
 1

AUTONOMOUS NETWORKED TACTICAL SENTRIES*

John B. Bowles†, Larry M. Stephens†, Michael N. Huhns†,
Richard W. Tobaben††, Sanath Yekollu†, and Hareesh Kolpuru†

 † Electrical and Computer Engineering †† Raytheon Systems Company
 University of South Carolina Mail Stop 8461
 Columbia, SC 29208 Plano, Texas 75023
 e-mail: bowles@engr.sc.edu

* This work was supported in part by the US Defense Advanced Research Projects Agency under contract F04701-
97-C-0016 for the Technology for Tactical Sensors and in Small Unit Operations Program

1. INTRODUCTION
The objective of the Autonomous Networked Tactical
Sentries (ANTS) program is to develop a suite of
sensors of different types and capabilities that can be
deployed as an array on a battlefield. Each sensor is
self-contained and equipped with its own
microprocessor, memory, communications electronics,
and power source; all contained in a cylindrical module
approximately 14.6 centimeters (5.7 in.) long by 4
centimeters (1.6 in.) in diameter.

The array of sensors will be able to detect the position
and movement of enemy forces and materiel with
minimal involvement or risk for friendly forces.
Within the array of sensors, coordination and control is
distributed with the local processor analyzing the local
data collected, handling exceptions, and
communicating the results to a higher level entity for
further analysis or the appropriate personnel to make
strategic and tactical decisions about the battlefield.

The Autonomous Networked Software is an enabling
technology for ANTS. It consists of Java-like applets
residing on a Universal Sensor Interface Chip (USIC)
that interfaces with and controls the associated sensors.
Figure 1 illustrates the overall software architecture for

the system.

Its major components are:
• Sentry software interpreter for Java bytecodes (Java

virtual machine);
• Real-time operating system, including interrupt

service routines, and low-level interface code;
• Java application threads for communications, power

management, signal processing, and sensor
command and control.

In addition, a Java class file linker-loader preprocesses
of the Java class files so that they can be interpreted
directly by the ANTS Java Virtual Machine (JVM) and
loads the software onto the sensor. The underlying
hardware has been designed for power conservation,
modular configurability, and maximum versatility.

1.1 Why Java

Java was originally designed for systems that perform
networked computing and communications. Java
source code is compiled into byte codes, which are
then interpreted by the Java Virtual Machine (JVM),
which runs on the host computer. This process
provides a great deal of machine independence and
flexibility. Applications can be developed on one
system, downloaded, combined with pieces of Java
programs from other machines, and run on a different
system.

Using an interpreted high-level language such as Java
for microprocessor-based sentries has several
advantages. First, software for an ANTS sentry can be
developed on any platform and downloaded to the
sentries. This provides a level of flexibility unmatched
by other high-level languages.

Second, several features of the Java language itself are
advantageous for ANTS:

Sentry

command and

control thread

DSP

thread

Communication

thread

Java Virtual Machine

Communication

interface
Sensor

interface

Sensor/USIC
RS485

Transceiver
External

data

Results,

requests

Data,

commands

Power
management

 RTOS

Figure 1. ANTS Software Architecture

 2

• Java is multithreaded, which makes it
straightforward to construct ANTS applications that
must manage sensor signal sampling, signal
processing, communications, and power
management concurrently. This multi-thread aspect
of Java is particularly well suited to the ANTS
multi-processing requirements. Other languages
such as C and C++ do not support concurrency
directly.

• Java is a pure, object-oriented language, enabling
ANTS software to be developed and managed in a
modular fashion, and enabling modules to be
defined that correspond naturally to real-life
objects.

• Java byte code is compact, requiring half as much
space to store and half as much bandwidth to
download a program over a network, as does
machine language.

Third, new or modified Java threads can be
downloaded dynamically to reconfigure an ANTS
sensor array in the field. For other applications, ANTS
sensors can function as web servers, enabling them to
be interrogated and controlled from standard web
browsers.

