
Robust Software Via Agent-Based Redundancy
Michael N. Huhns

University of South Carolina
Dept. of Computer Science & Engr.

Columbia, SC 29208 USA
+1-803-777-5921

huhns@sc.edu

Vance T. Holderfield
University of South Carolina

Dept. of Computer Science & Engr.
Columbia, SC 29208 USA

+1-803-777-xxxx

vance@sc.edu

Rosa Laura Zavala Gutierrez
University of South Carolina

Dept. of Computer Science & Engr.
Columbia, SC 29208 USA

+1-803-777-xxxx

zavalagu@engr.sc.edu

ABSTRACT
This paper describes how multiagent systems can be used to
achieve robust software, one of the major goals of software
engineering. The paper first positions itself within the software
engineering domain. It then develops the hypothesis that robust
software can be achieved through redundancy, where the
redundancy is achieved by agents that have different algorithms
but similar responsibilities. The agents are produced by wrapping
conventional algorithms with a minimal set of agent capabilities,
which we specify. We show that the same wrapper can be used
for a variety of algorithms. We describe our initial experiments in
verifying our hypothesis and present results that show an
improvement in robustness due to redundancy. We also
completely characterize the decision-making that must occur to
decide among competing redundant algorithms. We conclude by
speculating on the implications of multiagent-based redundancy
for general software development and future Web services.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– multiagent systems.

General Terms
Reliability, Experimentation, Theory

Keywords
Robust software; autonomic computing

1. INTRODUCTION
When discussing the uses and applications of agents with
software developers from business, industry, and academia over
the years, we have often heard the claim, "Agents might be
appropriate for building a distributed X, but clearly you wouldn't
use agents to build a sorting algorithm." The purpose of this
paper is to show that if the requirements include either robust
behavior or next-generation Web services, then agents are the
right technology for constructing algorithms such as sorting.
Computer systems are now entrusted with control of global

telecommunications, electric power distribution, water supplies,
airline traffic, weapon systems, and the manufacturing and
distribution of goods. Such tasks typically are complex, involve
massive amounts of data, affect numerous connected devices, and
are subject to the uncertainties of open environments like the
Internet. Our society has come to expect uninterrupted service
from these systems. Unfortunately, when problems arise, humans
are unable to cope with the complexity of the systems and the
speed with which they must be repaired. Increasingly, the result
is that critical missions are in jeopardy.
To cope with this situation, companies and researchers are
investigating self-monitoring and self-healing systems, which
detect problems autonomously and continue operating by fixing
or bypassing the malfunction [12]. The techniques employed
include redundant hardware, error-correction codes, and, most
importantly, models of how a system should behave, so that the
system can recognize when it misbehaves.
Such techniques can work well for hardware, but not for software,
where having identical copies of a module provides no benefit.
Software reliability is thus an unresolved problem. The amount
of money lost due just to software errors is conservatively
estimated at US$40B annually. One alternative is to produce
higher quality software. To achieve this, researchers are trying to
define more principled methodologies for software engineering
[2]. They are also looking to new technologies, such as
multiagent systems, and this leads to a natural interest in
combining the latest software engineering methodologies with
multiagent systems [10].
There are three ways that software engineering intersects
multiagent systems:
1. Multiagent systems can be used to aid traditional software

engineering; e.g., in the form of agent-based or agent-
supplemented CASE tools

2. Traditional or new software engineering techniques can be
used to build multiagent systems; e.g., the Unified Modeling
Language (UML) has proven to be useful for conventional
software, so Agent-Based UML (AUML) and similar efforts
are underway to extend UML to support agent development

3. Conventional software can be constructed out of agents, and
software engineering techniques can be developed to aid in
this endeavor.

