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Abstract. Software system developers have a number of methodologies
available to them. Each is based an a set of abstractions and each has
several advantages and disadvantages. This paper surveys the available
methodologies and evaluates them with regard to their support for reuse
and robustness. It focuses on the trends that are evident in software engi-
neering and the impact that the trends will have on system development.
It concludes that both current trends and anticipated needs converge on
a multiagent-based service-oriented computing methodology.

1 Introduction

Computing is in the midst of a paradigm shift. After decades of progress on repre-
sentations and algorithms geared toward individual computations, the emphasis
is shifting toward interactions among computations. The motivation is practical,
but there are major theoretical implications. Current techniques are inadequate
for applications such as ubiquitous information access, electronic commerce, and
digital libraries, which involve a number of independently designed and operated
subsystems. The metaphor of interaction emphasizes the autonomy of compu-
tations and their ability to interface with each other and their environment.
Therefore, it can be a powerful conceptual basis for designing solutions for the
above applications.

The paradigm shift is being manifested by trends towards both service-
oriented computing and multiagent-based systems. These trends are comple-
mentary: services need the ability to behave proactively and to negotiate as
provided by agents, while agents need the capability for mutual understanding
as being provided by the Semantic Web in the form of ontologies for objects and
processes.

There are several methodologies for developing software that might be suit-
able for large distributed applications. There are many requirements for a method-
ology, but it must support distributed development and execution, software
reuse, and robustness.
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2 Fundamental Abstractions

Each programming methodology has an associated set of abstractions that char-
acterize its approach and that determine its appropriate applications. The ab-
stractions help in elucidating the benefits and limitations of a methodology. This
section describes the abstractions for the methodologies and evaluates them with
regard to software engineering’s two major goals: reuse and robustness.

2.1 Procedural Programming

The earliest programming languages, exemplified by Fortran and COBOL, were
procedural. The major abstraction supported by procedural programming is the
notion of an algorithm and its representation in instructions suitable for a von
Neumann architecture. Procedural programs are typically intended to be exe-
cuted discretely in a batch mode with a specific start and end. An advantage
of procedural programming is that computational efficiency is more easily opti-
mized, because representations match the computing architecture. For this same
reason, compilers are then easier to construct.

Early computer systems had little memory and slow CPUs, so it was natural
to design programs that were close to the computer systems that would execute
them. However, this resulted in several limitations for procedural programming:
it does not scale up for large applications, it is difficult to distribute either its
development or its execution, it is difficult to reuse the code for new applications,
and it obscures errors and bugs, making it difficult for developers to locate and
repair them.

2.2 Object-Oriented Programming

The major abstractions supported by object-oriented programming are repre-
sentations of both real-world entities and programming entities. For example,
an object might be a truck or a random-number generator. The representations
include the properties and the procedures of the objects. The benefits of OOP
are achieved through encapsulation, polymorphism, and inheritance. Encapsu-
lation enables and encourages software to be developed and tested in a modular
fashion. Inheritance reuses code automatically, thereby improving both robust-
ness and ease of development. Polymorphism makes it easier for developers to
construct modules independently.

The disadvantages of object-oriented programming are related to its lack of
abstractions or support for the relationships and interactions among objects.
Complex applications typically require many objects to interoperate coherently.
When an object is designed and created, it is not always known how and when
its functionality will be used and its state will be affected. This can lead to
unanticipated errors. Furthermore, by being passive in the sense that an object’s
functionality must be invoked externally, it is not an accurate model of real-
world entities as desired. The abstractions in object-oriented programming are
not wrong, they are simply insufficient.
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2.3 Component-Based Design and Development

Components are also objects, but they are typically larger both horizontally
(having more features) and vertically (can extend from user interfaces to op-
erating system hooks). They also introduce an additional abstraction: a self-
description facility. This is important, because it enables objects to find each
other and to locate the external functionality that they wish to invoke. More of-
ten, it enables developers to locate the components they wish to reuse, thereby
easing the development effort—a major advantage.

A disadvantage is that the self-description abstraction does not go far enough:
components do not do anything to aid in their reuse or in their being discovered
at runtime. Like objects, they are essentially passive, waiting to be discovered
and utilized.

2.4 Agent-Oriented Programming

The abstractions provided by agents are derived from psychology and from ani-
mate behavior. From psychology, the abstractions are a mentalistic state consist-
ing of beliefs, desires, and intentions. From animate behavior, the abstractions
are active functionality and autonomy. Combined, activity and autonomy en-
able an agent to guard against unwarranted changes to its internal state and
unwanted uses of its functionality, as well as appropriate participation in an
environment.

