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Abstract. This paper considers the composition of tuples from two relations in
order to derive additional tuples of one of these relations. Our purpose is to de-
termine when the composition is plausible and for which relation the new tuples
are derived. We first present a formal definition of composition and our exten-
sion to it. We next define conditions on the domains and ranges of the relations
that are necessary for extended composition to occur. We then show how a set of
underlying attributes, independently specified for each relation, is sufficient for
determining plausible composition, when the primitives are combined according
to an algebra. Finally, we apply our method for extended composition to a repre-
sentative group of semantic relations and evaluate the results.

1 Introduction

The construction of a large knowledge base is difficult and requires techniques that can
facilitate knowledge acquisition. Rather than requiring that all knowledge in the base be
entered explicitly, a system could be provided with a basic set of facts and an inference
mechanism for inferring additional facts from these [Bakeret al., 1987]. An ideal sys-
tem would be able to generate all valid and no invalid inferences. One way to approach
this ideal is to provide a set of specialized inference procedures that collectively gener-
ate a valid set of inferences. In this paper we develop one such procedure, based on an
extended composition of semantic relations from a knowledge base. Figure 1 contains
examples of this type of composition. The procedure has the effect of constructing new
inference rules, which, when executed, generate extensions to the knowledge base.

2 Extended Composition

A binary relationR consists of a setA (the domain), a setB (the range), and a map-
ping that specifies the set of tuples〈a, b〉 belonging toR, wherea ∈ A andb ∈ B.
The mapping may be explicit by listing all the tuples inR or implicit by providing
rules for selecting the tuples. In a large frame-based knowledge system, such as CYC
[Lenatet al., 1986,Lenat and Guha, 1988], the mapping for a relation is only partially
specified; other tuples for the relation are added as knowledge is entered. The procedure
for composing relations outlined in this paper provides a means of inferring additional
tuples belonging to an implicitly defined relation.
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Fig. 1. Three examples of the composition of two semantic relations

A composite relation results from applying the binary operation ofcompositionto
two binary relations. This operation has the following definition [Stanat and McAllister, 1977]:

Definition 1. Let Ri be a relation from setA to setB andRj be a relation from setB
to setC. Thecomposite relation fromA to C, denotedRi ·Rj , is

Ri ·Rj = {〈a, c〉 | a ∈ A ∧ c ∈ C
∧∃b[b ∈ B ∧ 〈a, b〉 ∈ Ri ∧ 〈b, c〉 ∈ Rj ]}

We defineextendedcomposition as follows:

Definition 2. Let Ri be a relation from setA to setB andRj be a relation from setC
to setD. Theextended composite relation fromA toD, denotedRi ¯Rj , is

Ri ¯Rj = {〈a, d〉 | a ∈ A ∧ d ∈ D
∧∃b[b ∈ B ∧ b ∈ C ∧ 〈a, b〉 ∈ Ri

∧ 〈b, d〉 ∈ Rj ]}

If we denote the converse relation ofR by Rc, then it can be shown that

(Ri ¯Rj ⊂ Rk) ⇔ (Rc
j ¯Rc

i ⊂ Rc
k)

Extended composition can also be shown to be associative and not commutative.
We would like to have an algorithmic way of determining whenRi¯Rj is nonempty

and whether it is a subset ofRi or Rj or neither. Our method for making this determi-
nation is based on two premises:

– the domains and ranges of the two relations must be type-compatible, and
– theprimitives(defined below) of the relations must combine compatibly.

If the first premise is satisfied by relationsRi andRj , then the primitives of the two
relations can be combined to yield the primitives of the composed relation,Ri ¯ Rj .
The primitives ofRi ¯Rj can then be compared to those ofRi andRj to determine if
Ri ¯Rj is a subset ofRi, Rj , both, or neither.

The type compatibility specified by the first premise results in the following neces-
sary conditions for the extended composition of relations:

1. The intersection of setsB andC must be nonempty; otherwise, the relationRi¯Rj

will be empty.
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Fig. 2. Type requirements on the domains and ranges ofRi andRj

2. For the derived tuples to be elements ofRi, the intersection of setsB andD must
be nonempty.

3. For the derived tuples to be elements ofRj , the intersection of setsA andC must
be nonempty.

These conditions, represented using Venn diagrams in Figure 2, eliminate many of the
possibilities for extended composition. An algebra based on primitives of the relations
eliminates additional implausible compositions.