Finally, since the use of Java for ANTS is based on off-
the-shelf Java compilers, application development is
more cost effective.

The major disadvantage of Java is execution speed.
Interpreted software is much slower than software
compiled into a processor’s native instruction set.
Preliminary studies of ANTS software indicate that
equivalent functions might be a factor of 10 slower in
Java than in native, machine code. This speed
disadvantage can be substantially mitigated by writing
low-level interrupt-service routines in assembly
language and computationally intensive analysis
routines in C and using Java primarily for control of
the microprocessor, where its robustness and flexibility
are most important.

2. JAVA BYTECODE INTERPRETER (JAVA

VIRTUAL MACHINE)
The Java Virtual Machine (JVM) is an abstract
computer that runs compiled Java programs. It is
“virtual” because it is implemented in software on top
of a “real” hardware platform and operating system.
Java programs are compiled into instructions called
Java bytecodes that are interpreted by the JVM. Each
instruction consists of a one-byte opcode followed by
zero or more operands.

The JVM has a stack-oriented architecture that helps to
keep both the number of instructions and the size of

each instruction small. The JVM has five basic parts:
• the stack,
• the registers,
• the garbage-collected heap, and
• the method area.

The set of registers, the stack, the heap, and the method
area constitute the “virtual hardware” of the Java
Virtual Machine. These parts are abstract, just like the
machine they compose, but they must exist in some
form in every JVM implementation.

2.1 The Stack and Associated Registers

Information in the Java stack is organized in “stack
frames”. Each stack frame contains the state of one
Java method invocation. When a program invokes a
new method, the Java Virtual Machine pushes a new
frame onto that program’s stack. The stack frame, as
shown in Figure 2, contains space for the method’s
local variables, its operand stack, its parameters, static
link and return value. The maximum number and size
of the local variables are calculated at compile-time
and given to the interpreter, so that the interpreter
knows how much memory will be needed by the
method’s stack frame. When the interpreter invokes a
method, it creates a stack frame of the proper size for
that method. When the method completes, the JVM
removes the corresponding frame.

The Java stack is used to store parameters for bytecode
instructions and the results of bytecode operations, to
pass parameters to and return values from methods, and
to keep the state of each method invocation. The stack
is word-based. Each time a value is pushed onto the
Java stack, it goes on as a 32-bit word (although longs
and doubles actually go on as two words).

The registers of the JVM hold the machine’s state and

 Vars ptr

 Parameter 1

 Parameter… Static Frame for
 Parameter n Oldest Block

 Local Var. 1 --------------

 Local Var.…

 Local Var n --------------
 PC pointer

 Static Frame for
 Vars pointer Newest Block

 Frame pointer
 TOS

 Static Link
 Frame ptr

 Return Value
 TOS

 Operand 1
 Operands…

 Operand n

Figure 2. ANTS JVM Stack Structure.

 3

control its operation; they are updated after each
bytecode is executed. The JVM has a program counter,
called the pc register, and three registers that manage
the stack — the optop, vars, and frame registers. The
JVM needs only a few registers because the bytecode
instructions operate primarily on the stack.

Optop is a pointer to the top of the operand stack. This
is always the topmost section of the stack; hence the
optop register always points to the top of the entire
Java stack.

The operand stack is used as a workspace by bytecode
instructions; both parameters for the bytecode
instructions and the results of operations on those
parameters are placed on the top of the stack. For
example, the iadd instruction adds two integers by
popping two ints off the top of the operand stack,
adding them, and pushing the result back onto the
stack. Since each word on the stack is 32 bits, Optop is
implemented as a pointer to integer in the ANTS JVM.

The local variables section of the stack contains all the
local variables, including any parameters passed to the
method, for the current method invocation. Vars is a
pointer to the first local variable of the currently
executing method. The local variables section of the
Java stack is treated as an array of words starting at the
location pointed to by the vars register. Byte codes that
deal with local variables generally include an array
index, which is an offset from the vars register. Values
of type int, float, reference, and return value occupy
one entry each in the local variables array. Values of
type byte, short, and char are converted to int and
padded before being stored into the local variables and
values of double, and long occupy two locations on the
stack.