Because of a focus on the individual, i.e., one agent at a time, the resultant
systems tend to consist of complex entities that use only simple interactions to
deal with a complex environment. The programming effort is thus concentrated
on developing the complex entities and providing them with the knowledge and
beliefs needed to act intelligently in their environment, i.e., choose their inten-
tions so that they achieve their desires. There is little effort on modeling the
environment and incorporating that model into the agent.

2.5 Multiagent-Oriented Programming

Software development based on multiagent systems takes advantage of abstrac-
tions derived from sociology, economy, and law. The abstractions are social, con-
sisting of commitments and obligations. The focus is on the interactions among
the active entities (i.e., agents) and the passive entities (i.e., other objects) in an
environment. The development effort focuses on modeling the environment and,
more importantly, the other agents, leading to mutual beliefs, joint intentions,
and common goals (desires).

Commitments provide a natural abstraction to encode relationships among
autonomous, heterogeneous parties. Commitments are important for organiza-
tional control, because they provide a layer that mediates across the declarative
semantics of organizations from the operational behavior of the team members.
Their advantages to organizational control are:
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– Commitments can be assigned to roles, so that any agent that fills the role
will inherit the role’s commitments

– Commitments can be delegated

– Commitments can be reassigned. For example, if an agent fails to meet its
commitment, then the responsible authority (another agent) can release the
first agent from the commitment and delegate it to another

– Commitments can be negotiated. One agent might ask another (a peer) to
take over a commitment that could not otherwise be met

– Commitments can fail to be met; the failure can then be communicated to
an agent with the authority to release the original commitment and reassign
it.

Obligations, i.e., commitments to follow required policies, enable an agent to
reason about the relationship between its responsibilities and its decision-making
constraints and goals. This feature decides which organizational policies apply
for the current situation and marks as unacceptable any intended actions that
are inappropriate.

This paradigm is ideally suited for addressing the disadvantages inherent
in the earlier paradigms while meeting the objectives of open enterprise-wide
applications. However, it requires a large population of agents that have a mu-
tual understanding of requirements and capabilities. Service-oriented computing,
described in Section 4, removes this disadvantage by providing generators and
sources for agents.

Table 1 summarizes the major features of existing software paradigms, and
the features promised by the service-oreiented and multiagent-based approaches
described below.

Table 1. Features of Programming Languages and Paradigms

Multiagent-Based
Procedural Object Service-Oriented

Concept Language Language Language

Abstraction Type Class Service/Interaction
Building Block Instance, Data Object Agent
Computation Model Procedure/Call Method/Message Perceive/Reason/Act
Design Paradigm Tree of Procedures Interaction Patterns Cooperative Interaction
Architecture Functional Inheritance and Managers, Assistants,

Decomposition Polymorphism and Peers
Modes of Behavior Coding Designing and Using Enabling and Enacting
Terminology Implement Engineer Activate
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3 Assessment

We focus on how to build software out of agents, i.e., agents as the fundamental
building blocks for software, rather than how to engineer agents per se or how
to use agents to help construct software, i.e., agent-based CASE tools.

The conventional computer science viewpoint is that the behavior of a mod-
ule must be understood before it is executed, whether it is invoked by another
module or by a human. Such understanding is not practical when

– The execution environment is open
– The modules are complex
– The modules are numerous
– The modules can learn or adapt

Unfortunately, modern enterprise-level applications are characterized by all of
these. It is such applications that service-oriented computing is intended to ad-
dress. It leads to the potentially feasible achievement of programming-in-the-
large.

The procedural and declarative approaches to programming suffer from be-
ing primarily line-at-a-time techniques, with a basis in functional decomposition.
Object technology improves these by replacing decomposition with inheritance
hierarchies and polymorphisms. It enables design reuse of larger patterns and
components [3]. However, inheritance and polymorphism are just as complex and
error prone as decomposition, and the great complexity of interactions among ob-
jects limits their production and use to a small community of software engineers.
By focusing on encapsulating data structures into objects and the relationships
among objects, it supports a data-centric view that makes it difficult to think
about sequences of activity and dataflow. Scenarios overcome this difficulty by
depicting message sequences and threads of control, but they are not well sup-
ported by current object languages.

4 Service-Oriented Computing

Service-oriented computing relies on standardized Web services. The current
incarnation of Web services emphasizes a single provider offering a single service
to a single requester. This is in keeping with a client-server architectural view of
the Web.