3 Primitives for Semantic Relations

The second premise above requires a set of primitives that describe each relation and
a set of rules for combining primitives. We have postulated a group of ten primitives,
based on a literature survey [Chaffin and Herrmann, 1987, Cohen and Loiselle, 1988,
Wierzbicka, 1984, Winstonet al., 1987] and an analysis of numerous semantic rela-
tions in the CYC knowledge base [Lenat and Guha, 1988]. These primitives are inde-
pendently determinable for each relation and relatively self-explanatory. They specify
a relationship between an element of the domain and an element of the range of the
semantic relation being described. The primitives, described next, have values from the
setX = {+, 0,−}, where+ indicates that the relationship holds,− that it does not,
and 0 that it is not applicable.

Composable: Some semantic relations can never be meaningfully composed with other
relations due to their fundamental characteristics. For example, attributes are not
generally transferable through other relations.

Functional: The domain of a Functional relation is in a specific spatial or temporal
position with respect to the range of the relation. For example, in an instance of
the componentOfrelation, such asWheel .componentOf.Car , the Wheel is in a
specific spatial position with respect to theCar . This property does not hold for
Juror .memberOf.Jury .

Homeomerous: In each instance of a Homeomerous relation, the element of the do-
main must be the same kind of thing as the element of the range, e.g., inPieSlice .pieceOf.Pie ,
the slice is the same stuff as the pie.



Separable: The domain of a Separable relation can be temporally or spatially sepa-
rated from the range, and can thus exist independently of the range. For the above
componentOfexample, theWheel can be separated from theCar and can exist in-
dependently. ForWheel .madeOf.Aluminum , theAluminum cannot be separated
from theWheel if the Wheel is still to exist.

Structural: The domain and range of a Structural relation have a hierarchical relation-
ship in terms of a physical structure. For example, inWheel .componentOf.Car ,
the hierarchical structure is from part to whole and the Structural property ofcom-
ponentOfhas a− value.

Temporal: The domain and range of a Temporal relation are ordered in regard to a
temporal structure. For example, there is no notion of time in the relationpieceOf,
indicated by a value of 0 for Temporal; incausedBy, a value of− indicates that the
range element precedes the domain element.

Intangible: The domain and range of an Intangible relation have a hierarchical rela-
tionship in terms of ownership or mental inclusion. As an example, the relation
ownedByhas a value of− for Intangible, because the element owned is intangibly
included in the owner’s sphere of influence.
(Note: values of the last three primitives for the converse of a relation are opposite
to those for the forward relation.)

Near: The domain of a relation with property Near is physically or temporally close to
the range.

Connected: The domain of a relation with property Connected is physically or tempo-
rally connected to the range. A connection, which may be indirect, is indicated by
+; no connection is denoted by−.

Intrinsic: A semantic relation has the property Intrinsic if the relation is an attribute of
the stufflike nature of its domain or range. For example, the relationhasDensityis
an intrinsic property of its domain, so that ifAluminum .hasDensity.5, then every
piece ofAluminum inherits this value for its density.

To test our hypotheses, we have selected a representative set of relations (Table 1),
including part-whole, subclass, ownership, causal, and attribution relations. For each of
these relations, Table 2 shows the values we have assigned to the above primitives. The
domains and ranges of the relations, shown in Table 1, are also needed to determine
plausibility.

4 Algebra of Relation Primitives

We assume that the results of composing two semantic relations can be determined from
the results of combining their ten relation primitives (the accuracy of this assumption is
evaluated below) as follows:

Ri ¯Rj ≡ VRi ◦ VRj (1)

whereVR ∈ X 10, X = {+, 0,−}, and◦ is the combination operator. That is, for the
purposes of relation composition, each relation can be represented solely by a vector of



Table 1.Domains and Ranges for Semantic Relations

Relation Name Domain Range
a. componentOf IndividualObj1 IndividualObj
b. memberOf Thing Collection
c. pieceOf Stuff Stuff
d. constituentOf Stuff IndividualObj
e. subeventOf Event Event
f. subregionOf SpatialObject SpatialObject
g. subprocessOf Process Process
h. subsequenceOf Sequence Sequence
i. purposeOf Event Agent
j. causedBy Event Event
k. producedBy IndividualObj Process
l. ownedBy IndividualObj Tng&IntngObj2

m. focusOf IntangibleObj IntangibleObj
n. connectionOf IndividualObj IndividualObj
o. attributeOf Attribute Thing
p. containedIn IndividualObj SpatialObject
r. subfieldOf IntangibleStuff IntangibleStuff
s. hasMechanisms Event Event
t. isA Collection Collection
u. weightOf Number TangibleObject
v. densityOf Number TangibleObject

1Object.2Tangible&IntangibleObject.

