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1.  INTRODUCTION 
The objective of the Autonomous Networked Tactical 
Sentries (ANTS) program is to develop a suite of 
sensors of different types and capabilities that can be 
deployed as an array on a battlefield.  Each sensor is 
self-contained and equipped with its own 
microprocessor, memory, communications electronics, 
and power source; all contained in a cylindrical module 
approximately 14.6 centimeters (5.7 in.) long by 4 
centimeters (1.6 in.) in diameter.   

The array of sensors will be able to detect the position 
and movement of enemy forces and materiel with 
minimal involvement or risk for friendly forces.  
Within the array of sensors, coordination and control is 
distributed with the local processor analyzing the local 
data collected, handling exceptions, and 
communicating the results to a higher level entity for 
further analysis or the appropriate personnel to make 
strategic and tactical decisions about the battlefield.   

The Autonomous Networked Software is an enabling 
technology for ANTS.  It consists of Java-like applets 
residing on a Universal Sensor Interface Chip (USIC) 
that interfaces with and controls the associated sensors.  
Figure 1 illustrates the overall software architecture for 

the system.   

Its major components are:  
• Sentry software interpreter for Java bytecodes (Java 

virtual machine); 
• Real-time operating system, including interrupt 

service routines, and low-level interface code; 
• Java application threads for communications, power 

management, signal processing, and sensor 
command and control. 

In addition, a Java class file linker-loader preprocesses 
of the Java class files so that they can be interpreted 
directly by the ANTS Java Virtual Machine (JVM) and 
loads the software onto the sensor.  The underlying 
hardware has been designed for power conservation, 
modular configurability, and maximum versatility.   

1.1  Why Java 

Java was originally designed for systems that perform 
networked computing and communications.  Java 
source code is compiled into byte codes, which are 
then interpreted by the Java Virtual Machine (JVM), 
which runs on the host computer.  This process 
provides a great deal of machine independence and 
flexibility.  Applications can be developed on one 
system, downloaded, combined with pieces of Java 
programs from other machines, and run on a different 
system. 

Using an interpreted high-level language such as Java 
for microprocessor-based sentries has several 
advantages.  First, software for an ANTS sentry can be 
developed on any platform and downloaded to the 
sentries.  This provides a level of flexibility unmatched 
by other high-level languages. 

Second, several features of the Java language itself are 
advantageous for ANTS: 
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• Java is multithreaded, which makes it 
straightforward to construct ANTS applications that 
must manage sensor signal sampling, signal 
processing, communications, and power 
management concurrently.  This multi-thread aspect 
of Java is particularly well suited to the ANTS 
multi-processing requirements.  Other languages 
such as C and C++ do not support concurrency 
directly. 

• Java is a pure, object-oriented language, enabling 
ANTS software to be developed and managed in a 
modular fashion, and enabling modules to be 
defined that correspond naturally to real-life 
objects.   

• Java byte code is compact, requiring half as much 
space to store and half as much bandwidth to 
download a program over a network, as does 
machine language.   

Third, new or modified Java threads can be 
downloaded dynamically to reconfigure an ANTS 
sensor array in the field.  For other applications, ANTS 
sensors can function as web servers, enabling them to 
be interrogated and controlled from standard web 
browsers. 

Finally, since the use of Java for ANTS is based on off-
the-shelf Java compilers, application development is 
more cost effective. 

The major disadvantage of Java is execution speed.  
Interpreted software is much slower than software 
compiled into a processor’s native instruction set.  
Preliminary studies of ANTS software indicate that 
equivalent functions might be a factor of 10 slower in 
Java than in native, machine code.  This speed 
disadvantage can be substantially mitigated by writing 
low-level interrupt-service routines in assembly 
language and computationally intensive analysis 
routines in C and using Java primarily for control of 
the microprocessor, where its robustness and flexibility 
are most important. 

 
2.  JAVA BYTECODE INTERPRETER (JAVA 

VIRTUAL MACHINE) 
The Java Virtual Machine (JVM) is an abstract 
computer that runs compiled Java programs.  It is 
“virtual” because it is implemented in software on top 
of a “real” hardware platform and operating system.  
Java programs are compiled into instructions called 
Java bytecodes that are interpreted by the JVM.  Each 
instruction consists of a one-byte opcode followed by 
zero or more operands. 

