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ABSTRACT 
This paper describes two complementary research thrusts: (1) it investigates how software robustness can be 
achieved pragmatically through the use of large-scale multiagent systems, and (2) it investigates how a broader 
spectrum of people can contribute to the production and customization of software, also through the use of 
multiagent systems.  The paper first hypothesizes that robust software can be achieved through redundancy, 
where the redundancy is achieved by agents that have different algorithms but similar responsibilities.  The 
agents are produced by wrapping conventional algorithms with a minimal set of agent capabilities, which we 
specify.  We describe our initial experiments in verifying our hypothesis and present results that show an 
improvement in robustness due to redundancy.  We then advance the hypothesis that the redundant algorithms 
can be obtained through the efforts of many people outside of the traditional software development community.  
To be successful, such widespread development will require tools, an infrastructure, and a means for semantic 
reconciliation, and we investigate the characteristics and requirements for these. The paper analyzes the 
relationship between the software systems that manage and control societal institutions and the members of the 
society.  The result enables individuals to participate more directly in the behavior of their governing 
institutions. . 
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1. INTRODUCTION 
Computer systems are now entrusted with control of global telecommunications, electric power distribution, 
water supplies, airline traffic, weapon systems, and the manufacturing and distribution of goods.  Such tasks 
typically are complex, involve massive amounts of data, affect numerous connected devices, and are subject to 
the uncertainties of open environments like the Internet. Our society has come to expect uninterrupted service 
from these systems.  Unfortunately, when problems arise, humans are unable to cope with the complexity of the 
systems and the speed with which they must be repaired.  Increasingly, the result is that critical missions are in 
jeopardy. 
To cope with this situation, researchers are investigating self-healing systems, which detect problems 
autonomously and continue operating by fixing or bypassing the malfunction [33]. The techniques employed 
include redundant hardware, error-correction codes, and models of how a system should behave, so that the 
system can recognize when it misbehaves.   
The most common technique for robustness in hardware—redundant components—is inappropriate for software, 
because having identical copies of a module provides no additional benefit. For software, reliability is thus a 
more difficult and still unresolved problem [3, 4].  The amount of money lost due just to software errors is 
conservatively estimated at US$40B annually.  To produce higher quality software, researchers are trying to 
define more principled methodologies for software engineering [10].  They are also looking to new technologies, 
such as multiagent systems, and this leads to an interest in combining software engineering methodologies with 
multiagent systems [30]. 
There are at least three ways that software engineering intersects multiagent systems: 
• Multiagent systems can be used to aid traditional software engineering, such as by agent-based or agent-

supplemented CASE tools 
• Traditional or new software engineering techniques can be used to build multiagent systems; e.g., UML has 

proven to be useful for conventional software, so Agent-Based UML and similar efforts are underway to 
extend it to support the development of agents [31] 

• Conventional software can be constructed out of agents, and software engineering can be used in this 
endeavor. 

The focus of this paper is on the last, but extended to widespread development by people other than expert 
developers.  The behavior of the resultant systems will depend on their construction and the environment in 
which they operate.  When the system contains a number of components that interact with each other and a 
complex environment, the behavior can be difficult to predict and control.  Traditional software interfaces are 
rigid.  Often the slightest error in the implementation of a component can have far-reaching repercussions on the 
behavior of the entire system.  However, the output of a component may be erroneous because of its 
malfunctioning, its environment being out of its design range, or an erroneous input from another component. 
We are pursuing five research threads that are converging to enable a new class of reliable software systems that 
meet the expectations of large groups of users or even the general public.  First, consensus software can be 
internally coherent and comprehensible, because it can make use of the consensus ontologies we are developing. 
Second, a software-component industry is arising that will distribute, on demand, components that have 
functionality customized to a user’s needs [45].  However, because of this uniqueness, how can component 
providers be confident that their components will behave properly?  This is a problem that can be solved by 
agent-based components that actively cooperate with other components to realize system requirements or a 
user’s goals. 
Third, because each application executes as a set of geographically distributed parts, a distributed active-object 
architecture is required.  It is likely that the objects taking part in the application were developed in various 
languages and execute on various hardware platforms.  A simple, powerful paradigm is needed for 
communications among these heterogeneous objects.  We anticipate that agent-based Web services can fulfill 
this requirement. 
Fourth, because the identities of the resources are not known when the application is developed, there must be an 
infrastructure to enable the discovery of pertinent objects.  Once an object has been discovered, the 
infrastructure must facilitate the establishment of constructive communication between the new object and 
existing objects in the application, which can be satisfied by our agent-based Web services. 
Fifth, because the pattern of interaction among the objects is a critical part of the application and may vary over 
time, it is important that this pattern (workflow) be explicitly represented and available to both the application 
and the user.  When an object has been discovered to be relevant to an application, the language for interaction 
and the pattern of interaction with the object must be determined.  This interaction becomes part of the larger set 