The focus of this paper is on the last.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference AAMAS’03, July 1-2, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

2. BACKGROUND
Software engineering principles applied to multiagent systems
have yielded few new modeling techniques, despite many notable
efforts. A comprehensive review of agent-oriented methodologies
is contained in Iglesias, et al. [6]. Many, such as Agent UML [11]
and MAS-CommonKADS, are extensions of previous software
engineering design processes. Others, such as Gaia [14], were
developed specifically for multiagent system design. It was
formulated from an organization theory perspective, with a
methodology based on a model consisting of roles, permissions,
responsibilities, protocols, activities, liveness properties, and
safety properties. Because agents are useful in such a broad range
of applications, software engineering methodologies for
multiagent systems should be a combination of principles and
techniques. This combination of will generally give a more
flexible approach to fit a design team's particular expectations and
requirements.
Multiagent systems can form the fundamental building blocks for
software systems, even if the software systems do not themselves
require any agent-like behaviors [7]. When a conventional
software system is constructed with agents as its modules, it can
exhibit the following benefits [1][4]:

1. Agents enable dynamic composibility, where the
components of a system can be unknown until runtime

2. Agents allow interaction abstractions, where interactions can
be unknown until runtime

3. Because agents can be added to a system one-at-a-time,
software can continue to be customized over its lifetime,
even potentially by end-users

4. Because agents can represent multiple viewpoints and can
use different decision procedures, they can produce more
robust systems. The essence of multiple viewpoints and
multiple decision procedures is redundancy, which is the
basis for error detection and correction.

2.1 Bugs, Errors, and Redundancy
Hardware robustness is typically characterized in terms of faults
and failures; equivalently, software robustness is typically
characterized in terms of bugs and errors. Faults and bugs are
flaws in a system, whereas errors and failures are the
consequences of encountering the flaws during the operation or
execution of the system. The flaws may be either transient or
omnipresent. The general approaches for dealing with flaws are
the same for both hardware and software: (1) prediction and
estimation, (2) prevention, (3) discovery, (4) repair, and (5)
tolerance or exploitation.
Fault and bug estimation uses statistical techniques to predict how
many flaws might be in a system and how severe their effects
might be. For example, when Windows XP was released, it was
estimated that it still contained 60,000 bugs, based on the rate at
which its bugs were being discovered. Bug prevention is
dependent on good software engineering techniques and
processes. Good development and run-time tools can aid in bug
discovery, whereas repair and tolerance depend on redundancy.
Indeed, redundancy is the basis for most forms of robustness. It
can be provided by replication of hardware, software, and
information, and by repetition of communication messages. For

years, NASA has made its satellites more robust by duplicating
critical subsystems: if a hardware subsystem fails, there is an
identical replacement ready to begin operating. The space shuttle
has quadruple redundancy, and won't leave the ground without all
copies functioning. However, software redundancy has to be
provided in a different way. Identical software subsystems will
fail in identical ways, so extra copies do not provide any benefit.
Moreover, code cannot be added arbitrarily to a software system,
just as steel cannot be added arbitrarily to a bridge. When we
make a bridge stronger, we do it by adding beams that are not
identical to ones already there, but that have equivalent
functionality. This turns out to be the basis for robustness in
software systems as well: there must be software components
with equivalent functionality, so that if one fails to perform
properly, another can provide what is needed. The challenge is to
design the software system so that it can accommodate the
additional components and take advantage of their redundant
functionality.
We hypothesize that agents are a convenient level of granularity
at which to add redundancy and that the software environment
that takes advantage of them is akin to a society of such agents,
where there can be multiple agents filling each societal role [4].
Agents by design know how to deal with other agents, so they can
accommodate additional or alternative agents naturally. They are
also designed to reconcile different viewpoints.
Fundamentally, the amount of redundancy required is well
specified by information theory. Assume each software module
in a system can behave either correctly or incorrectly. Then two
modules with the same intended functionality are sufficient to
detect an error in one of them, and three modules are sufficient to
correct the incorrect behavior (by voting, or choosing the best
two-out-of-three). This is exactly how parity bits work in code
words. Unlike parity bits, and unlike bricks and steel bridge
beams, however, the software modules cannot be identical, or else
they would not be able to correct each other's errors.
If we want a system to provide n functionalities robustly, we must
introduce m × n agents, so that there will be m ways of producing
each functionality. Each group of m agents must understand how
to detect and correct inconsistencies in each other's behavior,
without a fixed leader or centralized controller. If we consider an
agent's behavior to be either correct or incorrect (binary), then,
based on a notion of Hamming distance for error-correcting
codes, 4 × m agents can detect m-1 errors in their behavior and
can correct (m-1)/2 errors.
Redundancy must also be balanced with complexity, which is
determined by the number and size of the components chosen for
building a system. That is, adding more components increases
redundancy, but also increases the complexity of the system. This
is just another form of the common software engineering problem
of choosing the proper size of the modules used to implement a
system. Smaller modules are simpler, but their interactions are
more complicated because there are more modules.
An agent-based system can cope with a growing application
domain by increasing the number of agents, each agent's
capability, the computational resources available to each agent, or
the infrastructure services needed by the agents to make them
more productive. That is, either the agents or their interactions