The JVM has a stack-oriented architecture that helps to 
keep both the number of instructions and the size of 

each instruction small.  The JVM has five basic parts:  
• the stack, 
• the registers, 
• the garbage-collected heap, and 
• the method area.   

The set of registers, the stack, the heap, and the method 
area constitute the “virtual hardware” of the Java 
Virtual Machine.  These parts are abstract, just like the 
machine they compose, but they must exist in some 
form in every JVM implementation.   

2.1  The Stack and Associated Registers 

Information in the Java stack is organized in “stack 
frames”.  Each stack frame contains the state of one 
Java method invocation.  When a program invokes a 
new method, the Java Virtual Machine pushes a new 
frame onto that program’s stack.  The stack frame, as 
shown in Figure 2, contains space for the method’s 
local variables, its operand stack, its parameters, static 
link and return value.  The maximum number and size 
of the local variables are calculated at compile-time 
and given to the interpreter, so that the interpreter 
knows how much memory will be needed by the 
method’s stack frame.  When the interpreter invokes a 
method, it creates a stack frame of the proper size for 
that method.  When the method completes, the JVM 
removes the corresponding frame.   

The Java stack is used to store parameters for bytecode 
instructions and the results of bytecode operations, to 
pass parameters to and return values from methods, and 
to keep the state of each method invocation.  The stack 
is word-based.  Each time a value is pushed onto the 
Java stack, it goes on as a 32-bit word (although longs 
and doubles actually go on as two words).   

The registers of the JVM hold the machine’s state and 
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control its operation; they are updated after each 
bytecode is executed.  The JVM has a program counter, 
called the pc register, and three registers that manage 
the stack — the optop, vars, and frame registers.  The 
JVM needs only a few registers because the bytecode 
instructions operate primarily on the stack.   

Optop is a pointer to the top of the operand stack.  This 
is always the topmost section of the stack; hence the 
optop register always points to the top of the entire 
Java stack.   

The operand stack is used as a workspace by bytecode 
instructions; both parameters for the bytecode 
instructions and the results of operations on those 
parameters are placed on the top of the stack.  For 
example, the iadd instruction adds two integers by 
popping two ints off the top of the operand stack, 
adding them, and pushing the result back onto the 
stack.  Since each word on the stack is 32 bits, Optop is 
implemented as a pointer to integer in the ANTS JVM. 

The local variables section of the stack contains all the 
local variables, including any parameters passed to the 
method, for the current method invocation.  Vars is a 
pointer to the first local variable of the currently 
executing method.  The local variables section of the 
Java stack is treated as an array of words starting at the 
location pointed to by the vars register.  Byte codes that 
deal with local variables generally include an array 
index, which is an offset from the vars register.  Values 
of type int, float, reference, and return value occupy 
one entry each in the local variables array.  Values of 
type byte, short, and char are converted to int and 
padded before being stored into the local variables and 
values of double, and long occupy two locations on the 
stack.   

Frame is a pointer to the execution environment of the 
current method.  This section is used to maintain the 
operations of the stack itself.  When a running thread 
invokes a Java method, the calling-method first pushes 
any parameters to be passed to the called-method onto 
the stack.  The JVM then creates and pushes a new 
frame onto the thread’s Java stack.  This frame then 
becomes the current stack frame.  The JVM saves the 
calling-method’s execution environment (pc, vars, 
frame, and optop registers) in the new stack frame, and 
updates those registers for the new method.   

2.2  The Method Area and Heap 

The method area is where the byte-codes reside and the 
heap is used for allocating new objects in memory.  
The Java language does not allow memory to be freed 
directly; instead it keeps track of the references to each 
object on the heap, and automatically frees the memory 
when the object is no longer referenced.  The heap and 

method areas are managed for the JVM by the ANTS 
Real Time Operating System. 

Our implementation of the JVM does not support 
garbage collection because of real-time scheduling 
constraints and memory space limitations; hence, there 
are some limitations on how a program can allocate 
and dereference objects.  

2.3  Java Bytecode Interpreter 

The JAVA bytecode interpreter implements the JVM.  
It acts as a “virtual processor” and executes the 
instructions in the stream of bytecodes.  The interpreter 
is written in C.   

