
Facilitating Human Collaboration with Agents

James E. Just Mark R. Cornwell Michael N. Huhns
Global InfoTek, Inc. Global InfoTek, Inc. University of South Carolina

jjust@globalinfotek.com mcornwell@globalinfotek.com huhns@sc.edu

Abstract

Ad hoc cross-agency teams are often needed to deal with
actual, imminent, or potential crises that involve multiple
geographic or political jurisdictions or require
coordinated expertise from organizations with different
responsibilities. Many of these teams are wholly or
partially virtual. We have implemented an initial set of
personal and organizational agents, agent-based work
flows, and Web services that facilitates the establishment
of collaborating teams of humans who work for different
organizations and whose primary mode of interaction is
virtual. The agents augment existing email and office
automation applications in an organization. Preliminary
results show the potential for a reduction of two orders of
magnitude in the time needed to form a team. The system
is being enhanced to manage on-going collaborations of
team members and workgroups.

1 Introduction

Imagine composing a team that must response to a
potential or imminent crisis. In these times, such a team
might involve national, state and local police and policy-
makers, national intelligence assets, specially trained
military units, and other first responders. There are two
general problem areas: (1) how to form such a team
efficiently from these disparate organizations and how to
get the new team members to work together effectively.

Forming an effective cross-agency team can be a
significant bottleneck. Many of the traditional approaches
to teams, such as assigning primary responsibility to one
agency and having liaison members from other agencies,
will not work when significant contributions are required
from all participants. Another illustrative impediment is
the bureaucratic tendency to retain the best talent for
internally important jobs and assign the worst performers
to interagency teams. Once the team has been formed, it
must quickly establish workable policies and practices to
replace those that a common organization and culture
normally provide.

New team members people are unlikely to have ever
worked together before, but now have an urgent need to
collaborate quickly and effectively to deal with the crisis.
Team members tacit understandings about how things get
done in their “old” organizations no longer apply. The
members need to trust one another to work effectively.

Because of the need to support and interact with
humans in the team formation and collaboration process,
agents represent a natural approach if they do not get in
the way of the interaction. While we cannot hope to
provide the smooth, voice-driven, intelligent assistant
illustrated in the classic 1988 vision video, “Knowledge
Navigator” by Apple Computer, that video certainly
inspired us.

Our goal in this development was not to replace
human judgment in forming teams with software agents.
Agents will not, in the foreseeable future, be intelligent
enough to be useful in such a role. Rather our goal was to
leverage human intelligence in areas where it was needed
and off-load the more routine or uninteresting tasks to
software agents that don’t mind dull jobs and perform
them quickly and accurately.

This paper describes work that was undertaken to
assist with the first problem area: setting up a cross-
agency team efficiently. Our on-going work to assist in
the second problem area and to improve our
implementation in the first area will be reported on in the
future.

2 Related Work

There have been many efforts to develop the basic
notion of software agents facilitating the efforts of teams
and the interests of the people in the teams [4]. The most
notable is the work by Tambe and colleagues [12] on
facilitating human collaboration and adjustable autonomy
in teams. The resultant framework, Teamcore, assists in
the functioning of teams consisting of both software and
human agents, with the software agents imbued with the
inherent ability to reason about their role in a team. There
is no support for the formation of teams, however.

A similar comprehensive framework that can support
teams is GPGP/TÆMS [8]. It provides domain-
independent coordination for small groups of agents, and
supports a variety of coordination strategies, including
social laws. The result is optimal or satisficing goal-
directed solutions to multiple concurrent problems.
Unlike the teamwork facilitation we present herein, the
focus is on software agents and not support for humans.

 2

A related and complementary system to ours is the
RETSINA multiagent infrastructure framework [3],
which is based on four types of agents: (i) interface
agents, (ii) task agents, (iii) information agents, and (iv)
middle agents. Notably, the interface agents enable
humans to be part of a system. Earlier experiments on a
DARPA project proved that CoABS Grid agents could
interoperate with RETSINA agents.