Table 2.Primitives for Semantic Relations

Relation Name Relation Primitives
Compos. Func. Homeo. Sep. Struct. Temp. Intang. Near Conn. Intrin.

a. componentOf + + − + − 0 − + + −
b. memberOf − − − + − 0 − 0 − −
c. pieceOf + − + + − 0 − + + +
d. constituentOf + − − − − 0 − + + +
e. subeventOf + + − − 0 − − + + +
f. subregionOf + − + − − 0 − + + +
g. subprocessOf + + + − 0 − − + + +
h. subsequenceOf + + + + − − − + + +
i. purposeOf + − − + 0 − 0 0 − −
j. causedBy + + − + 0 − 0 0 +/− +
k. producedBy + + − + 0 − 0 0 − −
l. ownedBy + − − + 0 0 − 0 +/− +
m. focusOf + + − − 0 0 − + + −
n. connectionOf + + − + − 0 − + + −
o. attributeOf − − − 0 0 0 − 0 − −
p. containedIn + − − + − 0 0 + − +
r. subfieldOf + − + − 0 0 − + + −
s. hasMechanisms + + − + 0 − 0 0 +/− −
t. isA + − + + − 0 − 0 − +
u. weightOf − − − 0 0 0 − 0 − −
v. densityOf − − − 0 0 0 − 0 − +



Table 3.Operation Tables for Combining Relation Primitives

Composable
Rj

Ri − 0 +

− P 0 P
0 0 0 0
+ P 0 +

Functional
Rj

Ri − 0 +

− +/− 0 −
0 0 0 0
+ − 0 +

Homeomerous
Rj

Ri − 0 +

− − 0 −
0 0 0 0
+ − 0 +

Separable
Rj

Ri − 0 +

− − 0 +
0 0 0 0
+ + 0 +

Structural
Rj

Ri − 0 +

− − 0 P
0 0 0 0
+ P 0 +

Temporal
Rj

Ri − 0 +

− − 0 P
0 0 0 0
+ P 0 +

Intangible
Rj

Ri − 0 +

− − 0 P
0 0 0 0
+ P 0 +

Near, Connected
Rj

Ri − 0 +

− +/− 0 −
0 0 0 0
+ − 0 +

Intrinsic
Rj

Ri − 0 +

− − 0 +/−
0 0 0 0
+ +/− 0 +

Note:+/− indicates that the relations compose, but that this primitive does not constrain
the composition.P denotesprohibited, indicating that the relations do not compose.

values for its ten relation primitives. It thus becomes necessary to define precisely how
two of these vectors combine.

We assume that the primitives are orthogonal and form a linear basis for the set of
relations. The combination operator◦ can thus be defined in terms of a separate oper-
ation table for each primitive, as shown in Table 3. Each operation table is symmetric
and has been derived from empirically determined rules for relation composition, such
as the following:

– In order to compose, two relations must have the same hierarchical direction for
their Structural, Temporal, and Intangible primitives.

– If Ri has the property Connected andRj does not, thenRi ¯ Rj (andRj ¯ Ri)
cannot have the property Connected. Therefore,Ri ¯ Rj (andRj ¯ Ri) is not a
subset ofRi.

– If Ri has the property Separable andRj does not, thenRi ¯Rj (andRj ¯Ri) has
the property Separable. Therefore,Ri ¯Rj (andRj ¯Ri) may be a subset ofRi.

The resultant algebra enables the primitives of the composed relation to be derived.
If these derived primitives match the primitives of one (or both) of the composing re-
lations, then a tuple of one (or both) of these can be instantiated; else, the knowledge
base can be searched to find all relations that match the resultant primitives, and, if not
already instantiated, these can be presented to a user as potential new tuples for the
knowledge base.



As an example of this inference procedure, assume that a user has entered the as-
sertionsWheel .componentOf.Car andCar .ownedBy.Grover . Combining the prim-
itives from Table 1 forcomponentOfandownedByaccording to the combining rules
in Table 3 yields the following vector of primitives for the resultant relation:VR =
(+ − − + 0 0 − 0 + /− +/−). Because this vector matches the prim-
itives of ownedByand does not match those ofcomponentOf, the inference is that
Wheel .ownedBy.Grover .