of object interactions that make up the application.  The objects collaborate with each other to carry out the 
application. 

2. THE RELATIONSHIP OF SOFTWARE SYSTEMS TO SOCIAL INSTITUTIONS 

One consequence of object-oriented programming is that computer software more closely resembles and models 
the real world.  Non-OOP paradigms, such as procedural programming methodologies, typically model 
mathematical abstractions.  (For example, a FORTRAN subroutine might compute a matrix inverse, whereas an 
OOP module might represent a Person.)  Although OOP-developed software mimics the world, it is not 
developed in this way.  That is, the software is produced by a small number of professional developers, rather 
than by the “world.”  For example, when I visit Amazon.com, an agent with a model of me makes suggestions 
about purchases I might like to make, but if the model is inaccurate there is no way for me to improve it. 
As another example, my employer has a software and information model of me as an instance of an Employee 
class, but I did not contribute directly or consciously to the construction of that model.  Instead, the models of 
me and all other employees in my organization were constructed centrally.  There is always a tension between 
the order that comes with centralization and the freedom that comes with decentralization.  This is reflected in 
similar debates concerning privacy versus security, prevention versus protection, and, more generally, free 
markets versus centralized economies. 
The economic historian Douglass North believed that institutions evolve toward free markets, where institutions 
are conceptual structures that coordinate the activities of people [29].  Institutions, in his view, consist of a 
network of relationships, including all of the skills, strategies, and norms that the participants contribute to the 
institution.  He believed that the driving force behind the evolution of institutions was self-interest. 
During an economic downturn, an organization facing a decline in its revenues and budget might choose a 
common, centralized response:  an across-the-board cut in salaries and expenses, with a view that each employee 
should receive a minimum salary.  An employee’s individual view is that he should receive the maximum salary 
and the deficit should be made up for elsewhere.  Not everyone can receive a maximum salary, however, 
because the institution would fail and no one would receive any salary.  But there is pressure for the institution 
to grow so that everyone will receive more.  
In contrast, the economist John Commons viewed an institution as a set of working rules that govern an 
individual’s behavior [9].  The rules codify culture and practices and are defined by collective bargaining.  As a 
result, institutions evolve ideally towards democracy.  For the above example, according to Common’s view, 
each Employee object would allow its salary to reflect the organization’s budget and the employee’s particular 
contribution to the organization’s performance. 
By individuals contributing to a more accurate model of themselves and a more accurate characterization of how 
the systems they use should behave, then the individuals’ society will be easier to understand, more efficient, 
more productive, and more satisfying, and its principles will be better adhered to. 
As societies attempt to coordinate and control their members use of utilities and resources, individuals should 
have a means to influence the coordination and control based on their preferences.  These are societal services 
that are beyond personal services.  Decisions can be made centrally or collectively—when a system is dynamic 
so that decisions must be made in real-time, individuals would benefit from active systems that could intercede 
on their behalf.  Examples of such institutions are banking, distributing electricity, determining routes for new 
roads, managing telecommunication networks, manufacturing supply chains, and designing buildings or cities. 
As a specific example, the behavior of the traffic lights at an intersection should be determined by the wishes of 
the vehicles passing through the intersection at any given time, not by a traffic engineer’s prior estimate of those 
wishes. 

