

 1

An Agent Architecture for Comprehensive Mission Robustness

John R. Rose and Michael N. Huhns
Center for Information Technology

University of South Carolina
Columbia, SC 29208

{rose,huhns}@engr.sc.edu

April 25, 2001

1 Introduction
As future NASA missions become more complicated and of longer duration and distance, the

software systems controlling them will of necessity have to be large, complex, and increasingly
autonomous. We will basically have to trust the systems, so there must be a principled basis for
our trust. Unfortunately, constructing large error-free software systems appears not to be
achievable by current means. Additionally, the large size of the systems and the unknowns to
which they will be subjected cause them to be untestable to even find out if, when, or where they
might fail. A new paradigm and architecture for software development are thus needed, and we
are investigating ones based on the premise that errors will always be present in software
systems, and we should try to not only compensate for them, but also take advantage of them.
Furthermore, an agent-based architecture, with the agents having explicit philosophies, is a
promising foundation for engendering trust. We can trust the agents to act autonomously if they
embrace ethical standards that we understand and with which we agree. We expect that this will
lead to robustness, fault tolerance, recovery, graceful degradation, and, ultimately, trust in our
systems.

2 Software Agent Architecture
A key feature of the architecture is that robustness is achieved through massive redundancy

and decentralization in planning and execution. This revolutionary approach to achieving
mission goals relies on interaction as a fundamental construct. Competing proposals for
satisfying tasks are developed by fluid collaborating groups of software agents vying for
resources, so that the failure of one approach does not jeopardize overall mission goals.
Competing proposals can be acted on in parallel when they do not interfere significantly with
each other, but are pruned as necessary to conserve resources.

This approach to agent behavior will be constrained by a hierarchy of fundamental
philosophical principles or societal laws, similar to Asimov’s laws of robotics:
• Principle 1. An agent shall not harm the mission through its actions or inactions.
• Principle 2. Except where it conflicts with principle 1, an agent shall not harm the

participants in the mission.
• Principle 3. Except where it conflicts with the above principles, an agent shall not harm

itself.
• Principle 4. Except where it conflicts with the above principles, an agent shall make rational

progress toward mission goals.
• Principle 5. Except where it conflicts with the above principles, an agent shall follow

established conventions.

 2

• Principle 6. Except where it conflicts with the above principles, an agent shall make rational
progress toward its own goals.

• Principle 7. Except where it conflicts with the above principles, an agent shall operate
efficiently.
In accordance with these embedded philosophical principles, the system architecture must

support common goals, societal laws, common principles, common abilities (such as how to
negotiate), and ways to sanction or punish miscreants. The agents will use decision theory in
their negotiations to evaluate the expected utility of proposed actions and use of resources. This
will result in planning and task execution that is dynamic, rational, massively distributed, occurs
at multiple levels of granularity, and can be trusted. The architecture is a revolutionary departure,
both from current monolithic approaches to planning and from distributed approaches to task
execution. It takes advantage of the differences in local perspective that exist in a massively
distributed environment to formulate and execute plans that, while not perfect, will not have
identical flaws, producing robustness through redundancy and diversity of approach.

3 Programming a Philosophical Agent Architecture
Autonomy and distribution will occur at many levels within the systems. The result we

envision will be a programming paradigm where the effort is on assembling and coaching a team
to achieve desired functionality. Programmers will specify requirements about what is needed,
possibly in terms of social commitments and intentions, rather than specifying how it should be
done. The components might negotiate with each other, make social commitments to
collaborate, and change their minds about their activities and results.

This vision is based on the premises that (1) coherence is more important than consistency,
(2) errors will always be part of complex systems, (3) error-free code can at times be a
disadvantage, and (4) where systems interact with the complexities of the physical world, there
is a power that can be exploited.

4 Conclusion
The agents we construct—and the NASA systems they implement, manage, and enact—must

be trustworthy, ethical, parsimonious of resources, efficient, and—failing all else—rational.
What we are investigating differs from current work in software agents in that:
• We are not researching new agent capabilities per se
• We are not developing an agent-based system for some new application domain
• We are investigating how agents can be the fundamental building blocks for the construction

of general-purpose software systems, with the expected benefits of robustness and autonomy
• We are characterizing agents in terms of mental abstractions, and multiple agents in terms of

their interactions. These abstractions matter because anticipated missions go beyond
traditional metaphors and models in terms of their dynamism, openness, and trustworthiness.
The benefit of this architecture to complex missions such as future NASA planetary and deep

space missions is fourfold: (1) it will support missions of much greater complexity than are
possible under the current model of earth-based control, (2) it will reduce costs by minimizing
the amount of earth-based support required for missions, (3) it will essentially eliminate
communication time lag as a significant factor in local task execution, providing the ability to
react to and take advantage of serendipitous events, and (4) it will significantly enhance mission
robustness. The development of the proposed architecture builds on developments in decision
theory, agent societies, trusted systems, and ubiquitous computing.

	Introduction
	Software Agent Architecture
	Programming a Philosophical Agent Architecture
	Conclusion