Service-oriented computing provides two major benefits. One, it enables new
kinds of flexible business applications of open systems that simply would not be
possible otherwise. When new techniques improve the reaction times of orga-
nizations and people from weeks to seconds, they change the very structure of
business. This is not a mere quantitative change, but a major qualitative change.
It has ramifications on how business is conducted. Two, service-oriented comput-
ing improves the productivity of programming and administering applications
in open systems. Such applications are notoriously complex. By offering produc-
tivity gains, new techniques make the above kinds of applications practical, thus
helping bring them to fruition.
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Additional benefits of service-oriented computing are the following:

– To achieve the interoperation of applications within an enterprise, it provides
the tools to model the information and relate the models, construct processes
over the systems, assert and guarantee transactional properties, add in flex-
ible decision-support, and relate the functioning of the component software
systems to the organizations that they represent.

– For interenterprise interoperation, it additionally provides the ability for the
interacting parties to choreograph their behaviors so that each may apply
its local policies autonomously and yet achieve effective and coherent cross-
enterprise processes.

– It enables the customization of new applications by providing a Web service
interface that eliminates messaging problems and by providing a semantic
basis to customize the functioning of the application.

– It enables dynamic selection of business partners based on quality-of-service
criteria that each party can customize for itself.

– It enables the efficient usage of Grid resources.
– It facilitates utility computing, especially where redundant services can be

used to achieve fault tolerance.
– It provides a semantically rich and flexible computational model that sim-

plifies software development.

To realize the above advantages, SOAs impose the following requirements:

Loose coupling No tight transactional properties would generally apply among
the components. In general, it would not be appropriate to specify the con-
sistency of data across the information resources that are parts of the various
components. However, it would be reasonable to think of the high-level con-
tractual relationships through which the interactions among the components
are specified.

Implementation neutrality The interface is what matters. We cannot de-
pend on the details of the implementations of the interacting components.
In particular, the approach cannot be specific to a set of programming lan-
guages.

Flexible configurability The system is configured late and flexibly. In other
words, the different components are bound to each other late in the process.
The configuration can change dynamically.

Long lifetime We do not necessarily advocate a long lifetime for our compo-
nents. However, since we are dealing with computations among autonomous
heterogeneous parties in dynamic environments, we must always be able to
handle exceptions. This means that the components must exist long enough
to be able to detect any relevant exceptions, to take corrective action, and
to respond to the corrective actions taken by others. Components must exist
long enough to be discovered, to be relied upon, and to engender trust in
their behavior.

Granularity The participants in an SOA should be understood at a coarse
granularity. That is, instead of modeling actions and interactions at a de-
tailed level, it would be better to capture the essential high-level qualities
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that are (or should be) visible for the purposes of business contracts among
the participants. Coarse granularity reduces dependencies among the partic-
ipants and reduces communications to a few messages of greater significance.

Teams Instead of framing computations centrally, it would be better to think
in terms of how computations are realized by autonomous parties. In other
words, instead of a participant commanding its partners, computation in
open systems is more a matter of business partners working as a team. That
is, instead of an individual, a team of cooperating participants is a better
modeling unit. A team-oriented view is a consequence of taking a peer-to-
peer architecture seriously.

Researchers in multiagent systems (MAS) confronted the challenges of open
systems early on when they attempted to develop autonomous agents that would
solve problems cooperatively, or compete intelligently. Thus, ideas similar to
service-oriented architectures were developed in the MAS literature. Although
SOAs might not be brand new, they address the fundamental challenges of open
systems. Clearly the time is right for such architectures to become more preva-
lent. What service-oriented computing adds to MAS ideas is the ability to build
on conventional information technology and do so in a standardized manner so
that tools can facilitate the practical development of large-scale systems.

5 Engineering SOC Applications

Constructing an application by composing services first requires that existing
services, with the functionalities they provide, be identified. Where essential
services are missing, they must be constructed by the application developer or
their construction out-sourced. The next step is to select, plan, or specify the
desired combination of services. Finally, the composition of services is executed
and monitored for success or faults.

Current approaches take a procedural view of service composition by for-
mulating workflow graphs that can be stepped through in a simple manner.
Because of this, the main engineering challenges that arise concern standardiz-
ing on the data, e.g., through syntax or the semantics. However, Web services
have attributes that set them apart from traditional closed applications: they are
autonomous, heterogeneous, long-lived, and interact in subtle ways to cooperate
or compete. Engineering a composition of such services requires abstractions and
tools that bring these essential attributes to the fore. When the requirements
are expressive, they highlight the potential violations, e.g., the failure modes of
a composition.