Frame is a pointer to the execution environment of the
current method. This section is used to maintain the
operations of the stack itself. When a running thread
invokes a Java method, the calling-method first pushes
any parameters to be passed to the called-method onto
the stack. The JVM then creates and pushes a new
frame onto the thread’s Java stack. This frame then
becomes the current stack frame. The JVM saves the
calling-method’s execution environment (pc, vars,
frame, and optop registers) in the new stack frame, and
updates those registers for the new method.

2.2 The Method Area and Heap

The method area is where the byte-codes reside and the
heap is used for allocating new objects in memory.
The Java language does not allow memory to be freed
directly; instead it keeps track of the references to each
object on the heap, and automatically frees the memory
when the object is no longer referenced. The heap and

method areas are managed for the JVM by the ANTS
Real Time Operating System.

Our implementation of the JVM does not support
garbage collection because of real-time scheduling
constraints and memory space limitations; hence, there
are some limitations on how a program can allocate
and dereference objects.

2.3 Java Bytecode Interpreter

The JAVA bytecode interpreter implements the JVM.
It acts as a “virtual processor” and executes the
instructions in the stream of bytecodes. The interpreter
is written in C.

The overall structure of the interpreter is shown in
Figure 3. The interpreter is initialized by setting the
pc, optop, frame, and var registers to point to the
address of the Java bytecode program to execute, the
top of the operations stack, the execution environment
(frame), and the local variables, respectively.

Get bytecode
instruction pointed to

by PC

Execute
bytecode

Execute
bytecode

Execute
bytecode

Initialize
JAVA virtual

machine

Switch
to

bytecode

Figure 3. Architecture for the Java Virtual Machine
Interpreter

The interpreter then enters a basic fetch-execute cycle.
It fetches the bytecode pointed to by pc, decodes the
instruction, and switches to the code to execute that
instruction. Once the bytecode instruction has been
executed the pc is incremented to point to the next
instruction and that instruction is fetched. The inner
loop of the interpreter is essentially:

Do {
 Fetch a byte
 Execute an action based on
 the value of the byte
} While (there is more to do);

The performance of the JVM is improved by declaring
pc, optop, and vars as “register variables”, thus
associating these virtual registers with the real registers
of the underlying hardware.

 4

The ANTS Java interpreter implements the complete
core instruction set of 201 bytecodes from Sun
Microsystems JVM specification.

2.4 Class Loader

The Java class file is the format that a compiled Java
class is saved in. Class files are the Java equivalent of
the object files produced by other compilers, but the
instructions in them are intended to be interpreted
dynamically rather than as static opcodes. A Java class
file contains several data items required by the runtime
system; these include the virtual machine code for each
method provided by the class, a symbolic reference to
the superclass of the class, a list of fields defined by the
class, and a constant pool containing littorals and
symbols used by the class. Bytecode instructions that
make symbolic references use the constant pool table
(in the Java class file) to map to a string representing
the reference which is then resolved dynamically. For
example, the instruction invokevirtual uses an index
into the constant pool to find the class name, method
name, and method signature (number and type of
parameters, and return type) of an instance method.
“Resolution” of this reference requires locating the
appropriate class file and parsing it until the correct
method is found. In addition, several bytecode
instructions (e.g., getfield, invokspecial) obtain
information such as what method to execute, or the
amount of space to allocate for the local variables of a
method from the class file.

In ANTS the dynamic resolution of symbolic
references is not feasible because: 1) there is no file
system in which to store the class file; and 2) the
system does not have enough memory to store the class
files. Hence, the ANTS Linker-Loader must resolve all
the symbolic references when the program is linked
and provide the real memory addresses to the JVM as
operands following the bytecode.

The Java JVM currently defines 201 byte-code
instructions. Fourteen of these instructions require the
resolution of symbolic addresses before they can be
executed.