Nair et al. [10] pursue an alternative to ours for
handling policies: they model policies as partially
observable Markov decision processes, whereas we
model them as defeasible rules in deontic logic.

In order to fulfill the goals and objectives of an
organization, its members must understand their
responsibilities and authorities, and must behave
cooperatively. Liu and Dix [9] argue that the keys to the
coordinated achievement of organizational goals are the
norms that define the responsibilities and authorities for
each human and establish regularities of behavior. They
define the norms that software agents providing
computer-supported cooperative work (CSCW) must
facilitate and perform autonomously on the user's behalf.
Our work provides an implementation and evaluation of
their norm-based approach to CSCW, including their use
of deontic operators to specify norms.

3 Analysis

3.1. Distributed Collaboration

To understand the requirements for a practical
collaboration system, we developed a set of scenarios
centered on the formation of an interagency crisis team.
Each scenario assumed that a crisis had occurred
somewhere in the world and that an appropriate decision
maker had decided to form an interagency crisis team to
deal with the problem. We modeled each agency as an
independent entity with its own rules for determining
what specific staff would serve on an interagency team.
The rules for each agency were “hidden” behind an
Organizational agent that provided the external interface
to interact with that agency. This approach allows for
great flexibility in dealing with real organizations.

In our scenarios, people continue to interact with one
another by means of conventional tools, such as email.
We augmented these conventional systems with software
agents to assist in coordination and automate simple
tasks. People use common office automation tools (email,
browsers, and databases), software agents, and policies to
interact and enable the rapid formation and approval of a
team.

We recognize that people are not going to switch from
the general purpose email, word processing, and other
office automation tools they currently use. A
collaboration system that attempts to replace the user’s
current desktop environment with a set of tools
duplicating existing functionality will not succeed. Users
will resist, and it is unlikely that such a system would
ever win widespread acceptance on its merits. We
believe that collaboration software must work in harmony
with existing office automation software and the agency’s
supporting infrastructure.

Our agents manifest themselves largely through
existing user interfaces and add value by supplying
additional “smarts” behind the scenes. For example, a
personal agent may monitor a user’s email for traffic that
it can process autonomously. A user can delegate some
responsibility to that agent and set policy for when the
agent can respond automatically and when it must get
further approval from the user.

Once the team is formed and approved, a Groove
collaborative workspace is launched for team members, it
is populated with the appropriate background documents,
and tasks are assigned to team members. We want agents
to be able to notice when tasks are assigned to people and
to monitor the status of those tasks in a way that is helpful
to humans (who have the ultimate responsibility to
deliver). The interactions between an agent and a human
needed to accomplish this must be very simple. For
example, suppose that five tasks have been identified in a
virtual team meeting and the team leader wants to assign
them and ensure that they are tracked. The team leader
wants to be able to describe each task to the automated
system with just a phrase, similar to what he would do if
he were writing the task list on a whiteboard: Most
project management systems require completion of what
is essentially a half-page form for each task with
dependency relationships to other tasks, resource
requirements, earliest start dates and latest end dates, etc.
This is far too much structure. Users must be able to
leave many fields blank, change the entries later, or delete
them entirely. Automated agents and tools that process
this information must be able to deal with incompleteness
and inconsistency of the information people provide and
still constructively and intelligently assist the team in
getting the tasks accomplished.

3.2. Federation Issues

Individuals making up the crisis team will be subject
to policies from a variety of sources: their agency, federal
and state laws, divisions and branches within the agency,
and the team. If we include software agents, policy
should involve personal preferences of the agents’
owners. There is no one central source for policy.

Applicable policy will vary over individuals and over the
software agents acting on their behalf.