3. AGENT-ORIENTED SOFTWARE SYSTEM DEVELOPMENT 
Software engineering principles applied to multiagent systems have yielded few new modeling techniques, 
despite many notable efforts.  A comprehensive review of agent-oriented methodologies is contained in [21].  
Many, such as Agent UML [31] and MAS-CommonKADS [20], are extensions of previous software engineering 
design processes.  Others, such as Gaia [43], were developed specifically for agent modeling. These three have 
been investigated and applied the most.  Other methodologies include the AAII methodology [26], MaSE [11], 
Tropos [34], Prometheus [32], and ROADMAP [23].  Because agents are useful in such a broad range of 
applications, software engineering methodologies for multiagent systems should be a combination of efforts. A 
combination of principles and techniques will generally give a more flexible approach to fit a design team's 
expectations and requirements. 



Multiagent systems can form the fundamental building blocks for software systems, even if the software systems 
do not themselves require agent-like behaviors [22].  When a conventional software system is constructed with 
agents as its modules, it can exhibit the following characteristics and benefits [8, 18]: 
• Agent-based modules, because they are active, more closely represent real-world things, which are the 

subjects of many applications.  The modules can hold beliefs about the world, especially about themselves 
and others; if their behavior is consistent with their beliefs, then their behavior will be more predictable and 
reliable. 

• The modules can volunteer to be part of a software system, and can benevolently compensate for the 
limitations of other modules. 

• Systems can be constructed dynamically, where the modules in a system and their interactions can be 
unknown until runtime.  Because such modules can be added to a system one-at-a-time, software can 
continue to be customized over its lifetime, even by end-users as we are proposing to investigate here. 

• Because agents can represent multiple viewpoints and can use different decision procedures, they can 
produce more robust systems.  The essence of multiple viewpoints and multiple decision procedures is 
redundancy, which is the basis for error detection and correction. 

4. BUGS, ERRORS, AND REDUNDANCY 
Software problems are typically characterized in terms of bugs and errors, which may be either transient or 
omnipresent.  The general approaches for dealing with them are:  (1) prediction and estimation, (2) prevention, 
(3) discovery, (4) repair, and (5) tolerance or exploitation.  Bug estimation uses statistical techniques to predict 
how many flaws might be in a system and how severe their effects might be.  Bug prevention is dependent on 
good software engineering techniques and processes.  Good development and run-time tools can aid in bug 
discovery, whereas repair and tolerance depend on redundancy. 
Indeed, redundancy is the basis for most forms of robustness.  It can be provided by replication of hardware, 
software, and information, and by repetition of communication messages.  Redundant code cannot be added 
arbitrarily to a software system, just as steel cannot be added arbitrarily to a bridge.  A bridge is made stronger 
by adding beams that are not identical to ones already there, but that have equivalent functionality.  This turns 
out to be the basis for robustness in software systems as well: there must be software components with 
equivalent functionality, so that if one fails to perform properly, another can provide what is needed.  The 
challenge is to design the software system so that it can accommodate the additional components and take 
advantage of their redundant functionality. 
We hypothesize that agents are a convenient level of granularity at which to add redundancy and that the 
software environment that takes advantage of them is akin to a society of such agents, where there can be 
multiple agents filling each societal role.  Agents by design know how to deal with other agents, so they can 
accommodate additional or alternative agents naturally.  
Fundamentally, the amount of redundancy required is well specified by information theory.  If we want a system 
to provide n functions robustly, we must introduce m × n agents, so that there will be m ways of producing each 
function.  Each group of m agents must understand how to detect and correct inconsistencies in each other's 
behavior, without a fixed leader or centralized controller.  If we consider an agent's behavior to be either correct 
or incorrect (binary), then, based on a notion of Hamming distance for error-correcting codes, 4 × m agents can 
detect m-1 errors in their behavior and can correct (m-1)/2 errors. 
Redundancy must also be balanced with complexity, which is determined by the number and size of the 
components chosen for building a system.  That is, adding more components increases redundancy, but also 
increases the complexity of the system.   
An agent-based system can cope with a growing application domain by increasing the number of agents, each 
agent’s capability, or the computational and infrastructure resources that make the agents more productive.  That 
is, either the agents or their interactions can be enhanced, but to maintain the same redundancy n, they would 
have to be enhanced by a factor of n. 
N-version programming, also called dissimilar software, is a technique for achieving robustness first considered 
in the 1970’s.  It consists of N separately developed implementations of the same functionality.  Although it has 
been used to produce several robust systems, it has had limited applicability, because (1) N independent 
implementations have N times the cost, (2) N implementations based on the same flawed specification might still 
result in a flawed system, and (3) each change to the specification will have to be made in all N implementations. 
Database systems have exploited the idea of transactions: an atomic processing unit that moves a database from 
one consistent state to another.  Consistent transactions are achievable for databases because the types of 