The overall structure of the interpreter is shown in 
Figure 3.  The interpreter is initialized by setting the 
pc, optop, frame, and var registers to point to the 
address of the Java bytecode program to execute, the 
top of the operations stack, the execution environment 
(frame), and the local variables, respectively.   
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Figure 3.  Architecture for the Java Virtual Machine 
Interpreter 

 

The interpreter then enters a basic fetch-execute cycle.  
It fetches the bytecode pointed to by pc, decodes the 
instruction, and switches to the code to execute that 
instruction.  Once the bytecode instruction has been 
executed the pc is incremented to point to the next 
instruction and that instruction is fetched.  The inner 
loop of the interpreter is essentially: 

Do { 
    Fetch a byte 
    Execute an action based on 
        the value of the byte 
} While (there is more to do); 

The performance of the JVM is improved by declaring 
pc, optop, and vars as “register variables”, thus 
associating these virtual registers with the real registers 
of the underlying hardware.   
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The ANTS Java interpreter implements the complete 
core instruction set of 201 bytecodes from Sun 
Microsystems JVM specification.   

2.4  Class Loader  

The Java class file is the format that a compiled Java 
class is saved in.  Class files are the Java equivalent of 
the object files produced by other compilers, but the 
instructions in them are intended to be interpreted 
dynamically rather than as static opcodes.  A Java class 
file contains several data items required by the runtime 
system; these include the virtual machine code for each 
method provided by the class, a symbolic reference to 
the superclass of the class, a list of fields defined by the 
class, and a constant pool containing littorals and 
symbols used by the class.  Bytecode instructions that 
make symbolic references use the constant pool table 
(in the Java class file) to map to a string representing 
the reference which is then resolved dynamically.  For 
example, the instruction invokevirtual uses an index 
into the constant pool to find the class name, method 
name, and method signature (number and type of 
parameters, and return type) of an instance method.  
“Resolution” of this reference requires locating the 
appropriate class file and parsing it until the correct 
method is found.  In addition, several bytecode 
instructions (e.g., getfield, invokspecial) obtain 
information such as what method to execute, or the 
amount of space to allocate for the local variables of a 
method from the class file.   

In ANTS the dynamic resolution of symbolic 
references is not feasible because: 1) there is no file 
system in which to store the class file; and 2) the 
system does not have enough memory to store the class 
files.  Hence, the ANTS Linker-Loader must resolve all 
the symbolic references when the program is linked 
and provide the real memory addresses to the JVM as 
operands following the bytecode. 

The Java JVM currently defines 201 byte-code 
instructions.  Fourteen of these instructions require the 
resolution of symbolic addresses before they can be 
executed.   

2.5  ANTS Implementation Differences from 
“Standard” Java 

There are several differences between the ANTS Java 
Virtual Machine and the “standard” Java Virtual 
Machine.  These differences were imposed by the 
system architecture and the manner in which the ANTS 
sensor modules will be deployed.  The most important 
differences are: 

1. The Java Application Programming Interface (API) 
is a set of runtime libraries that provides a standard 

way for Java programs to access the resources of 
the host system.  The API’s functionality must be 
implemented for a particular platform before that 
platform can host Java programs.  The ANTS JVM 
currently has no implemented API.  

2. Normally, a Java program is interpreted and 
symbolic references, such as those for method 
invocation, object field access, object creation, and 
certain stack manipulations are resolved at runtime 
by a dynamic class-file loader.  Since the ANTS 
JVM does not have access to the class file, all of 
these symbolic references are resolved by the 
ANTS Linker-Loader and passed to the JVM as 
parameters following the corresponding bytecode.   

3. The Java virtual machine specification provides 
only general rules for multi-threading.  The ANTS 
JVM calls the RTOS for creating, scheduling and 
destroying threads and hence depends completely 
on the underlying operating system for this 
functionality.  Since the current implementation of 
the ANTS JVM cannot manage the execution of its 
threads it does not provide compatibility with the 
Java language thread class.    

The ANTS JVM provides the capability of multi-
threading using internal threads of the ANTS 
RTOS.  Scheduling of Java threads is also done by 
the RTOS which provides priority driven 
preemptive task scheduling.  Implementation of 
multi-threading in the ANTS JVM has been done 
using re-entrant code so that one thread does not 
interfere with other running threads.  Each thread 
also maintains its own heap for dynamic allocation 
of memory.   