2.5 ANTS Implementation Differences from
“Standard” Java

There are several differences between the ANTS Java
Virtual Machine and the “standard” Java Virtual
Machine. These differences were imposed by the
system architecture and the manner in which the ANTS
sensor modules will be deployed. The most important
differences are:

1. The Java Application Programming Interface (API)
is a set of runtime libraries that provides a standard

way for Java programs to access the resources of
the host system. The API’s functionality must be
implemented for a particular platform before that
platform can host Java programs. The ANTS JVM
currently has no implemented API.

2. Normally, a Java program is interpreted and
symbolic references, such as those for method
invocation, object field access, object creation, and
certain stack manipulations are resolved at runtime
by a dynamic class-file loader. Since the ANTS
JVM does not have access to the class file, all of
these symbolic references are resolved by the
ANTS Linker-Loader and passed to the JVM as
parameters following the corresponding bytecode.

3. The Java virtual machine specification provides
only general rules for multi-threading. The ANTS
JVM calls the RTOS for creating, scheduling and
destroying threads and hence depends completely
on the underlying operating system for this
functionality. Since the current implementation of
the ANTS JVM cannot manage the execution of its
threads it does not provide compatibility with the
Java language thread class.

The ANTS JVM provides the capability of multi-
threading using internal threads of the ANTS
RTOS. Scheduling of Java threads is also done by
the RTOS which provides priority driven
preemptive task scheduling. Implementation of
multi-threading in the ANTS JVM has been done
using re-entrant code so that one thread does not
interfere with other running threads. Each thread
also maintains its own heap for dynamic allocation
of memory.

3. ANTS REAL TIME OPERATING SYSTEM

The ANTS Real Time Operating System (RTOS)
manages the execution of the ANTS application
software. It provides the functionality needed for real-
time system operation and to support the Java virtual
machine. This includes:

• managing Java threads and other tasks;

• providing communication between threads;

• making static allocation of memory for all tasks in
the system.

In addition, the RTOS provides routines to respond to
hardware and timer interrupts and to boot the system.
It also interfaces to the development system and
provides the capability to download programs and data.

 5

3.1 Tasks and Thread Management

Real-time systems require multi-tasking for the
concurrent execution of essential tasks. The logical
correctness of the system depends on both the
correctness and the timeliness of the outputs.

The ANTS RTOS uses a Task Control Block (TCB)
model to keep track of the various tasks in the system.
Although this model is more complex than the stack
model used in some embedded systems applications, it
allows task priorities to change dynamically and it
allows more sophisticated scheduling algorithms to be
used. The TCB model also helps the kernel with
keeping track of the status (executing, ready,
suspended, or dormant) of each task.

A Task Control Block is created for each task when the
task is initialized by the RTOS. Separate stack
structures are also reserved for each task. The TCB
contains sufficient information, to enable the task to
resume execution from where it left off when it is
suspended.

As tasks run they transition between four states:

1. Executing,
2. Ready,
3. Suspended, and
4. Dormant.

Figure 4 shows the state transitions in the TCB model
system. The executing task is the task that is currently
using the processor resources. Tasks in the ready state
are those which are ready to run but are not running ―
usually because another, higher priority task is running.
Tasks that are waiting on a particular resource, and
hence are not ready, are in the suspended state. The
dormant state refers to the state of a task which exists,
but is unavailable to the operating system.

 Task Interrupt
 Create

 Task
 Delete

Schedule or
 Awaken Interrupt

 Task Delete

 Task Create

 Suspend
Create Awaken

Task Suspend
Delete

Dormant Ready

Executing

Suspended

Figure 4. State transitions in a TCB model.

A task can enter the executing state when it is created
(if no other tasks are ready) or from the ready state (if
it is eligible to run based on its priority). A task enters
the ready state if it was executing and its time slice
runs out, or if it is preempted by a higher priority task.
When a task is suspended, it can enter the ready state if
the event that it is waiting on occurs. If the task is in
the dormant state, then it enters the ready state upon
creation (if another task is executing).