processing done are very regular and limited. Applying this to software execution requires that the state of a 
software system be saved periodically (a checkpoint) so the system can return to that state if an error occurs. 

5. ARCHITECTURE AND PROCESS 
Suppose there are a number of algorithms, each with strengths, weaknesses, and possibly errors.  How can the 
algorithms be combined so that the strengths are exploited and the weaknesses or flaws are compensated or 
covered?   

Three general approaches are evident in Figure 1.  First, a preprocessor could choose the best algorithms to 
perform the task, based on known characteristics of each algorithm.  Second, a postprocessor could choose the 
best result out of several executing algorithms.  Third, the algorithms could decide as a group which ones should 
perform the task.  

Choose Algorithm based on: (1) data type, (2) time & space constraints

Algorithm #1 Algorithm #2 Algorithm #N

Single Task

Single Result

Compare Results and Select Best

 
Figure 1.  General architecture for combining N versions of an 

algorithm into a single, more robust system 
The difficulties with the first two approaches are (1) the preprocessor might be flawed, (2) it is difficult to 
maintain the preprocessor as algorithms are added or changed, and (3) the postprocessor wastes resources, 
because several algorithms work on the data and their results have to be compared. 

The third approach requires distributed decision-making, which is not an ability of conventional algorithms, so 
we investigated what generic ability could be added to an algorithm to enable it to participate in a distributed 
decision.  The generic capability has the characteristics of an agent, and distributing the centralized functions 
into the different modules creates a multiagent system. Each agent would have to know its role as well as (1) 
something about its own algorithm, such as its time and space complexity, and input and output data structures; 
(2) the complexity and reliability of other agents; and (3) how to communicate, negotiate, compare results, and 
manage reputations and trust. 

6. CONSENSUS ONTOLOGIES: MODELING OBJECTS, RESOURCES, AND AGENTS 
A key to enabling agents to interact productively is for them to construct and maintain models of each other, as 
well as the passive components in their environment.  Unfortunately, the agents’ models will be mutually 
incompatible in syntax and semantics, not only due to the different things being modeled, but also due to 
mismatches in underlying hardware and operating systems, in data structures, and in usage.  In attempting to 
model some portion of the real world, information models necessarily introduce simplifications and inaccuracies 
that result in semantic incompatibilities.  However, the models must be related to each other and their 
incompatibilities resolved [38]. 
If there are n entities in the environment, then each would need a model of each of the other entities, resulting in 
n(n-1)/2 models that must be maintained.  This is infeasible for large domains.  We solve this via two means.  
First, we propose that agents maintain and advertise models of themselves, resulting in a total of n models.  For 



the second, we consider the source of the models.  How should one agent represent another, and how should it 
acquire the information it needs to construct a model in that representation? 
This has, we believe, a simple and elegant answer: the agent should presume that unknown agents are like itself, 
and it should choose to represent them as it does itself.  Thus, as an agent learns more about other agents, it only 
has to encode any differences that it discovers.  The resultant representation can be concise and efficient, and has 
the following advantages: 
• An agent has to manage only one kind of model and one kind of representation. 
• The same inference mechanisms that are used to reason about its own behavior can reason about the 

behaviors of other agents; an agent trying to predict what another will do has only to imagine what it itself 
would do in a similar situation. 