 
3.  ANTS REAL TIME OPERATING SYSTEM 

The ANTS Real Time Operating System (RTOS) 
manages the execution of the ANTS application 
software.  It provides the functionality needed for real-
time system operation and to support the Java virtual 
machine.  This includes:   

• managing Java threads and other tasks; 

• providing communication between threads; 

• making static allocation of memory for all tasks in 
the system. 

In addition, the RTOS provides routines to respond to 
hardware and timer interrupts and to boot the system.  
It also interfaces to the development system and 
provides the capability to download programs and data. 
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3.1  Tasks and Thread Management 

Real-time systems require multi-tasking for the 
concurrent execution of essential tasks.  The logical 
correctness of the system depends on both the 
correctness and the timeliness of the outputs.   

The ANTS RTOS uses a Task Control Block (TCB) 
model to keep track of the various tasks in the system.  
Although this model is more complex than the stack 
model used in some embedded systems applications, it 
allows task priorities to change dynamically and it 
allows more sophisticated scheduling algorithms to be 
used.  The TCB model also helps the kernel with 
keeping track of the status (executing, ready, 
suspended, or dormant) of each task.  

A Task Control Block is created for each task when the 
task is initialized by the RTOS.  Separate stack 
structures are also reserved for each task.  The TCB 
contains sufficient information, to enable the task to 
resume execution from where it left off when it is 
suspended.   

As tasks run they transition between four states: 

1. Executing, 
2. Ready, 
3. Suspended, and 
4. Dormant. 

Figure 4 shows the state transitions in the TCB model 
system.  The executing task is the task that is currently 
using the processor resources.  Tasks in the ready state 
are those which are ready to run but are not running ― 
usually because another, higher priority task is running.  
Tasks that are waiting on a particular resource, and 
hence are not ready, are in the suspended state.  The 
dormant state refers to the state of a task which exists, 
but is unavailable to the operating system. 
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Figure 4.  State transitions in a TCB model. 

 

A task can enter the executing state when it is created 
(if no other tasks are ready) or from the ready state (if 
it is eligible to run based on its priority).  A task enters 
the ready state if it was executing and its time slice 
runs out, or if it is preempted by a higher priority task.  
When a task is suspended, it can enter the ready state if 
the event that it is waiting on occurs.  If the task is in 
the dormant state, then it enters the ready state upon 
creation (if another task is executing). 

Java thread management must be priority-driven.  The 
RTOS utilizes a priority-driven preemptive task 
scheduler for thread management with each Java thread 
corresponding to a separate task.  The scheduler 
implements 10 levels of priorities (compatible with the 
10 priority levels in standard Java) numbered from 0 to 
9.  Whenever a higher-priority thread becomes ready, 
the current thread is preempted.  Equal priority threads 
execute in a round-robin manner until they run to 
completion.   
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Figure 5.  Priority ordering of task control blocks. 

 

Figure 5 shows the ordering of TCBs according to their 
priority levels.  The scheduling algorithm scans the 
header list starting with the highest priority level and 
traverses through the TCB links to build a round-robin 
queue of all equal priority tasks.  The queue is first set 
up when the system is initialized and it is rebuilt when 
any change in priorities occurs.  For the tasks shown in 
Figure 5, the algorithm produces a queue having two 
tasks, 0 and 3, both of priority 6. 

Task priority assignments are based on the relative 
importance of the tasks or their deadline requirements, 
but they do not make any assumptions about the task 
execution times or possible resource hogging 
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situations.  This results in a finite schedulability bound 
for each task in the system.   

Priority inheritance is used to protect against priority 
inversion caused when a high priority task must wait 
on a resource held by a low priority task and the low 
priority task is preempted by a medium priority task.   

In addition to the task scheduling function, the RTOS 
also tracks the status of the tasks in the suspended list 
and it maintains a set of allocation tables which are 
used to arbitrate between tasks that are pending on the 
same resource.  If a resource becomes available to a 
pending task, then the resource tables are updated and 
the eligible task is moved from the suspended list to the 
ready list.  

The task dispatcher actually allocates the processor 
time to the next ready task in the round robin list.  It 
selects the ready task from the ready list prepared by 
the scheduler and prepares the task for execution by 
loading its state from its TCB onto the processor 
registers and starting the time-slice counter for that 
task.   

3.2  Intertask Communication and Synchronization 

Communicating data between tasks and synchronizing 
tasks is an important problem in any multi-tasking 
system.  A related issue is the sharing of certain 
resources that can only be used by one task at a time.  
Semaphores, mailboxes and message passing are all 
used to solve these problems according to the 
functionality required.   