Engineering composed services thus requires capturing patterns of semantic
and pragmatic constraints on how the services may participate in different com-
positions. It also requires tools to help reject unsuitable compositions so that
only acceptable systems are built.

A key aspect in the design of a composed service or a multiagent system is
to maintain global coherence, often without explicit global control. This calls



8 Michael N. Huhns

for a means to pool knowledge and evidence, determine shared goals, determine
common tasks across services, and avoid unnecessary conflicts. The result is a
collaboration.

Several challenges regarding transport, messaging, and security constraints
must be handled for each collaboration. In general, business collaborations are
becoming increasingly complex, and most systems will be dealing with multiple
collaborations at the same time. If the transactions are legally bound or even
otherwise, a nonrepudiation condition may have to be satisfied. Lastly, as usual,
there is always a possibility of exceptions.

Automating business transactions using ontologies and agents is an appealing
approach to meeting the above cfhallenges. Steps toward such technologies are
already underway in industry. For example, OAG, OASIS, bizTalk, and Roset-
taNet are standardizing the syntax and semantics of the documents that are
exchanged during a B2B transaction. What is also needed is a basis for stan-
dardizing (and automating) the behaviors that are expected of the participants
in a B2B transaction. Further, misbehaviors must be handled. For example, a
precise specification of a purchase order does not say what to do in the follow-
ing case: if a company does not receive a response, should it assume that the
recipient was not interested or that the PO was lost?

Whether an architecture for an application is specified in terms of a workflow,
causal model, process model, goal-subgoal graph, or some other modeling for-
malism, it must be realized by compositions of available services. These services
might be found in a local repository or located across the Internet. Engineer-
ing a service-oriented computing system is thus a process of discovering and
matching the appropriate services, planning their interactions, and composing
them at run-time. This process is illustrated in Figure 1. Also note that when
deciding on tasks, or decomposing goals into subgoals, it is important to end up
with tasks and goals that match services available in a repository or ones that
can be constructed easily. An unresolved problem is that the services within the
repository are typically not organized.

6 Consensus Software

The two most needed research advancements for service-oriented computing are
to investigate how mutual understanding can be reached among autonomous
entities and how consensus behavior among agents with overlapping interests
can be achieved. We are investigating these within the context of constructing
conventional software out of agent-based components.

We first hypothesize that robust software can be achieved through redun-
dancy, where the redundancy is achieved by agents that have different algorithms
but similar responsibilities. The agents are produced by wrapping conventional
algorithms with a minimal set of agent capabilities, which we specify. Our initial
experiments in verifying our hypothesis show an improvement in robustness due
to redundancy. We then advance the hypothesis that the redundant algorithms
can be obtained through the efforts of many people outside of the traditional soft-
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Fig. 1. Engineering an SOC system is a process of discovering and composing the
proper services to satisfy a specification, whether the specification is expressed in terms
of a goal graph (top), a workflow (bottom), or some other model
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ware development community. To be successful, such widespread development
will require tools, an infrastructure, and a means for semantic reconciliation, and
we investigate the characteristics and requirements for these. The paper analyzes
the relationship between the software systems that manage and control societal
institutions and the members of the society.

First, consensus software can be internally coherent and comprehensible, be-
cause it can make use of the consensus ontologies we are developing.

Second, a software-component industry is arising that will distribute on de-
mand components that have functionality customized to a user’s needs [44].
However, because of this uniqueness, how can component providers be confident
that their components will behave properly? This is a problem that can be solved
by agent-based components that actively cooperate with other components to
realize system requirements or a user’s goals.

Because each application executes as a set of geographically distributed parts,
a distributed active-object architecture is required. It is likely that the objects
taking part in the application were developed in various languages and execute
on various hardware platforms. A simple, powerful paradigm is needed for com-
munications among these heterogeneous objects. We anticipate that agent-based
Web services can fulfill this requirement.

Because the identities of the resources are not known when the application is
developed, there must be an infrastructure to enable the discovery of pertinent
objects. Once an object has been discovered, the infrastructure must facilitate
the establishment of constructive communication between the new object and
existing objects in the application, which can be satisfied by our agent-based
Web services.