Java thread management must be priority-driven. The
RTOS utilizes a priority-driven preemptive task
scheduler for thread management with each Java thread
corresponding to a separate task. The scheduler
implements 10 levels of priorities (compatible with the
10 priority levels in standard Java) numbered from 0 to
9. Whenever a higher-priority thread becomes ready,
the current thread is preempted. Equal priority threads
execute in a round-robin manner until they run to
completion.

TCB array with pointers

6 642 4 2

0 41 2 3 5

Header list
0

1

2

3

4

5

6
7

8

9

0

1

2

3

4

5

Priority

Task

Figure 5. Priority ordering of task control blocks.

Figure 5 shows the ordering of TCBs according to their
priority levels. The scheduling algorithm scans the
header list starting with the highest priority level and
traverses through the TCB links to build a round-robin
queue of all equal priority tasks. The queue is first set
up when the system is initialized and it is rebuilt when
any change in priorities occurs. For the tasks shown in
Figure 5, the algorithm produces a queue having two
tasks, 0 and 3, both of priority 6.

Task priority assignments are based on the relative
importance of the tasks or their deadline requirements,
but they do not make any assumptions about the task
execution times or possible resource hogging

 6

situations. This results in a finite schedulability bound
for each task in the system.

Priority inheritance is used to protect against priority
inversion caused when a high priority task must wait
on a resource held by a low priority task and the low
priority task is preempted by a medium priority task.

In addition to the task scheduling function, the RTOS
also tracks the status of the tasks in the suspended list
and it maintains a set of allocation tables which are
used to arbitrate between tasks that are pending on the
same resource. If a resource becomes available to a
pending task, then the resource tables are updated and
the eligible task is moved from the suspended list to the
ready list.

The task dispatcher actually allocates the processor
time to the next ready task in the round robin list. It
selects the ready task from the ready list prepared by
the scheduler and prepares the task for execution by
loading its state from its TCB onto the processor
registers and starting the time-slice counter for that
task.

3.2 Intertask Communication and Synchronization

Communicating data between tasks and synchronizing
tasks is an important problem in any multi-tasking
system. A related issue is the sharing of certain
resources that can only be used by one task at a time.
Semaphores, mailboxes and message passing are all
used to solve these problems according to the
functionality required.

Message passing is the primary means of
communication among the various tasks in the system
for ANTS. Tasks use this mechanism to signal
conditions to other waiting tasks and to pass
information among themselves. Tasks that are waiting
on interrupts also use message passing as a
synchronization primitive. Semaphores are used for
mutual exclusion.

The message queue structure is composed of two
separate queues. One is a queue of messages that have
been sent to the message queue, but have not yet been
received by a task. The other is a queue of tasks that
are waiting for a message from the message queue.

3.3 RTOS-JVM Interaction

Although the JVM isolates the Java code from the
hardware specific and operating system details, an
embedded Java implementation still requires tight
coupling between the JVM and the RTOS. This
coupling enables the JVM to request underlying kernel

services in order to be real-time compliant and to
support the language features.

The Java language provides method constructs for
multi-threading, thread synchronization and
communication. To implement these, the JVM must
map the Java threads to individual kernel tasks and rely
on the kernel services to schedule and synchronize the
threads in accordance with the Java thread priorities.
The JVM seeks support for hardware related functions
through native function calls to device driver routines
and interrupt handlers. Hence, the RTOS has to handle
both native code tasks and Java based threads as part of
its management function. Both requirements are
simplified in ANTS by writing the JVM in reentrant
code and executing each Java thread as a separate
instance of the JVM. Each JVM execution instance is
mapped to a separate RTOS task.

In ANTS a fixed amount of heap memory is allocated
to each JVM task during system start-up. This static
allocation of heap memory circumvents the need for
garbage collection to dynamically reclaim freed up
memory. Thus it avoids the indeterminacy caused by
garbage collection, but it leads to strict programming
restrictions imposed on the user. For example it is not
possible to create a large number of new objects in a
loop.