Message passing is the primary means of 
communication among the various tasks in the system 
for ANTS.  Tasks use this mechanism to signal 
conditions to other waiting tasks and to pass 
information among themselves.  Tasks that are waiting 
on interrupts also use message passing as a 
synchronization primitive.  Semaphores are used for 
mutual exclusion.    

The message queue structure is composed of two 
separate queues.  One is a queue of messages that have 
been sent to the message queue, but have not yet been 
received by a task.  The other is a queue of tasks that 
are waiting for a message from the message queue.    

 

3.3  RTOS-JVM Interaction 

Although the JVM isolates the Java code from the 
hardware specific and operating system details, an 
embedded Java implementation still requires tight 
coupling between the JVM and the RTOS.  This 
coupling enables the JVM to request underlying kernel 

services in order to be real-time compliant and to 
support the language features. 

The Java language provides method constructs for 
multi-threading, thread synchronization and 
communication.  To implement these, the JVM must 
map the Java threads to individual kernel tasks and rely 
on the kernel services to schedule and synchronize the 
threads in accordance with the Java thread priorities.  
The JVM seeks support for hardware related functions 
through native function calls to device driver routines 
and interrupt handlers.  Hence, the RTOS has to handle 
both native code tasks and Java based threads as part of 
its management function.  Both requirements are 
simplified in ANTS by writing the JVM in reentrant 
code and executing each Java thread as a separate 
instance of the JVM.  Each JVM execution instance is 
mapped to a separate RTOS task.   

In ANTS a fixed amount of heap memory is allocated 
to each JVM task during system start-up.  This static 
allocation of heap memory circumvents the need for 
garbage collection to dynamically reclaim freed up 
memory.  Thus it avoids the indeterminacy caused by 
garbage collection, but it leads to strict programming 
restrictions imposed on the user.  For example it is not 
possible to create a large number of new objects in a 
loop. 

 
4.  ANTS DEVELOPMENT SYSTEM 

The ANTS development environment consists of a 
compiler for the Java language, a set of libraries 
containing signal processing routines and control 
routines for the microprocessor, and a linker-loader for 
configuring the compiled code into a form suitable for 
loading into the processor, where it can be executed by 
the JVM.  The principal components of this 
environment are shown in Figure 6. 
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Sentry

Bytecode verifier,
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Figure 6.  Major components of the ANTS software 
development system. 
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Applications for ANTS written in Java source code are 
compiled into class files using a standard Java 
compiler.  Each class file contains the Java bytecodes 
for the included methods.  These methods (and 
methods in other class files) are referenced 
symbolically in the constant pool table—the Java 
virtual machine symbol table for a class file.  In 
standard Java, these symbolic references are resolved 
at run time. 

Since one design decision was to eliminate garbage 
collection (and dynamic allocation of memory space), 
the linker-loader must resolve the symbolic references 
before the code is loaded.  In addition, the linker-loader 
must identify all required memory space for the objects 
themselves before the code can be run.   

The requirement to identify memory space for objects 
at link time imposes certain restrictions on allowable 
Java code.  Primarily, the system must control the 
creation of an arbitrary number of new objects by 
monitoring and restricting the use of the Java new 
statement in loops and conditional statements.  (In 
contrast, the Java execution stack can grow to a 
specified limit.) 

The Java language specification allows flexibility as to 
when resolution and linking occur.  To improve 
deterministic runtime performance, ANTS JVM 
resolves and links all classes before they are 
downloaded into the memory.  (Other virtual machines 
usually defer resolution and linking until they are 
needed at runtime.)  

The current form of ANTS JVM cannot run 
applications relying on the libraries from the Java 
programming language. 