Because the pattern of interaction among the objects is a critical part of the
application and may vary over time, it is important that this pattern (work-
flow) be explicitly represented and available to both the application and the
user. When an object has been discovered to be relevant to an application, the
language for interaction and the pattern of interaction with the object must be
determined. This interaction becomes part of the larger set of object interactions
that make up the application. The objects collaborate with each other to carry
out the application task.

6.1 The Relationship of Software Systems to Social Institutions

One consequence of object-oriented programming is that computer software
more closely resembles and models the real world. Non-OOP paradigms, such as
procedural programming methodologies, typically model mathematical abstrac-
tions. (For example, a FORTRAN subroutine might compute a matrix inverse,
whereas an OOP module might represent the class Automobile.) Although OOP-
developed software mimics the world, it is not developed in this way. That is,
the software is produced by a small number of professional developers, rather
than by the ”world.” For example, when I visit Amazon.com, an agent with a
model of me makes suggestions about purchases I might like to make, but if the
model is inaccurate there is no way for me to improve it.
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As another example, my employer has a software and information model of
me as an instance of an Employee class, but I did not contribute directly or
consciously to the construction of that model. Instead, the models of me and all
other employees in my organization were constructed centrally. There is always
a tension between the order that comes with centralization and the freedom
that comes with decentralization. This is reflected in similar debates concerning
privacy versus security, prevention versus protection, and, more generally, free
markets versus centralized economies.

The economic historian Douglass North believed that institutions evolve to-
ward free markets, where institutions are conceptual structures that coordinate
the activities of people [23]. Institutions, in his view, consist of a network of
relationships, including all of the skills, strategies, and norms that the partic-
ipants contribute to the institution. He believed that the driving force behind
the evolution of institutions was self-interest.

During the current economic downturn, many organizations are facing declines
in their revenues and budgets. A common, centralized response is an across-the-
board cut in salaries and expenses, with a view that each employee should receive
a minimum salary. An employee’s individual view is that he should receive the
maximum salary and the deficit should be made up for elsewhere. Not everyone
can receive a maximum salary, however, because the institution would fail and
no one would receive any salary. But there is pressure for the institution to grow
so that everyone will receive more.

In contrast, the economist John Commons viewed an institution as a set of
working rules that govern an individual’s behavior [6]. The rules codify culture
and practices and are defined by collective bargaining. As a result, institutions
evolve ideally towards democracy. For the above example, according to Com-
mon’s view, each Employee object would allow its salary to reflect the organi-
zation’s budget and the employee’s particular contribution to the organization’s
performance.

By individuals contributing to a more accurate model of themselves and a
more accurate characterization of how the systems they use should behave, then
the society will be easier to understand, more efficient, more productive, and
more satisfying, and its principles will be better adhered to.

As societies attempt to coordinate and control their members use of utilities
and resources, individuals should have a means to influence the coordination and
control based on their preferences. These are societal services that are beyond
personal services. Decisions can be made centrally or collectively-when a system
is dynamic so that decisions must be made in real-time, individuals would benefit
from active systems that could intercede on their behalf. Examples of such insti-
tutions are banking, distributing electricity, determining routes for new roads,
controlling traffic, managing telecommunication networks, manufacturing supply
chains, and designing buildings or cities.
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6.2 Designing and Engineering Agents

Software engineering principles applied to multiagent systems have yielded few
new modeling techniques, despite many notable efforts. A comprehensive re-
view of agent-oriented methodologies is contained in [15]. Many, such as Agent
UML [24] and MAS-CommonKADS [14], are extensions of previous software en-
gineering design processes. Others, such as Gaia [42], were developed specifically
for agent modeling. These three have been investigated and applied the most.
Other methodologies include the AAII methodology [20], MaSE [7], Tropos [26],
Prometheus [25], and ROADMAP [18]. Because agents are useful in such a broad
range of applications, software engineering methodologies for multiagent systems
should be a combination of efforts. A combination of principles and techniques
will generally give a more flexible approach to fit a design team’s particular
expectations and requirements.

Multiagent systems can form the fundamental building blocks for software
systems, even if the software systems do not themselves require any agent-like
behaviors [16]. When a conventional software system is constructed with agents
as its modules, it can exhibit the following characteristics and benefits [4, 10]:

– Agent-based modules, because they are active, more closely represent real-
world things, which are the subjects of many applications. The modules can
hold beliefs about the world, especially about themselves and others; if their
behavior is consistent with their beliefs, then their behavior will be more
predictable and reliable

– The modules can volunteer to be part of a software system, and can benev-
olently compensate for the limitations of other modules.