Software systems as well as individuals must operate
in a variety of domains. A domain can be characterized
by the rules or policies that govern the behavior of
entities in the domain. A technology domain might
require particular software systems or network protocols.
Administrative domains will have different organizational
authorities set policies for them and control their
behavior. Each domain might use a different security
policy to determine who can access data and how it must
be protected. Collaboration requires mechanisms that
support the ability of our automated systems to cross all
these domains. We must also support the ability of
people to conform to the variety policies that govern their
behavior

4 Design Alternatives

4.1. Ontologies as interfaces

A primary problem that we need deal with is the
heterogeneity of the environment within which out
system must function. In order for objects to interact at
all we need to select at what level we would standardize
interfaces in order for out objects to interact. Here we
were faced with a large space of possibilities: message
formats, RDFS, XML Schema, CORBA, RMI interfaces,
FIPA messages, RDFS, CoABS, JAXB, and so on.

Rather than standardize on particular API’s or object
interfaces, we chose the approach of orienting our
interface design primarily around of RDFS metadata.
RDF has currency as the primary technology behind
current efforts in the Semantic Web. It has the support of
a research community and a set of emerging tools. RDF
integrates well into the conceptual structure of the World
Wide Web that has proven such a practical success.

We were also attracted by the simplicity of RDF’s
underlying mathematical model. The uniform
representation of information as sets of triples of symbols
[11] is remarkably elegant and maps naturally to many
convenient interpretations. They can be readily
interpreted as graphs, database tables, binary relations,
expressions, object schema, and data. Their underlying
uniformity and simplicity makes them a natural choice for
automated reasoning systems that treat the tuples as well
formed formula’s is the sense of formal logic and infer
new sets of the tuples from them. Perhaps because of it’s
minimalism, RDF seems to move between these different
uses and concerns with remarkable ease.

Having selected RDF as our basis for development, we
wanted to leverage existing ontologies expressed in RDF.
Part of our previous effort had resulted in an RDF based

version of the Rei policy language and we saw that we
could leverage this technology for our own policy
development. We also had available rule sets developed
for XSB/Flora to automate reasoning about ontologies
expressed in OWL, itself an extension of RDF with
particular semantics associated with it. Thus we saw the
technical means to easily obtain a fairly powerful
reasoning engine to process policy statement written in
Rei.

4.2. Task Management

We knew we wanted some form of task management
to track subtasks assigned to individuals in the team and
help see that things got done. However, typical workflow
or project management systems are not appropriate to the
task at hand. We believed that they required too much
interaction from the user and assumed a long term view of
the benefits of automating routine business processes.
We believe that most workflow systems try to take too
much ownership of workflow management and
scheduling away from the human collaborators by
querying them for too much information and making too
many decisions for them.

Consider for example a workflow system that assigns
task to individuals based on their skills, skill requirements
of the tasks, task priorities, and the individual’s current
workload. Such a system needs an accurate model of
what an individual’s workload, a good encoding of skill
requirements to tasks, and rather specific description of
skills required for the task. Providing a system with all
this information poses quite a burden. A fast moving
inter-agency team cannot be assumed to have systems in
place to support this information hungry process. We
require a workflow system that can assist based on
necessarily incomplete and lightweight human
interactions and still provide valuable assistance in
tracking workflow and making constructive suggestions
to improve workflow within the team.

In keeping with our ontology-based approach, we
developed an RDFS model of the concepts relevant to
workflow. A team workflow agent is responsible for
tracking workflow within the team. Agents interact with
the workflow agent through messages representing their
data as RDF triples.

4.3. Policy

Our first decisions with respect to policy dealt with
how broadly we wanted to apply the term. We decided
that policy can be divided into 3 types:

• Permissions -- access control or who can do
what

 4

• Configuration settings – typically specific to
agents and applications

• Obligations – actions required by policy under
certain conditions

We decided we would try to address all of these within
a single conceptual framework, even if the mechanisms
realizing them might differ.

Policies surrounding permissions (who can do what)
are among the most studied. Some of the key concerns
are where policy decisions get made (policy decision
point) and where they are enforced (policy enforcement
point).