The main criteria used by an agent to decide if it can contribute to a new problem are the relative importance of 
each feature (or dimension) of the problem, the degree of similarity with the agent’s capabilities, and an estimate 
of the agent’s capabilities relative to other agents’ capabilities. 
Each agent maximizes its problem-solving utility, and, thus, is rational.  We portray an agent as a rational 
decision-maker that perceives and interacts with its environment.  In our case, percepts and interactions are 
messages received from and sent to other agents.  Agents are rational in the context of all other agents in their 
organization or institution, because they are aware of the other agents’ constraints, preferences, intentions, and 
commitments and act accordingly. 
However, such organizational or institutional knowledge typically comes from many independent sources, each 
with its own semantics.  How can the information from large numbers of such sources can be associated, 
organized, and merged?  Our hypothesis is that a multiplicity of ontology fragments, representing the semantics 
of the independent sources, can be related to each other automatically without the use of a global ontology.  That 
is, any pair of ontologies can be related indirectly through a semantic bridge consisting of many other previously 
unrelated ontologies, even when there is no way to determine a direct relationship between them.  The 
relationships among the ontology fragments indicate the relationships among the sources, enabling the source 
information to be categorized and organized.  Our investigation of the hypothesis has been conducted by relating 
numerous small, independently developed ontologies for several domains.  A nice feature of our approach is that 
common parts of the ontologies reinforce each other, while unique parts are deemphasized.  The result is a 
consensus ontology. 
The problem we are addressing is familiar and many solutions have been proposed, ranging from requiring 
search criteria to be more precise, to constructing more intelligent search engines, or to requiring sources to be 
more precise in describing their contents.  A common theme for all of the approaches is the use of ontologies for 
describing both requirements and sources [40, 44].  Unfortunately, ontologies are not a panacea unless everyone 
adheres to the same one, and no one has yet constructed an ontology that is comprehensive enough (in spite of 
determined attempts to create one [1, 39], such as the Cyc Project [27], underway since 1984).  Moreover, even 
if one did exist, it probably would not be adhered to, considering the dynamic and eclectic nature of the Web and 
other information sources. 
There are three approaches for relating information from large numbers of independently managed sites: (1) all 
sites will use the same terminology with agreed-upon semantics (improbable), (2) each site will use its own 
terminology, but provide translations to a global ontology (difficult, and thus unlikely), and (3) each site will 
have a small, local ontology that will be related to those from other sites (described herein). We hypothesize that 
the small ontologies can be related to each other automatically without the use of a global ontology.  That is, any 
pair of ontologies can be related indirectly through a semantic bridge consisting of many other previously 
unrelated ontologies, even when there is no way to determine a direct relationship between them.  Our 
methodology relies on sites that have been annotated with ontologies [35], which is consistent with several 
visions for the Semantic Web [5, 6, 13].  The domains of the sites must be similar—else there would be no 
interesting relationships among them—but they will undoubtedly have dissimilar ontologies, because they will 
have been annotated independently. 
Some researchers have attempted to merge a pair of ontologies in isolation, or merge a domain-specific ontology 
into a global, more general ontology [41].  To our knowledge, no one has previously tried to reconcile a large 
number of closely related, domain-specific ontologies.  We have evaluated our methodology by applying it to a 
large number of independently constructed ontologies. 
When two agents communicate, they must reconcile their semantics.  This will be seemingly impossible if their 
ontologies share no concepts.  However, if their ontologies share concepts with a third ontology, then the third 
ontology might provide a semantic bridge to relate all three.  Note that the agents do not have to relate their 
entire ontologies, only the portions needed to respond to the request. 