– Systems can be constructed dynamically, where the modules in a system and
their interactions can be unknown until runtime. Because such modules can
be added to a system one-at-a-time, software can continue to be customized
over its lifetime, even by end-users as we are proposing to investigate here

– Because agents can represent multiple viewpoints and can use different de-
cision procedures, they can produce more robust systems. The essence of
multiple viewpoints and multiple decision procedures is redundancy, which
is the basis for error detection and correction.

6.3 Bugs, Errors, and Redundancy

Software problems are typically characterized in terms of bugs and errors, which
may be either transient or omnipresent. The general approaches for dealing with
them are: (1) prediction and estimation, (2) prevention, (3) discovery, (4) re-
pair, and (5) tolerance or exploitation. Bug estimation uses statistical techniques
to predict how many flaws might be in a system and how severe their effects
might be. Bug prevention is dependent on good software engineering techniques
and processes. Good development and run-time tools can aid in bug discovery,
whereas repair and tolerance depend on redundancy.

Indeed, redundancy is the basis for most forms of robustness. It can be pro-
vided by replication of hardware, software, and information, and by repetition
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of communication messages. Redundant code cannot be added arbitrarily to a
software system, just as steel cannot be added arbitrarily to a bridge. A bridge is
made stronger by adding beams that are not identical to ones already there, but
that have equivalent functionality. This turns out to be the basis for robustness
in software systems as well: there must be software components with equiva-
lent functionality, so that if one fails to perform properly, another can provide
what is needed. The challenge is to design the software system so that it can
accommodate the additional components and take advantage of their redundant
functionality.

We hypothesize that agents are a convenient level of granularity at which
to add redundancy and that the software environment that takes advantage of
them is akin to a society of such agents, where there can be multiple agents
filling each societal role Error! Reference source not found.. Agents by design
know how to deal with other agents, so they can accommodate additional or
alternative agents naturally.

Fundamentally, the amount of redundancy required is well specified by in-
formation theory. If we want a system to provide n functions robustly, we must
introduce m n agents, so that there will be m ways of producing each function.
Each group of m agents must understand how to detect and correct inconsisten-
cies in each other’s behavior, without a fixed leader or centralized controller. If
we consider an agent’s behavior to be either correct or incorrect (binary), then,
based on a notion of Hamming distance for error-correcting codes, 4m agents
can detect m− 1 errors in their behavior and can correct (m− 1)/2 errors.

Redundancy must also be balanced with complexity, which is determined by
the number and size of the components chosen for building a system. That is,
adding more components increases redundancy, but also increases the complexity
of the system.

An agent-based system can cope with a growing application domain by in-
creasing the number of agents, each agent’s capability, or the computational
and infrastructure resources that make the agents more productive. That is, ei-
ther the agents or their interactions can be enhanced, but to maintain the same
redundancy n, they would have to be enhanced by a factor of n.

N-version programming, also called dissimilar software, is a technique for
achieving robustness first considered in the 1970’s. It consists of N separately
developed implementations of the same functionality. Although it has been used
to produce several robust systems, it has had limited applicability, because (1)
N independent implementations have N times the cost, (2) N implementations
based on the same flawed specification might still result in a flawed system, and
(3) each change to the specification will have to be made in all N implementa-
tions.

Database systems have exploited the idea of transactions: an atomic process-
ing unit that moves a database from one consistent state to another. Consistent
transactions are achievable for databases because the types of processing done
are very regular and limited. Applying this to software execution requires that
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the state of a software system be saved periodically (a checkpoint) so the system
can return to that state if an error occurs.

6.4 Consensus Ontologies: Modeling Objects, Resources, and
Agents

A key to enabling agents to interact productively is for them to construct and
maintain models of each other, as well as the passive components in their en-
vironment. Unfortunately, the agents’ models will be mutually incompatible in
syntax and semantics, not only due to the different things being modeled, but
also due to mismatches in underlying hardware and operating systems, in data
structures, and in usage. In attempting to model some portion of the real world,
information models necessarily introduce simplifications and inaccuracies that
result in semantic incompatibilities. However, the models must be related to each
other and their incompatibilities resolved.

If there are n entities in the environment, then each would need a model of
each of the other entities, resulting in n(n−1)/2 models that must be maintained.
This is infeasible for large domains. We solve this via two means. First, we
propose that agents maintain and advertise models of themselves, resulting in
a total of n models. For the second, we consider the source of the models. How
should one agent represent another, and how should it acquire the information
it needs to construct a model in that representation?