Configuration settings are often not considered part of
policy due to the difference in mechanisms delivering
configuration settings and those that deliver access
control information. We take a behaviorist view and
consider such settings a part of policy because they have
the same controlling effect on agents that other policies
have.

Obligations are less traditional part of our policy
framework. Agents may incur responsibilities as the
result of accepting tasks from other agents through speech
acts in Rei framework. Failure to carry out obligations
may result in sanctions such a decrease in the degree of
trust an agent has from certain parties to carry out certain
actions.

4.4. Rei language

Rei is a declarative policy language for describing
policies over domain actions [5]. It has an RDFS
representation but includes a flavor of logic, in that it
incoporates the notion of logic like variables for
describing a wide range of constraints that may not be
directly possible in existing ontology languages like
RDFS, DAML+OIL or OWL. This provides greater
flexibility in describing policies. An example of a Rei
policy is, 'All entities in the same group as John have the
right to perform a printing type of action on B/W printers
in this lab'.

Rei is modeled on deontic concepts of rights,
prohibitions, obligations and dispensations. We believe
that most policies can be expressed as what an entity
can/cannot do and what it should/should not do in terms
of actions, services, conversations etc., making our
language capable of describing a large variety of policies
ranging from security policies to conversation and
behavior policies. The policy language has some domain
independent ontologies but will also require specific
domain ontologies. The former includes concepts for

permissions, obligations, actions, speech acts, operators
etc. The latter is a set of ontologies, used by the entities
in the system, which defines domain classes (person, file,
deleteAFile, readBook) etc. and properties associated
with the classes (age, num-pages, email). Though Rei
itself has an RDFS representation, Rei allows domain
specific information to be described in different ontology
languages including RDFS, DAML+OIL and OWL, as it
incorporates the required language reasoners as well.

The policy language supports individual policies as
well as group and role based policies in a uniform manner
by allowing domain dependent representations for roles
and/or groups to be included in the conditions of the
policy rules.

As the probability of conflicts in policies in distributed
systems is high, Rei includes two constructs for
specifying meta-policies that are invoked to resolve
conflicts; setting the modality preference (negative over
positive or vice versa) or stating the priority between
policies. For example, it is possible to say that in case of
conflict the Federal policy always overrides the State
policy.

Associated with the policy language is a policy engine
that interprets and reasons over the policies, related
speech acts and domain information to make decisions
about rights, prohibitions, obligations and dispensations
of users. The engine is also capable of answering other
queries related to policy making: who can perform a
certain action, who can perform any action on a certain
resource, what unfulfilled obligations does entity X
currently have, what prohibitions do a certain class of
users have etc.

5 Implementation

Our implementation uses both Java-based and C++
based agents and web services that interacted via the Jini-
based CoABS Grid [7]. An innovative aspect of our
agent-based system is a template-based design. The
concept or technical vision for the template-based design
is illustrated in Figure 1. Templates represent blackboard-
like data structures that contain essential aspects of
history or state information about individuals,
organizations, and teams. Various agents and services
interact with the templates to accomplish their goals (such
as specializing the expertise required by a team to match
an assigned situation or monitoring the status of ad hoc or
standing tasks) and store current state in the templates.
The templates evolve as things change as a result of
changes in the environment or changes resulting from
agent actions. Agents are used for team formation and
evolution, policy management, resource utilization, and
analysis of individual and team behaviors.