The difficulty in establishing a bridge will depend on the semantic distance between the concepts, and on the 
number of ontologies that comprise the bridge.  Our methodology is appropriate when there are large numbers of 
small ontologies—the situation we expect to occur in large and complex information environments.  Our 
metaphor is that a small ontology is like a piece of a jigsaw puzzle.  It is difficult to relate two random pieces of 
a jigsaw puzzle until they are constrained by other puzzle pieces.  We expect the same to be true for ontologies. 
In attempting to relate two ontologies, a system might be unable to find correspondences between concepts 
because of insufficient constraints and similarity among their terms.  However, trying to find correspondences 
with other ontologies might yield enough constraints to relate the original two ontologies. As more ontologies 
are related, there will be more constraints among the terms of any pair, which is an advantage.  It is also a 
disadvantage in that some of the constraints might be in conflict.  We make use of the preponderance of 
evidence to resolve these statistically. 
We conducted experiments in three domains as follows: We asked one group of 53 graduate students in 
computer science to construct a small ontology for the Humans/People/Persons domain, a second group of 28 
students to construct a small ontology for the Buildings domain, and finally a third group of 26 students to 
construct a small ontology for the Sports domain.  The ontologies were written in OWL and were required to 
contain at least 8 classes with at least 4 levels of subclasses. 
We merged the files in each of the three domains.  In the Humans/People/Persons ontology domain the 
component ontologies described 864 classes, while the merged ontology contained 281 classes in a single graph 
with a root node of the OWL concept owl:Thing.  We constructed a consensus ontology by first counting the 
number of times classes and subclass links appeared in the component ontologies when we performed the 
merging operation. For example, the class Person and its matching classes appeared 14 times. The subclass link 
from Mammals (and its matches) to Humans (and its matches) appeared 9 times. We termed these numbers the 
“reinforcement” of a concept.  After removing the nodes and links that were not reinforced, the resultant 
consensus ontology contained 36 classes related by 62 subclass links. 
A consensus ontology is perhaps the most useful for information retrieval by humans, because it represents the 
way most people view the world and its information. For example, if most people wrongly believe that 
crocodiles are a kind of mammal, then most people would find it easier to locate information about crocodiles if 
it were placed in a mammals grouping, rather than where it factually belonged. 

7. AGENT-BASED WEB SERVICES 
The World-Wide Web was designed for humans.  It is based on a simple concept:  information consists of pages 
of text and graphics that contain links, and each link leads to another page of information, with all of the pages 
meant to be viewed by a person.  The constructs used to describe and encode a page, the Hypertext Markup 
Language, describe the appearance of the page, but not its contents.  Software agents don't care about 
appearance, but rather the contents.  The Semantic Web [5] will make the Web more accessible to agents by 
making use of semantic constructs, such as ontologies represented in OWL, RDF, and XML, so that agents can 
understand what is on a page.  It will also incorporate functionality in the form of Web services. 
Our architecture is compatible with the standards being formulated for the Semantic Web and its Web services 
and, in fact, relies on them to provide the infrastructure needed for installation, deployment, and activation of 
consensus software.  By themselves, Web services are inadequate for specifications of personalized behavior, 
because they are passive until discovered and invoked.  People need components that will proactively take action 
on their behalf. 
The architecture for Web services is founded on principles and standards for connection, communication, 
description, and discovery.  For providers and requestors of services to be connected and exchange information, 
there must be a common language.  This is provided by the Extensible Markup Language (XML).  A common 
protocol is required for systems to communicate with each other, so that they can request services, such as to 
schedule appointments, order parts, and deliver information.  This is provided by the Simple Object Access 
Protocol (SOAP).  The services must be described in a machine-readable form, where the names of functions, 
their required parameters, and their results can be specified.  This is provided by the Web Services Description 
Language (WSDL).  Finally, clients—users and businesses—need a way to find the services they need.  This is 
provided by Universal Description, Discovery, and Integration (UDDI), which specifies a registry or “yellow 
pages” of services. 
Besides standards for XML, SOAP, WSDL, and UDDI, there is a need for broad agreement on the semantics of 
specific domains.  This is provided by the Resource Description Framework (RDF) and ontologies expressed in 
OWL.  Web services currently involve a single client accessing a single server, but soon applications will 
demand federated servers with multiple clients sharing results.  Cooperative peer-to-peer solutions will have to 
be managed, and this is an area where agents have excelled.  In doing so, agents can balance cooperation with 



