced principles gov-
erning the incorporation of data from other agents. In [Courand 90], agents
share goals and plans in order to achieve the mutual beliefs necessary to
take cooperative action, but only when the resultant belief system will be
more coherent. In [Galliers 90], the agents are skeptical, rather than co-
operative, and prefer to adopt beliefs that reinforce existing beliefs with-
out revising any. The Rational Distributed Reason Maintenance System
[Doyle & Wellman 90] similarly suggests a basis for deciding rationally which
beliefs and plans to revise.

7

References

[Arni et al. 90] Natraj Arni, et al., “Overview of RAD: A Hybrid and Dis-
tributed Reasoning Tool,” MCC Technical Report No. ACT-RA-098-
90, Microelectronics and Computer Technology Corporation, Austin,
TX, March 1990.

[Huhns & Bridgeland 91] Michael N. Huhns and David M. Bridgeland,
“Multiagent Truth Maintenance,” IEEE Transactions on Systems,
Man, and Cybernetics, December 1991.

[Courand 90] G. J. Courand, “Cooperation Via Consensus Formation,” Pro-
ceedings of the 10th International Workshop on Distributed Artificial
Intelligence, Bandera, TX, Chapter 10, MCC Technical Report No.
ACT-AI-355-90, October 1990.

[Doyle & Wellman 90] J. Doyle and M. P. Wellman, “Rational Distributed
Reason Maintenance for Planning and Replanning of Large-Scale Ac-
tivities (Preliminary Report),” Proceedings DARPA Workshop on In-
novative Approaches to Planning, Scheduling, and Control, San Mateo,
CA: Morgan Kaufmann, November 1990, pp. 28–36.

[Galliers 90] J. R. Galliers, “Cooperative interaction as strategic belief revi-
sion,” Proceedings of the International Working Conference on Coop-
erating Knowledge-Based Systems, Keele, England, October 1990, pp.
148–163.

[Gasser & Huhns 89] Les Gasser and Michael N. Huhns, eds., Distributed
Artificial Intelligence, Volume II, Pitman Publishing, London, 1989.

[Huhns 87] Michael N. Huhns, ed., Distributed Artificial Intelligence, Pitman
Publishing, London, 1987.

8