Resource
Suppliers (Core

Agencies)

Resource
Suppliers (Core

Agencies)

Resource
Suppliers (Core

Agencies)

Resource
Suppliers (Core

Agencies)

Agents for Policy
Management Agents for Behavior & Social

Network Analysis

Agents for Team Governance
• Expertise, Skills
• Workload, Space, Etc
• Preferences, History
• Refinement & Adjudication
• …

A

A

A AA

A

A

A
A A

Agents for
Team

Formation
Team

Policies
Priority &
Schedule

Resource
Estimator

Situation
As Known

Partial
Mission

Intelligent Team
Formation
Template

Team
Formation,
Management,
Evolution

Resource
Suppliers (Core

Agencies)

Resource
Suppliers (Core

Agencies)

A

Figure 1: Technical Vision for Design

Collaboration Session Templates

Individual Template

Organization Template

policiespolicies

organizationsorganizations

participantsparticipants

rolesroles

taskstasks

resourcesresources

workflowsworkflows

goalgoal

CIPCIP

teamteam

History of collaboration

Team Template

Figure 2 Templates Evolve via Interacting Agents

Figure 2 illustrates how our agents interact with and

modify the templates representing the team, various
organizations, and individual team member to
accomplish their tasks. The data structures, shown as

named slots in each template, represent the state of each
attribute of the template. For example, the team
participant’s slot contains the names of all the current
team members. These names are, in turn, linked to

 6

templates describing each individual team member. Not
all the information about each team member is available
to the team, some is private and controlled by the
individual, some is controlled by that individual’s
organization, and some is generated as a result of that
individual’s interaction with the team. Team policies,
which are in part derived from the policies of each
organization that is contributing staff to the team, will
be discussed in more detail in the next section.

How we accomplish team formation is best
illustrated by the graphical depiction of the agent
interactions in Figure 3. The activities shown in Figure
3 are defined in Table 1 via their activity sequence
numbers. These two diagrams summarize a great deal of
technical information which we will not repeat here in
the interests of brevity.

6 Role of Policy

6.1. Effects of Different Policies and Security

We want to ensure that the agents are responsive to
policy changes and that security requirements are
enforced. To this end, the system supports the correct
robust behavior under the following conditions:

• Whether “report back before team finalization” is
required

• Establishment of team policies that reflect de-
confliction of different organizational policies.

• Different organizational evaluations of team
effectiveness and policies regarding visibility into
past problems.

• Different information sharing policies that
constrain what can be shared between particular
organizations and the team and restrict
subsequent sharing outside of a team.

Policy
Agent

DM [1] setupTeam(CIP, team type,...)

[2] check authorization
[3] calc initial TD

Personal
Agent of TL

[7] formTeam(TMA URI)

TL Personal
Policy

()populate w/o me
(*)pop up GUI for me

Team
Management

Agent

[8] fetchGUI

[9] TTGUI

TTGUI

[10] TTGUI pops up TL

[11] TL reviews/edits TT

[12] update tem
plate data

[14] form
Team

[4]createTMA(TD)

[13]TL approves by clicking form team button
[20] TL clicks analyze team button
[26] TL approves team

Team
Formation

Agent

[15] form
Team

OrgA

OrgB

Personal
Agent of DM

[16]get
people

[17]people
returned

[16]
[17]

[18] return people

[27] team
 info

[21] analyze team

[22] analyze team
CIP WS

Team
Evaluation

Agent

[23][24]

[25]

[25] anal result

WS

[19] TL approves

Team
Policy

Team
Template

[28] requestApproval(TMA_URI)

[29] DM clicks TMA link
[32] DM Review list
[33] DM clicks approve

[30] GUI requested [31] GUI returned

TTGUI

[34] DM authorization

Agent
Factory[5]create

[6]TMA URI

[35] TT state becomes authorized

[36] team approved

Groove

[37] create
workspace

Smithers

[38] email attachments

[39] save attachm
ents

[40] attachments
visible in groove

Figure 3 Agent Realization of Team Formation

Table 1 Team Formation Use Case and Activity Sequence

1 Decision Maker (DM) emails a message to his

organization’s Policy Agent to authorize Joe Team-
Lead (TL) to set up and lead a cross-agency team
that will respond specified crisis (ID 2741Q). He
specifies that he wants to review the proposed team
members before the team is finalized and that
standard reporting policies should be required.