4. ANTS DEVELOPMENT SYSTEM

The ANTS development environment consists of a
compiler for the Java language, a set of libraries
containing signal processing routines and control
routines for the microprocessor, and a linker-loader for
configuring the compiled code into a form suitable for
loading into the processor, where it can be executed by
the JVM. The principal components of this
environment are shown in Figure 6.

ANTS
Source Code

(.java)

ANTS Java
Compiler

ANTS
Bytecode
(.class)

ANTS Libraries
(.class from .Java, .C, .asm)

Sentry

Bytecode verifier,
Linker, and

Thread loader

Figure 6. Major components of the ANTS software
development system.

 7

Applications for ANTS written in Java source code are
compiled into class files using a standard Java
compiler. Each class file contains the Java bytecodes
for the included methods. These methods (and
methods in other class files) are referenced
symbolically in the constant pool table—the Java
virtual machine symbol table for a class file. In
standard Java, these symbolic references are resolved
at run time.

Since one design decision was to eliminate garbage
collection (and dynamic allocation of memory space),
the linker-loader must resolve the symbolic references
before the code is loaded. In addition, the linker-loader
must identify all required memory space for the objects
themselves before the code can be run.

The requirement to identify memory space for objects
at link time imposes certain restrictions on allowable
Java code. Primarily, the system must control the
creation of an arbitrary number of new objects by
monitoring and restricting the use of the Java new
statement in loops and conditional statements. (In
contrast, the Java execution stack can grow to a
specified limit.)

The Java language specification allows flexibility as to
when resolution and linking occur. To improve
deterministic runtime performance, ANTS JVM
resolves and links all classes before they are
downloaded into the memory. (Other virtual machines
usually defer resolution and linking until they are
needed at runtime.)

The current form of ANTS JVM cannot run
applications relying on the libraries from the Java
programming language.

5. ANTS HARDWARE

The ANTS hardware has been designed for low power,
modularity, autonomous reconfigurability, and
maximum versatility. Hardware for ANTS consists of
the sensor transducers, the Universal Sensor Interface
Module (USIM), antenna, and battery pack. The
battery pack is configurable to meet the power
consumption needs of the mission and size limitations
of the delivery mechanism. The antenna is planned to
be shared between a wireless LAN transceiver and a
GPS receiver. The USIM is the control,
communication, data acquisition, and processing

element of the ANTS hardware. It is intended to allow
any of 10 different sensor transducer types to be
attached in a variety of configurations and
combinations. The 10 sensor transducer types are:

1. Acoustic
2. Seismic
3. Magnetic
4. Infrared Imaging
5. Atmospheric Temperature
6. Wind Velocity
7. Atmospheric Humidity
8. Rain
9. Barometric Pressure
10. Visual Imaging

For high data rates or tightly coupled control sensor
transducer types such as infrared or visual imaging and
magnetometers, only one device is attached to a USIM.
For the other sensor transducer types, the USIM
incorporates a “non-imaging” interface that supports up
to 16 channels of incoming analog signal with
conversion for digital processing. The 16 channels can
be allocated to these “non-imaging” sensor transducers
in mission optimal configurations and combinations.

5.1 Universal Sensor Interface Module (USIM)

The conceptual design of the USIM is depicted in
Figure 7 and Figure 8 is a high level schematic of its
architecture. In its minimal configuration, the USIM
consists of three Universal Sensor Interface Cards
(USIC): a master processor USIC, a Transceiver/GPS
USIC, and a Non-imaging USIC. In a maximum
configuration, three slave processor USICs are added
to the minimal configuration and the Non-imaging
USIC might be replaced with an Imaging USIC. The
system design is founded upon software control of
USIM resources to optimize problem solution vs.
power consumption. The ANTS modules may be
deployed in an array or “anthill” up to 250 meters in
diameter. Data acquired by one ANTS node is
combined with data from other nodes of like sensor
transducers and fused with data from unlike sensor
transducers to provide reliable coordinated detection,
tracking and recognition of target objects ranging from
personnel to large motorized and tracked vehicles. The
ANTS nodes provide reliable, low-cost, unattended
micro-electronic sensors that can give advanced
warning of hostile presence in the area up to and
including identification and targeting information.