 
5.  ANTS HARDWARE 

The ANTS hardware has been designed for low power, 
modularity, autonomous reconfigurability, and 
maximum versatility.  Hardware for ANTS consists of 
the sensor transducers, the Universal Sensor Interface 
Module (USIM), antenna, and battery pack.  The 
battery pack is configurable to meet the power 
consumption needs of the mission and size limitations 
of the delivery mechanism.  The antenna is planned to 
be shared between a wireless LAN transceiver and a 
GPS receiver.  The USIM is the control, 
communication, data acquisition, and processing 

element of the ANTS hardware.  It is intended to allow 
any of 10 different sensor transducer types to be 
attached in a variety of configurations and 
combinations.  The 10 sensor transducer types are: 

1. Acoustic  
2. Seismic 
3. Magnetic 
4. Infrared Imaging 
5. Atmospheric Temperature 
6. Wind Velocity 
7. Atmospheric Humidity 
8. Rain 
9. Barometric Pressure  
10. Visual Imaging 

For high data rates or tightly coupled control sensor 
transducer types such as infrared or visual imaging and 
magnetometers, only one device is attached to a USIM.  
For the other sensor transducer types, the USIM 
incorporates a “non-imaging” interface that supports up 
to 16 channels of incoming analog signal with 
conversion for digital processing.  The 16 channels can 
be allocated to these “non-imaging” sensor transducers 
in mission optimal configurations and combinations.   

5.1  Universal Sensor Interface Module (USIM) 

The conceptual design of the USIM is depicted in 
Figure 7 and Figure 8 is a high level schematic of its 
architecture.  In its minimal configuration, the USIM 
consists of three Universal Sensor Interface Cards 
(USIC): a master processor USIC, a Transceiver/GPS 
USIC, and a Non-imaging USIC.  In a maximum 
configuration, three slave processor USICs are added 
to the minimal configuration and the Non-imaging 
USIC might be replaced with an Imaging USIC.  The 
system design is founded upon software control of 
USIM resources to optimize problem solution vs. 
power consumption.  The ANTS modules may be 
deployed in an array or “anthill” up to 250 meters in 
diameter.  Data acquired by one ANTS node is 
combined with data from other nodes of like sensor 
transducers and fused with data from unlike sensor 
transducers to provide reliable coordinated detection, 
tracking and recognition of target objects ranging from 
personnel to large motorized and tracked vehicles.  The 
ANTS nodes provide reliable, low-cost, unattended 
micro-electronic sensors that can give advanced 
warning of hostile presence in the area up to and 
including identification and targeting information. 
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5.2  Master Processor USIC 

The Master Processor USIC is the primary control card 
in the USIM.  The USIC design is based on the 
Motorola MPC555 PowerPC microprocessor that 
features:  

• software controlled clock rate from 1 to 40 MHz,  

• full PowerPC instruction set including double 
precision floating point,  

• dual timer control units,  

• dual CAN network buss interfaces,  

• three serial ports,  

• 32 channels of 10 bit A/D converters,  

• 28 Kbytes of dynamic RAM, and  

• 384 Kbytes of flash memory on the chip.   

This powerful processor is augmented with an 
additional 2 Mbytes of flash memory and 3 Mbytes of 
static RAM.  The USIC also contains 256 Kbytes of 
dual ported RAM and Ethernet communication chips as 
well as other supporting electronics.  Because the 
processor power consumption is a function of the CPU 
clock speed, the software controlled clock selection 
allows the ANTS software to match power 
consumption to processing cycle time requirements.  
The PowerPC instruction set permits the software to 
utilize the most effective digital signal processing 
algorithms to accomplish mission objectives.  The dual 
timer units allow very accurate timing control 
independent of the CPU.  The CAN network buss 
interfaces allow networking of the processors within 
the USIM for control and internal communication.  
Digitized data is delivered to one side of the dual port 
memory from either the imaging or non-imaging 
interface where it can be delivered to a slave processor 
USIC for analysis or transmitted out of the ANTS node 

for external analysis. 

5.3  Slave Processor USIC 

The Slave Processor USIC is the data processing 
element of the USIM.  A USIM can be configured with 
up to three Slave Processor USICs depending upon the 
anticipated processing requirements of the application.  
The Slave Processor USIC has resources similar to 
those of the Master Processor but it emphasizes the 
data processing functions more than command and 
control.  Like the Master Processor USIC, the Slave 
Processor USIC is based on the MPC555 PowerPC and 
has available all of the same on-chip resources.  The 
Slave Processor USIC does not have the Ethernet 
capability, but the static RAM is increased to 5 Mbytes 
along with the 256 Kbytes of dual port RAM.   
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Figure 8.  ANTS USIM Block Diagram 

 

Since the same CPU is used as in the Master Processor 
USIC, the Slave Processor USIC can also vary its clock 
rate and, therefore, its power consumption to match the 
processing load and cycle time requirements.  The 
Master Processor USIC makes data available to each 
Slave Processor USIC through the Master Processor 
USIC’s dual port RAM which is directly addressable 
by the slave.  Results are conveyed back to the Master 
Processor USIC through each Slave Processor’s dual 
port RAM that has local Slave Processor access on one 
side and Master Processor access on the other.  