The plausibility of this result is checked by comparing the types of the domain
and range of this relation instance with the types specified forownedByin Table 2. To
do this, a taxonomy of types is needed that enables the intersection of domains and
ranges to be determined. Such a taxonomy is typically part of frame-based knowledge-
representation systems. The types used for our examples are from the CYC ontology
[Lenat and Guha, 1988]. Using this ontology and Table 2, we find thatWheel is an
instance ofIndividualObject , Grover is an instance ofTangible&IntangibleObject ,
and these match the domain and range ofownedBy. The resultant inference is thus
deemed plausible.

5 Results

The above inference procedure was applied to the set of relations shown in Tables 1 and
2. The results, in the form of a composition matrix, are shown in Table 4. Each entry in
Table 4 is equivalent to a rule of the form

∀x ∈ domain(Ri)∀y ∈ [range(Ri) ∩ domain(Rj)]
∀z ∈ range(Rj) [x.Ri.y ∧ y.Rj .z → x.(Ri ¯Rj).z] (2)

The results reflect the order of composition, e.g.,Rj¯Ri as well asRi¯Rj , which was
not addressed in either [Cohen and Loiselle, 1988] or [Winstonet al., 1987]. Because
each of the operators for combining primitives is symmetric, the composition matrix is
nearly symmetric. The only exceptions result from type compatibility, which sometimes
excludes a composition from occurring. For example,f ¯ l ⊂ l, but l¯ f = ∅, because
the intersection of the range ofl with the domain off is empty.

The following are specific examples of plausible inferences predicted by the ex-
tended composition of relations (where→ denotes logical implication):

– a¯ p ⊂ p
Tire .componentOf.Car ∧ Car .containedIn.Garage
→ Tire .containedIn.Garage

– p¯ a ⊂ p
Refrigerator .containedIn.Kitchen
∧ Kitchen .componentOf.House
→ Refrigerator .containedIn.House

– i¯ e ⊂ i
Thunder .causedBy.Lightning
∧ Lightning .subeventOf.ThunderStorm
→ Thunder .causedBy.ThunderStorm



Table 4.Composition Matrix forRi ¯Rj

Rj

Ri a b c d e f g h i j k l m n o p r s t u v
a a - - - - - - a - - - l - an - p - - - - -
b - - - - - - - - - - - - - - - - - - - - -
c - - c - - c - c - - - l - - - p - - - - -
d - - - d - d - - - - - l - - - p - - - - -
e - - - - e - e - i j k l m - - - - s - - -
f - - c d - f - - - - - l - - - p - - - - -
g - - - - e - g - i j k l m - - - r s - - -
h a - c - - - - h i j k l - n - p - - - - -
i - - - - i - i i i i i - - - - - - i - - -
j - - - - j - j j i j jk - - - - - - js - - -
k - - - - k - k k i jk k - - - - - - ks - - -
l l - l l l - l l - - - l - l - - - - - - -
m - - - - m - m - - - - l m - - - - - - - -
n an - - - - - - n - - - l - n - p - - - - -
o - - - - - - - - - - - - - - - - - - - - -
p p - p p - p - p - - - - - p - p - - - - -
r - - - - - - r - - - - l - - - - r - - - -
s - - - - s - s - i js ks - - - - - - s - - -
t - - - - - - - - - - - - - - - - - - t - -
u - - - - - - - - - - - - - - - - - - - - -
v - - - - - - - - - - - - - - - - - - - - -

Note: the letters in this matrix refer to the relations listed in Tables 1 and 2.



The technique for relation composition also correctly predicts when neither of the com-
posed relations can be inferred. For example

– p¯ l = ∅
Grover .containedIn.Car ∧ Car .ownedBy.Ernie
6→ (Grover .containedIn.Ernie
∨ Grover .ownedBy.Ernie ).

6 Discussion and Conclusions

The inference procedure and results presented in this paper extend the work of previous
researchers. Chaffin and Herrmann [1987] identify a set ofrelation elements(relation
primitives) that can be used to describe and classify relations. Each relation element is
a fundamental property that holds between the domain and range of the relation.