the interests of their owner.  Composing Web services requires capturing patterns of semantic and pragmatic 
constraints on how services may participate in different compositions.  It also requires tools to help reject 
unsuitable compositions so that only acceptable systems are built.  The following challenges have not yet been 
met by current implementations and standards for Web services: 
Information Semantics. The composer and the member services must agree on the semantics of the information 
that they exchange. 
Collaboration. To perform even simple protocols reliably, service providers must ensure that the parties to an 
interaction agree on its current state and where they desire to take it.  This requires elements of teamwork 
through (1) persistence of the computations, (2) ability to manage context, and (3) retrying. 
Personalization. Effective usage of services often requires customization of the compositions in a manner that is 
context sensitive, especially with respect to user needs.  This requires (1) learning a customer’s preferences, (2) 
mixed-initiative interactions, offering guidance to a customer, and (3) acting on behalf of a user, which is limited 
to ensure that a user’s autonomy is not violated. 
Exception Conditions. To construct virtual enterprises dynamically to provide more appropriate goods and 
services to common customers requires the ability to (1) construct teams, (2) enter into multiparty deals, (3) 
handle authorizations and commitments, and (4) accommodate exceptions. 
Service Location. Recommendations must be provided to help customers find relevant, high quality, and 
trustworthy services.  This requires a means to find, obtain, and aggregate evaluations. 
Distributed Decision-Making. Decision-making will be distributed across the composed services, which 
requires intelligent decisions by each service so the composed services can collaborate and compete 
appropriately, while accommodating exceptions. 
Typical agent architectures have many of the same features as Web services.  Agent architectures provide 
yellow-page and white-page directories, where agents advertise their distinct functionalities and where other 
agents search to locate the agents in order to request those functionalities.  However, agents extend Web services 
in several important ways: 
• A Web service knows only about itself, but not about its users/clients/customers.  Agents are often self-

aware, and gain awareness of the capabilities of other agents as interactions among the agents occur.  This is 
important, because without such awareness a Web service would be unable to take advantage of new 
capabilities in its environment, and could not customize its service to a client, such as by providing 
improved services to repeat customers. 

• Web services, unlike agents, are not designed to use and reconcile ontologies.  If a client and provider of a 
service have different semantics, the result of invoking the service would be incomprehensible. 

• Agents are inherently communicative, whereas Web services are passive until invoked.  Agents can provide 
alerts and updates when new information becomes available.  Current standards and protocols make no 
provision for even subscribing to a service to receive periodic updates. 

• A Web service, as currently defined and used, is not autonomous.  Autonomy is a characteristic of agents, 
and also a characteristic of many envisioned Internet-based applications.  Autonomy is in natural tension 
with coordination or with the higher-level notion of a commitment.  To be coordinated with other agents or 
to keep its commitments, an agent must relinquish some of its autonomy.  It would attempt to coordinate 
with others where appropriate and keep its commitments, but would exercise its autonomy in agreeing to 
those commitments in the first place. 

• Agents are cooperative, and by forming coalitions can provide higher-level and more comprehensive 
services.  Current standards for Web services are just beginning to address composition. 

Suppose an application needs simply to sort some data items, and suppose there are five Web sites that offer 
sorting services described by their input data types, output date type, time complexity, space complexity, and 
quality: one is faster, one handles more data types, one is often busy, one returns a stream of results, while 
another returns a batch, and one costs less.  An application could take one of the following possible approaches: 
• The application invokes services randomly until one succeeds 
• The application ranks services and invokes them in order until one succeeds 
• The application invokes all services and reconciles the results 
• The application contracts with one service after requesting bids 
• Services self-organize into a team of sorting services and route requests to the best one. 