5.4  GPS/Transceiver USIC 

The GPS/Transceiver USIC is not included in this 
phase of development.  However, suitable integrated 
circuits have been identified for both low power GPS 
and Transceiver functions.  The Transceiver IC accepts 
the output from the Ethernet IC on the Master 
Processor USIC and transmits in accordance with the 
IEEE 802.11 protocol at 2 Mbps.  The Transceiver 
wireless LAN bandwidth is expected to increase to 10-
11 Mbps by next year.  This increased communication 
bandwidth is a key component in the ANTS 
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implementation that will allow viable data 
communication and control of an Anthill network to 
accomplish coordinated detection, tracking, and 
identification.  The GPS function will allow precise 
relative and absolute position determination for each 
USIM.  Precise relative position allows coordinated 
data processing for tracking and identification.  Precise 
absolute position allows anthill reporting to external 
agents to contain precise target object location. 

5.5  Non-Imaging USIC 

The low power Non-Imaging USIC accepts 8 channels 
of input analog signal, delta-sigma analog to digital 
conversion with up to 22 bits of noise free resolution 
with data rates programmable from 7.5 to 3840 Hz.  A 
USIM may be configured with from zero to  two Non-
Imaging USICs depending on the number and type of 
non-imaging sensor transducers to be attached to the 
USIM.  Some non-imaging sensor transducers may be 
connected directly to the MPC555 ports to take 
advantage of the many peripherals embedded in the 
processor chip itself. 

5.6  Imaging USIC 

There are currently two instances of imaging USIC 
planned for ANTS: 

• 160x120 pixel Miniature InfraRed Camera 
(MIRC) 

• 320x240 pixel Infrared Camera 

Each of these USIC contains electronics to deliver 
digitized data from their associated sensor transducer to 
the Master Processor USIC of the USIM for 
processing.  These two infrared cameras can provide an 
image frame at rates up to 30 Hz. 

5.7  Summary of ANTS Hardware 

ANTS is designed to meet the need for low power, 
high sensitivity detection with long active life, and 
autonomous embedded data analysis and reporting 
capabilities.  The pivotal component, the USIM, is 
configurable to meet this task with different types of 
sensor transducers and variable local processing 
capacity and it is software controllable to accommodate 
the varying power and processing requirements.   

 
6.  PAST AND FUTURE DEVELOPMENTS 

ANTS is very much a work in progress.  The original 
system specifications called for only a single sensor, a 
TMS320C Digital Signal Processor, 32K 16-bit words 
Flash EPROM on chip memory, and 64K 16-bit words 
of external RAM.  The TMS320C has a 16 bit, fixed-
point processor and a Harvard architecture (separate 

program and data address spaces).  Use of the 
TMS320C placed many restrictions on the system 
design.  For example, the Java bytecodes had to be 
stored in 16-bit words, followed by their operands, 
rather than in 8-bit bytes; float, double, and long byte-
code types were not implemented; and the stack was 
defined as 16- rather than the standard 32-bits wide.  
These differences placed severe restrictions on what 
Java programs could be run.   

However, as is true of many “real-world” projects, the 
operational concept evolved as the development 
proceeded.  The present concept (described here, and 
reflecting the state of the design during the summer, 
1999) allows up to 10 types of sensors and as many as 
4 processors in a sentry.  In addition, primarily for 
reasons of supportability and maintenance, a 
Commercial-Off-The-Shelf (COTS) operating system, 
instead of the custom built RTOS system, will be used.  
Also, to reduce manufacturing complexity, all of the 
software will be loaded into ROM, which is relatively 
slow, and when the sensors are attached, the module 
will configure itself automatically by downloading the 
RAM with the appropriate software from the ROM.  
To support these changes ANTS now uses the 
Motorola MPC555 PowerPC as its processor.   

The new processor brings significant improvements.  It 
has a 32-bit Von Neumann architecture (instructions 
and data in the same address space), which simplifies 
the design and memory allocation tasks, higher speed, 
and it supports multiple processor configurations.  
Also, since it addresses memory in bytes rather than 
words it provides a better match with the JVM 
software. 
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