Winstonet al.[1987] define three independent relation elements,inclusion, connec-
tion, andsimilarity; these are used to describe spatial inclusion, meronymic inclusion,
and class inclusion. When any inclusion relation is combined with another, they find
that a valid inference can be made and that the resultant relation is the one having the
fewest relation elements. In addition, Winstonet al. identify three dependent elements
of connectionthat explain the transitivity, but not the composability, of six meronymic
relations.

Cohen and Loiselle [1988] identify two deep structures for relations:hierarchical
andtemporal, each having a direction. Each relation is hierarchical, temporal, or both.
When two relations are composed, the resultant relation may have any of several possi-
ble deep structures, depending on the properties of the composing relations. They found
that inferences are most plausible when either the hierarchical or temporal directions of
the two composing relations are the same as that in the composed relation. Like Winston
et al., they do not consider type consistency in composing relations.

We extend the research efforts cited above by basing relation composition on set
theory. On this basis, we conclude that typing of the domain and range elements may
restrict composition, independently of any relation attribute restrictions. In addition,
we extend the work of [Winstonet al., 1987] by explicitly considering the hierarchi-
cal nature of the inclusion relations, as suggested by [Cohen and Loiselle, 1988]. This
leads to a means of defining the primitive attributes of theconverseof a relation and,
consequently, of composing a converse with other relations.

We provide a vector of ten primitives for each of 21 typical relations. This vector
representation provides a more powerful basis for ranking and classifying relations than
does the linear ordering in [Winstonet al., 1987]. Since there are three possible values
for each of the ten primitives, our representation provides for310 = 59, 049 different
basis vectors that can be used to represent relations. The number of relations that could
be represented is actually much greater because of the large number of types that could
be chosen for the domains and ranges.

The inference procedure we developed for relation composition is based on several
assumptions. The foremost of these is that relation composition is equivalent to a com-
bination of the corresponding vector of primitives. The correctness of this assumption
is borne out by the plausibility of the predicted inferences, shown in Table 4. A second



assumption is that each relation primitive is orthogonal to the others. This simplifying
assumption greatly increases the efficiency of the inference procedure by yielding op-
eration tables (see Table 3) that are independent of each other. Although the validity of
the results supports this assumption also, there is some evidence that the chosen primi-
tives are NOT orthogonal. For example, the primitives Connected, Homeomerous, and
Intrinsic combine dependently according to the following rule to yield compositions
with attribute relations not predicted by our algebra:

(attributeOf.Intrinsic.+) ∧ (Rj .Connected.+)
∧ (Rj .Homeomerous.+)

→ (attributeOf ¯Rj ⊂ attributeOf)

Such a rule would yield the valid inferencedensityOf̄ pieceOf⊂ densityOf, which
does not result from our relation algebra. It could be applied after extended composition
and viewed as an additional inference mechanism.

Other valid inferences are missing from Table 4, includingmemberOf̄ isA⊂mem-
berOfandcomponentOf̄ attributeOf⊂ attributeOf. However, we feel that these omis-
sions do not diminish the utility of our results, in that our procedure is designed for
correctness instead of completeness. In addition, many knowledge-based systems have
other inference mechanisms that could generate these missing inferences. For example,
an automatic classifier [Lipkis, 1981] would generate the inferencememberOf̄ isA⊂mem-
berOf.

The potential for generating new inferences in a large knowledge base, such as
the one in CYC, is enormous. CYC, currently with>4000 relations, could have ap-
proximately sixteen million possible compositions. Of these, 20% are predicted to be
plausible, based on the percentage of valid entries in Table 4. For all possible values
of relation primitives, no more than 31% could be composed validly due toprohibited
entries in the operation tables for combining primitives. The one million assertions now
in the CYC knowledge base can be combined using the predicted compositions to yield
many new inferences.

However, there are two major problems with extended composition. First, reason
maintenance for the resultant inferences is computationally problematic, because the
inferences depend not only on the relations being composed, but also on the relation
primitives for all of the relations involved. Second, assigning values for the relation
primitives is conceptually problematic. The values are subjective and must be entered
manually for each relation in a knowledge base. The validity of the inferences generated
by extended composition are directly dependent on these values.

Nevertheless, we expect that the relation primitives can be used for classifying re-
lations, as well as generating new inferences, and for suggesting plausible analogies.
The procedure for extended composition appears to be a viable technique for increas-
ing the information in an existing knowledge base. Because the procedure has the effect
of generating new inference rules and then applying them, it yields plausible inferences
that are not within the deductive closure of the original knowledge base.
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