 8

5.2 Master Processor USIC

The Master Processor USIC is the primary control card
in the USIM. The USIC design is based on the
Motorola MPC555 PowerPC microprocessor that
features:

• software controlled clock rate from 1 to 40 MHz,

• full PowerPC instruction set including double
precision floating point,

• dual timer control units,

• dual CAN network buss interfaces,

• three serial ports,

• 32 channels of 10 bit A/D converters,

• 28 Kbytes of dynamic RAM, and

• 384 Kbytes of flash memory on the chip.

This powerful processor is augmented with an
additional 2 Mbytes of flash memory and 3 Mbytes of
static RAM. The USIC also contains 256 Kbytes of
dual ported RAM and Ethernet communication chips as
well as other supporting electronics. Because the
processor power consumption is a function of the CPU
clock speed, the software controlled clock selection
allows the ANTS software to match power
consumption to processing cycle time requirements.
The PowerPC instruction set permits the software to
utilize the most effective digital signal processing
algorithms to accomplish mission objectives. The dual
timer units allow very accurate timing control
independent of the CPU. The CAN network buss
interfaces allow networking of the processors within
the USIM for control and internal communication.
Digitized data is delivered to one side of the dual port
memory from either the imaging or non-imaging
interface where it can be delivered to a slave processor
USIC for analysis or transmitted out of the ANTS node

for external analysis.

5.3 Slave Processor USIC

The Slave Processor USIC is the data processing
element of the USIM. A USIM can be configured with
up to three Slave Processor USICs depending upon the
anticipated processing requirements of the application.
The Slave Processor USIC has resources similar to
those of the Master Processor but it emphasizes the
data processing functions more than command and
control. Like the Master Processor USIC, the Slave
Processor USIC is based on the MPC555 PowerPC and
has available all of the same on-chip resources. The
Slave Processor USIC does not have the Ethernet
capability, but the static RAM is increased to 5 Mbytes
along with the 256 Kbytes of dual port RAM.

Imaging
USIC

IR

OR

Non-Imaging
USIC (1)

Non-Imaging
 USIC(2)

(If Required)

Seismic

Acoustic

Master
Processor

USIC

Slave
Processor 1

USIC
(If Required)

Slave
Processor 2

USIC
(If Required)

Slave
Processor 3

USIC
(If Required)

Ethernet26
Control

Serial I/O

IEEE 802.11
Radio ?
& GPS

AND

8

8

Interrupts
CAN

Slave Dual
Port Access

Master Dual
Port Access

Figure 8. ANTS USIM Block Diagram

Since the same CPU is used as in the Master Processor
USIC, the Slave Processor USIC can also vary its clock
rate and, therefore, its power consumption to match the
processing load and cycle time requirements. The
Master Processor USIC makes data available to each
Slave Processor USIC through the Master Processor
USIC’s dual port RAM which is directly addressable
by the slave. Results are conveyed back to the Master
Processor USIC through each Slave Processor’s dual
port RAM that has local Slave Processor access on one
side and Master Processor access on the other.

5.4 GPS/Transceiver USIC

The GPS/Transceiver USIC is not included in this
phase of development. However, suitable integrated
circuits have been identified for both low power GPS
and Transceiver functions. The Transceiver IC accepts
the output from the Ethernet IC on the Master
Processor USIC and transmits in accordance with the
IEEE 802.11 protocol at 2 Mbps. The Transceiver
wireless LAN bandwidth is expected to increase to 10-
11 Mbps by next year. This increased communication
bandwidth is a key component in the ANTS

Sensor Primary Secondary Secondary Secondary
 Adaptor Processor Processor Processor Processor

Battery SetSensor

Battery Set

Sensor

USIM

Prototype Design

Deployment Design
55 mm

40 mm

Figure 7 Universal Sensor Interface Module

 9

implementation that will allow viable data
communication and control of an Anthill network to
accomplish coordinated detection, tracking, and
identification. The GPS function will allow precise
relative and absolute position determination for each
USIM. Precise relative position allows coordinated
data processing for tracking and identification. Precise
absolute position allows anthill reporting to external
agents to contain precise target object location.