The last two require that the services behave like agents.  Furthermore, the last two are scalable and robust, 
because they take advantage of the redundancy that is available. 

8. EXPERIMENTAL RESULTS FOR ROBUSTNESS 
We collected a number of algorithms in four domains—geographic location control, sorting, list-reversing, and 
evaluation of postfix arithmetic expressions—each written by a different person and therefore having different 
input and output signatures and performance characteristics.  The programmers were undergraduate computer 
science majors and the work was done as standard homework assignments.  The students were unaware that their 
algorithms would be used in our tests for robustness, so the algorithms did not have any special features that 
would bias our results.  We converted each algorithm into an agent composed of the algorithm without any 
modifications and a wrapper for that algorithm.  The wrapper knows nothing about the inner workings of its 
associated algorithm.  It has knowledge only about the external characteristics of its algorithm, such as the data 
type(s) it requires and produces, its time complexity, and its space complexity.  The algorithms were written in 
Java and the wrappers in JADE. 
The input-process-output systems begin by a notification sent to the Initiator agent about data to be processed, 
which notifies the processing agents.  Upon receiving data, each agent determines whether or not it can process 
it successfully, based on the type of the data and its own knowledge of what types it can handle.  If the agent 
believes it can succeed, it broadcasts an INFORM message to every other agent specifying its intention, along 
with a measure of its expected performance. 
The decision of which agent to choose among those that are capable of processing the input data is made in a 
distributed manner: upon receiving INFORM messages from other agents, each agent compares its own 
performance against those in the messages.  If the agent has the best performance, it will run its algorithm and 
send the results back to the system.  If it does not have the best performance, it will do nothing.  Also, once they 
receive the data from the system, the agents will wait for INFORM messages for only a limited amount of time; 
this avoids waiting infinitely long for messages from agents that either have problems sending a message or are 
unable to process the data. 
In preliminary experiments, we asked 30 students to implement an agent for a control-system application as a 
concurrently executing Java thread and interacting through a base class environment.  For controlling the 
location of objects forming a geometric circle in a plane, the agents each understand what a circle is, what it 
means to be part of a circle, where the nearest agents are located, and an estimate of how close the group is to 
being in a circle.  The agents can reason about where they should be on a circle and the direction they should 
move to get there.  They also have the ability to help move nearby agents that do not seem to be located or 
moving properly.  Into this environment, we have introduced a few agents that do not have the ability to move 
properly or are stationary.  The group overcomes this and produces an acceptable circle.  We have anecdotal 
evidence, via one comparison, that such an implementation can be constructed more rapidly and robustly than a 
conventional C++ implementation. 
We have also experimented with a postprocessing implementation of distributed decision-making.  Even with 
the simplicity of the current implementations, results showing improvement in robustness due to redundancy 
were obtained.  As a group, the agents process data better than any one of them alone. 
We collected one set of 25 algorithms for reversing a doubly linked list and another set for sorting a list. 
Different people wrote each algorithm. For sorting, no specifications were given to the programmers, so the 
algorithms all have different data and performance characteristics. For list reversing, the class structure (i.e., 
method signatures) was specified, so the differences among the algorithms are in performance and correctness. 
We converted each algorithm into an agent, composed of the algorithm written in JAVA and a wrapper written 
in JADE. The wrapper knows only about the signature of its algorithm, and nothing about its inner workings.  
Our experiments verified that the same wrapper can be used for both domains.  We also verified our hypothesis 
that more algorithms give better results than any one alone. Further, we investigated both a distributed 
preprocessor and a centralized postprocessor for combining the agents’ functionality, and found that the 
postprocessor is generally better, but performs worse for large data sets or selected algorithms with long 
execution times.  
The eventual outcome for software development is that developers will spend more time on algorithm 
development and less on debugging, because different algorithms will likely have errors in different places and 
can cover for each other.   
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