2 Policy Agent validates email signature and that
sender authorized.

3 Policy Agent fills in the team template with initial
data drawn from specified crisis information
package (ID 2741Q)

4 Policy Agent instructs Agent Factory (AF) to create
a Team Management Agent (TMA) using data
contained in the initial team template

5 AF creates a new TMA with the specified data.
6 AF sends Policy Agent a pointer (URI) to the

newly created TMA
7 Policy Agent forwards the original DM message

along with a pointer (to locate the new TMA) to the
designated TL. The Personal Agent (PA) routinely
monitors email to the TL for messages that it
recognizes so it detects the Policy Agent message
and begins acting on it.

8 TL’s Personal Agent sends a message to the TMA
to launch a GUI on the TL’ computer

9 TMA sends the GUI to TL’s computer
10 GUI starts up on TL’s workstation and displays the

information in the initial team template
11 TL reviews team and makes changes via the GUI
12 GUI sends update message with new data to TMA
13 TL clicks “Form team” button on GUI
14 GUI sends “Form team” message to TMA referring

to previous data
15 TMA sends “Form team” message to Team

Formation Agent (TMA)
16 TFA sends messages to various Organization

Agents that request each organization to provide
candidates for selected positions on the team.

17 Organization Agents return lists of people to TFA
18 TFA combines lists and sends it to TMA for team

template.
19 Changes to team template propagate out to the GUI

for TL to see
20 TL selects “Analyze Team” button on the GUI
21 GUI sends “Analyze Team” message to the TMA
22 TMA receives message and delegates it to the TFA
23 TFA sends message to Team Effectiveness Agent

for analysis of team makeup.
24 Results of analysis propagate beck to TFA, TMA

and are written to team template
25 Team template changes propagate out to the GUI

and are observed by the TL.
26 TL approves result by clicking button on GUI.
27 GUI transmits approval event to TMA
28 Team policy dictates DM approval, so TMA sends

message with Team URI to DM’s Personal Agent.
29 DM clicks on link in message to fetch GUI.
30 Request to Fetch GUI is transmitted to TMA
31 GUI is constructed by TMA and sent to DM’s

workstation.
32 DM reviews list of people on team via GUI
33 DM clicks Authorize button to approve.
34 Authorization transmitted to TMA
35 TMA changes state of team from proposed to

authorized.
36 TMA sends email to TL indicating team approval
37 TL creates a Groove collaboration workspace for

the team and his agent invites new team members
to join that space.

38 DM sends team background documents via email to
Smithers, the Group Mail Capture Agent (GMCA)

39 Smithers (GMCA) puts attachments into a directory
visible to Groove

40 Documents are now visible to team members

• Unauthorized persons cannot form a cross-agency
team

• Rogue agents cannot impersonate other agents,
send false messages to another agent or replay
messages.

More information on the policy aspects of the system
is available in [2]

6.2. Agents and Policy

Before the process of forming a forming a new team is
begun, the Team Management agent does not yet exist.
Each team has a unique Team Management Agent. The
Team Management Agent is created by an Agent Factory

in response to request to form a new team. The request is
made to a Policy Agent that acts as a gatekeeper to the
(Team Management) Agent Factory and enforces
organizational policy about who can form a crisis team,
what an initial template for the a team will look like, and
the initial team policy.

While there is a policy associated with the
organization, and another associated with the team, there
is also policy associated with the individual. That policy
determines what capabilities or rights are delegated to
that user’s personal agent. In our system the personal
agent can monitor the email of a user and respond
automatically to correspondence on behalf of the use.
This personal policy governs how much or how little

 8

authority the individual grants to the personal agent. For
example, we use it in the scenario to control whether the
team lead’s personal agent need ask for the team leader’s
approval on the list of roles (skills) required for a team,
before acting to fill those roles.