5.5 Non-Imaging USIC

The low power Non-Imaging USIC accepts 8 channels
of input analog signal, delta-sigma analog to digital
conversion with up to 22 bits of noise free resolution
with data rates programmable from 7.5 to 3840 Hz. A
USIM may be configured with from zero to two Non-
Imaging USICs depending on the number and type of
non-imaging sensor transducers to be attached to the
USIM. Some non-imaging sensor transducers may be
connected directly to the MPC555 ports to take
advantage of the many peripherals embedded in the
processor chip itself.

5.6 Imaging USIC

There are currently two instances of imaging USIC
planned for ANTS:

• 160x120 pixel Miniature InfraRed Camera
(MIRC)

• 320x240 pixel Infrared Camera

Each of these USIC contains electronics to deliver
digitized data from their associated sensor transducer to
the Master Processor USIC of the USIM for
processing. These two infrared cameras can provide an
image frame at rates up to 30 Hz.

5.7 Summary of ANTS Hardware

ANTS is designed to meet the need for low power,
high sensitivity detection with long active life, and
autonomous embedded data analysis and reporting
capabilities. The pivotal component, the USIM, is
configurable to meet this task with different types of
sensor transducers and variable local processing
capacity and it is software controllable to accommodate
the varying power and processing requirements.

6. PAST AND FUTURE DEVELOPMENTS

ANTS is very much a work in progress. The original
system specifications called for only a single sensor, a
TMS320C Digital Signal Processor, 32K 16-bit words
Flash EPROM on chip memory, and 64K 16-bit words
of external RAM. The TMS320C has a 16 bit, fixed-
point processor and a Harvard architecture (separate

program and data address spaces). Use of the
TMS320C placed many restrictions on the system
design. For example, the Java bytecodes had to be
stored in 16-bit words, followed by their operands,
rather than in 8-bit bytes; float, double, and long byte-
code types were not implemented; and the stack was
defined as 16- rather than the standard 32-bits wide.
These differences placed severe restrictions on what
Java programs could be run.

However, as is true of many “real-world” projects, the
operational concept evolved as the development
proceeded. The present concept (described here, and
reflecting the state of the design during the summer,
1999) allows up to 10 types of sensors and as many as
4 processors in a sentry. In addition, primarily for
reasons of supportability and maintenance, a
Commercial-Off-The-Shelf (COTS) operating system,
instead of the custom built RTOS system, will be used.
Also, to reduce manufacturing complexity, all of the
software will be loaded into ROM, which is relatively
slow, and when the sensors are attached, the module
will configure itself automatically by downloading the
RAM with the appropriate software from the ROM.
To support these changes ANTS now uses the
Motorola MPC555 PowerPC as its processor.

The new processor brings significant improvements. It
has a 32-bit Von Neumann architecture (instructions
and data in the same address space), which simplifies
the design and memory allocation tasks, higher speed,
and it supports multiple processor configurations.
Also, since it addresses memory in bytes rather than
words it provides a better match with the JVM
software.

REFERENCES

1. T. Lindholm and F. Yellin, “The JavaTM Virtual
Machine Specification”, Sun Microsystems Inc.

2. J. Meyer and T. Downing, Java Virtual Machine,
1st Ed., O’Reilly Publications, ISBN: 1-562592-
194-1, 1997

3. K. Ramamritham and J. A. Stankovic, Scheduling
algorithms and Operating Systems Support for
Real-time Systems.