This has, we believe, a simple and elegant answer: the agent should presume
that unknown agents are like itself, and it should choose to represent them as
it does itself. Thus, as an agent learns more about other agents, it only has
to encode any differences that it discovers. The resultant representation can be
concise and efficient, and has the following advantages:

– An agent has to manage only one kind of model and one kind of representa-
tion.

– The same inference mechanisms that are used to reason about its own be-
havior can reason about the behaviors of other agents; an agent trying to
predict what another will do has only to imagine what it itself would do in
a similar situation.

The main criteria used by an agent to decide if it can contribute to a new
problem are the relative importance of each feature (or dimension) of the prob-
lem, the degree of similarity with the agent’s capabilities, and an estimate of the
agent’s capabilities relative to other agents’ capabilities.

Each agent maximizes its problem-solving utility, and, thus, is rational. We
portray an agent as a rational decision-maker that perceives and interacts with its
environment. In our case, percepts and interactions are messages received from
and sent to other agents. Agents are rational in the context of all other agents
in their organization or institution, because they are aware of the other agents’
constraints, preferences, intentions, and commitments and act accordingly.

However, such organizational or institutional knowledge typically comes from
many independent sources, each with its own semantics. How can the information
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from large numbers of such sources can be associated, organized, and merged?
Our hypothesis is that a multiplicity of ontology fragments, representing the se-
mantics of the independent sources, can be related to each other automatically
without the use of a global ontology. That is, any pair of ontologies can be related
indirectly through a semantic bridge consisting of many other previously unre-
lated ontologies, even when there is no way to determine a direct relationship
between them. The relationships among the ontology fragments indicate the re-
lationships among the sources, enabling the source information to be categorized
and organized. Our investigation of the hypothesis has been conducted by relat-
ing numerous small, independently developed ontologies for several domains. A
nice feature of our approach is that common parts of the ontologies reinforce each
other, while unique parts are deemphasized. The result is a consensus ontology.

The problem we are addressing is familiar and many solutions have been pro-
posed, ranging from requiring search criteria to be more precise, to constructing
more intelligent search engines, or to requiring sources to be more precise in de-
scribing their contents. A common theme for all of the approaches is the use of
ontologies for describing both requirements and sources [34, 43]. Unfortunately,
ontologies are not a panacea unless everyone adheres to the same one, and no
one has yet constructed an ontology that is comprehensive enough (in spite of
determined attempts to create one [33, 1], such as the Cyc Project [21], underway
since 1984). Moreover, even if one did exist, it probably would not be adhered to,
considering the dynamic and eclectic nature of the Web and other information
sources.

There are three approaches for relating information from large numbers of
independently managed sites: (1) all sites will use the same terminology with
agreed-upon semantics (improbable), (2) each site will use its own terminology,
but provide translations to a global ontology (difficult, and thus unlikely), and
(3) each site will have a small, local ontology that will be related to those from
other sites (described herein). We hypothesize that the small ontologies can
be related to each other automatically without the use of a global ontology.
That is, any pair of ontologies can be related indirectly through a semantic
bridge consisting of many other previously unrelated ontologies, even when there
is no way to determine a direct relationship between them. Our methodology
relies on sites that have been annotated with ontologies [27], which is consistent
with several visions for the Semantic Web [2]. The domains of the sites must
be similar—else there would be no interesting relationships among them—but
they will undoubtedly have dissimilar ontologies, because they will have been
annotated independently.

Some researchers have attempted to merge a pair of ontologies in isolation,
or merge a domain-specific ontology into a global, more general ontology [38].
To our knowledge, no one has previously tried to reconcile a large number of
closely related, domain-specific ontologies. We have evaluated our methodology
by applying it to a large number of independently constructed ontologies.

When two agents communicate, they must reconcile their semantics. This
will be seemingly impossible if their ontologies share no concepts. However, if



16 Michael N. Huhns

their ontologies share concepts with a third ontology, then the third ontology
might provide a semantic bridge to relate all three. Note that the agents do not
have to relate their entire ontologies, only the portions needed to respond to the
request.

The difficulty in establishing a bridge will depend on the semantic dis-
tance between the concepts, and on the number of ontologies that comprise
the bridge. Our methodology is appropriate when there are large numbers of
small ontologies—the situation we expect to occur in large and complex infor-
mation environments. Our metaphor is that a small ontology is like a piece of a
jigsaw puzzle. It is difficult to relate two random pieces of a jigsaw puzzle until
they are constrained by other puzzle pieces. We expect the same to be true for
ontologies.