The task of actually finding people to fill the roles
making up the team falls on the Team Formation Agent.
This agent is responsible for going outside of the
organization to find people with the necessary skills. The
Team Formation Agent is not allowed to look through
the personnel records inside another organization.
Instead the Team Formation Agent must negotiate with
other Organization agents who will communicate to the
Team Formation Agent what individuals those outside
organizations has selected to for the team. Each
organization may have its own policies and procedures
for deciding who it wants to appoint to the team. These
Organization Agents are the integration point for such
federated decision making.

7 Initial Results and Assessment

7.1. Team Formation Speedup

Based upon our discussions with various individuals
and managers associated with the traditional
establishment of ad hoc cross-agency teams, team
formations take at least hours and often weeks,
depending upon the size, complexity, and expected
duration of the team. In our demonstrations with human
decision makers and team leaders, establishing a team
took about twenty minutes. The time was measured from
the time the decision was made to form a team (to deal
with a particular hypothesized event) until ten team
members from three agencies had been identified,
approved, contacted and integrated into a downloadable
collaboration environment that is populated with initial
background documents and assignments. This enormous
difference in the time required for team formation
between the traditional approach and our agent-based
approach was mainly the result of removing the human
element in organizations from the decision making
process about which members of an organization would
be assigned to a given cross-agency team. Whether such
a practice will ever be a realistic alternative in
organizations is open to debate but the potential for
improvement is vast.

7.2. Architecture Qualities

Is our implemented architecture the best choice? It is
difficult to determine whether any architecture is a good
one, let alone the best one, without extensive real-world
deployment. However, significant thought has gone into
issues of fitting into organizational structures
(particularly with respect to policies and personnel

decisions on team commitments) and of scalability. For
example, organizations control policy within their
domain and, within a domain, policy is usually controlled
in a hierarchical fashion. However, any given individual
or agent may be a member of multiple overlapping
domains and thus subject to multiple policies. We have
made the simplifying assumption that, within our
agencies, policies at the individual level have been
deconflicted (or at least the conflicts have been identified
for human resolution). Thus, when a cross-agency team
is formed, a set of Team Polices can be determined [2].

Similarly, the Policy Server could easily become a
bottleneck if it was asked to make permission decisions
for all individual agent actions. We have addressed this
in several ways: through multiple policy engines and
through the use of embedded platform security
mechanisms for enforcement. This latter approach is the
subject of further effort, because policy enforcement is a
major task [13] and [14]. The CoABS Grid itself has
been the subject of many scalability experiments and has
performed exceptionally well [6].

In the current implementation, we are relying on the
simple restart capabilities inherent in the CoABS grid for
reliability [7]. More extensive reliability mechanisms can
be implemented when needed.

7.3. Caveats

The current implementation has a number of possible
limitations. Our approach to determining the
requirements of a team for a particular purpose depends
upon the availability of machine understandable semantic
tags that describe the situation and a set of rules that
allow general requirements to be specialized to the
particular situation, albeit with human tuning. Whether
either of these approaches will be available in real
organizations is an open question. If team formation is to
be automated, this semantic information and rules must
be available. OWL presents an interesting opportunity for
use in this area.

We have implemented one of many possible methods
of selecting candidate team members from within an
organization. Ours does a simple optimization across
skills and availability and assumes that on-line sources of
such information are available within an organization.
This is certainly not the case in many, if not most,
organizations. We do not view this as a serious problem,
because the selection process within an organization is
essentially isolated from the rest of the system because
the interface is through the Organization Agent. Thus it
would be easy to substitute a different selection process
behind this agent with no changes to the rest of the
system.

Similarly, we have implemented simple algorithms to
determine team effectiveness and identify any past
problems with candidate team members. These
algorithms assume that requisite information is available
online. Certainly, in most organizations, that is not
currently the case. Additionally, there is little evidence in
the literature that it is possible to predict how a group of
individuals will function as a team. Furthermore, many
organizations explicitly state that employees with the
requisite skills or title should be equivalent and that
personal likes/dislikes or personality conflicts have no
place on the job. While this makes it easy for an
organization to assign members to teams, it is not
necessarily true. Offering up candidates for cross-agency
teams from an organization’s “turkey farm” is not
unheard of. Again the system is modular enough to
permit different approaches to this sticky area.

8 CONCLUSIONS AND NEXT STEPS

Our prototype agent-based system supports rapid
formation of customized ad hoc cross-agency
collaboration teams. Preliminary results indicate a
reduction in team-formation time of two orders of
magnitude.

Our next steps will focus on improving the
effectiveness of human collaboration teams in a virtual
environment by facilitating interactions with software
agent teams that enable continuous assessment and
restructuring of the virtual teams. We hope to
demonstrate significant improvements in collaboration
effectiveness based upon quantitative metrics such as
scaling over number of people, organizations, types of
organizations, time to achieve results, maintenance over
extended periods of time, types of participants (human
and computer), and dynamics of the participation.

9 ACKNOWLEDGMENTS

This work was partially funded by the Space and
Naval Warfare (SPAWAR) Systems Center (SSC) under
contract N66001-03-C-8001. The views and conclusions
contained in this document are those of the authors and

should not be interpreted as representing the official
policies, either expressed or implied, of the SPAWAR
System Center or the U.S. Government.

10 REFERENCES
[1] Shreedhar M., and G. Varghese, “Efficient fair queuing
using deficit round robin,” in SIGCOMM: ACM Special
Interest Group on Data Communication, (Cambridge, MA), pp.
231–242, September 1995.
[2] Cornwell, M., Just, J., Kagal, L., Finin, T. A Policy Based
Collaboration Infrastructure, submitted to IEEE 5th
International Workshop on Policies for Distributed Systems and
Networks, New York, June 7-9, 2004.
[3] Giampapa, J.A. and Sycara, K.. Team-Oriented Agent
Coordination in the RETSINA Multi-Agent System. Technical
Report CMU-RI-TR-02-34, Robotics Institute, Carnegie Mellon
University, December 2002.
[4] Huhns, M.N. Agent Teams: Building and Implementing
Software. IEEE Internet Computing, vol. 4, no. 1, pp. 91-93,
January/February 2000.
[5] Kagal, Lalana et al. A Policy Language for A Pervasive
Computing Environment, IEEE 4th International Workshop on
Policies for Distributed Systems and Networks, June 2003.
[6] Kahn, M., et al, “CoABS Grid Scalability Experiments”,
J. Autonomous Agents and Multi-Agent Systems, 7, 171-178,
2003, Kluwer Academic Publishers, Netherlands.
[7] Kahn, M., et. al., DARPA CoABS Grid Users Manual
V3.2.1, October 2001. http: coabs.globalinfotek.com
[8] Lesser, V. et al., Evolution of the GPGP/TAEMS
Domain-Independent Coordination Framework. Proc. AAMAS,
2004.
[9] Liu, K. and Dix, A. Norm governed agents for CSCW, 1st
Int’l WS on Computational Semiotics, Paris, 1997.
[10] Nair, R., et al. Taming Decentralized POMDPs: Towards
efficient policy computation for multiagent settings. Proc.
IJCAI, 2003
[11] Notation 3. http://www.w3.org/DesignIssues/Notation3,
2001.
[12] Pynadath, D. and Tambe, M. Automated teamwork among
heterogeneous software agents and humans. J. Autonomous
Agents and Multi-Agent Systems. 7:71-100, 2003.
[13] Suri, N, et al. DAML-based Policy Enforcement for
Semantic Data Transformation and Filtering in Multi-Agent
Systems. Proc. AAMAS, July 2003.
[14] Uszok A., et al. KAoS Policy and Domain Services:
Toward a Description-Logic Approach to Policy
Representation, Deconfliction, and Enforcement, IEEE 4th
International Workshop on Policies for Distributed Systems and
Networks, June 2003