In attempting to relate two ontologies, a system might be unable to find
correspondences between concepts because of insufficient constraints and sim-
ilarity among their terms. However, trying to find correspondences with other
ontologies might yield enough constraints to relate the original two ontologies.
As more ontologies are related, there will be more constraints among the terms
of any pair, which is an advantage. It is also a disadvantage in that some of the
constraints might be in conflict. We make use of the preponderance of evidence
to resolve these statistically.

We conducted experiments in three domains as follows: We asked one group
of 53 graduate students in computer science to construct a small ontology for the
Humans/People/Persons domain, a second group of 28 students to construct a
small ontology for the Buildings domain, and finally a third group of 26 students
to construct a small ontology for the Sports domain. The ontologies were written
in OWL and were required to contain at least 8 classes with at least 4 levels of
subclasses.

We merged the files in each of the three domains. In the Humans/People/Persons
ontology domain the component ontologies described 864 classes, while the merged
ontology contained 281 classes in a single graph with a root node of the OWL
concept owl:Thing. We constructed a consensus ontology by first counting the
number of times classes and subclass links appeared in the component ontologies
when we performed the merging operation. For example, the class Person and
its matching classes appeared 14 times. The subclass link from Mammals (and
its matches) to Humans (and its matches) appeared 9 times. We termed these
numbers the ”reinforcement” of a concept. After removing the nodes and links
that were not reinforced, the resultant consensus ontology contained 36 classes
related by 62 subclass links.

A consensus ontology is perhaps the most useful for information retrieval
by humans, because it represents the way most people view the world and its
information. For example, if most people wrongly believe that crocodiles are a
kind of mammal, then most people would find it easier to locate information
about crocodiles if it were placed in a mammals grouping, rather than where it
factually belonged.
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6.5 Agent-Based Web Services

Typical agent architectures have many of the same features as Web services.
Agent architectures provide yellow-page and white-page directories, where agents
advertise their distinct functionalities and where other agents search to locate
the agents in order to request those functionalities. However, agents extend Web
services in several important ways:
– A Web service knows only about itself, but not about its users/clients/customers.

Agents are often self-aware, and gain awareness of the capabilities of other
agents as interactions among the agents occur. This is important, because
without such awareness a Web service would be unable to take advantage of
new capabilities in its environment, and could not customize its service to a
client, such as by providing improved services to repeat customers.

– Web services, unlike agents, are not designed to use and reconcile ontologies.
If a client and provider of a service have different semantics, the result of
invoking the service would be incomprehensible.

– Agents are inherently communicative, whereas Web services are passive un-
til invoked. Agents can provide alerts and updates when new information
becomes available. Current standards and protocols make no provision for
even subscribing to a service to receive periodic updates.

– A Web service, as currently defined and used, is not autonomous. Autonomy
is a characteristic of agents, and also a characteristic of many envisioned
Internet-based applications. Autonomy is in natural tension with coordina-
tion or with the higher-level notion of a commitment. To be coordinated with
other agents or to keep its commitments, an agent must relinquish some of
its autonomy. It would attempt to coordinate with others where appropriate
and keep its commitments, but would exercise its autonomy in agreeing to
those commitments in the first place.

– Agents are cooperative, and by forming coalitions can provide higher-level
and more comprehensive services. Current standards for Web services are
just beginning to address composition.

Suppose an application needs simply to sort some data items, and suppose
there are five Web sites that offer sorting services described by their input data
types, output date type, time complexity, space complexity, and quality: one is
faster, one handles more data types, one is often busy, one returns a stream of
results, while another returns a batch, and one costs less. An application could
take one of the following possible approaches:
– The application invokes services randomly until one succeeds
– The application ranks services and invokes them in order until one succeeds
– The application invokes all services and reconciles the results
– The application contracts with one service after requesting bids
– Services self-organize into a team of sorting services and route requests to

the best one.

The last two require that the services behave like agents. Furthermore, the last
two are scalable and robust, because they take advantage of the redundancy that
is available.
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7 Conclusions

Applications are beginning to span enterprises with autonomous components.
Moreover, the Web is making it possible for individuals to make available not
only information, but also behavior. Work on the Semantic Web is making it pos-
sible for mutual understanding to be reached among autonomous components.
The ongoing research on consensus software enables individuals to participate
more directly in the behavior of their governing institutions.
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