can be enhanced, but to maintain the same degree of redundancy
n, they would have to be enhanced by a factor of n.
To underscore the importance being given to redundancy and
robustness, several initiatives are underway around the world to
investigate them. IBM has a major initiative to develop
autonomic computing—“a systemic view of computing modeled
after the self-regulating autonomic nervous system.” Systems that
can run themselves incorporate many biological characteristics,
such as self-healing (redundancy), adaptability to changing
environments (reconfigurability), identity (awareness of their own
resources), and immunity (automatic defense against viruses). An
autonomic computing system will adhere to self-healing, not by
“cellular regrowth,” but by making use of redundant elements to
act as replenishment parts. By taking advantage of redundant
services located around the world, a better range of services can
be provided for customers in business transactions.
Exemplifying extreme redundancy in hardware, HP Labs has built
a massively parallel computer, the Teramac, with 220,000 known
defects, but it still yields correct results. As long as there is
sufficient communication bandwidth to find and use healthy
resources, it can tolerate the defects. Allowing so many defects
enables the computer to be built cheaply.
The National Science Foundation has launched the IRIS project to
produce a robust, decentralized, and secure Internet infrastructure.
The infrastructure will be developed using distributed hash table
technology, which can prevent all the data in a network from
becoming vulnerable if one server crashes. Rather than
centralizing the data in a single server, each server contains a
partial list of the data’s storage location.

2.2 N-Version Programming
N-version programming, also called dissimilar software, is a
technique for achieving robustness first considered in the 1970's.
It consists of N separately developed implementations of the same
functionality. Although it has been used to produce several robust
systems, it has had limited applicability, because (1) N
independent implementations have N times the cost, (2) N
implementations based on the same flawed specification might
still result in a flawed system, and (3) the resultant system might
have N times the maintenance cost (e.g., each change to the
specification will have to be made in all N implementations).

2.3 Checkpointing, Rollback, Compensation
Database systems have exploited the idea of transactions for
maintaining the consistency of their data. A transaction is an
atomic unit of processing that moves a database from one
consistent state to another. Consistent transactions are achievable
for databases because the types of processing done are very
regular and limited.

Applying this idea to general software execution requires that the
state of a software system be saved periodically (a checkpoint) so
that the system can return to that state if an error occurs. The
system then returns to that state and processes other transactions
or alternative software modules. This is depicted in Figure 1.

There are two ways of returning to a previous state: (1) reloading
a saved image of the system before the failed computation, or (2)
rolling back, i.e., reversing and undoing, each step of the failed
computation. Both of the ways suffer from major difficulties:

1. The state of a software system might be very large,
necessitating the saving of very large images

2. Many operations cannot be undone, such as those with side-
effects. Examples of these are sending a message, which
cannot be un-sent, and spending resources, which cannot be
un-spent. Rollback is successful in database systems,
because most database operations do not have side-effects.

Choose Processing Alternative

Perform Software Operation

Test Result

Restore State

Failure

Save Software State

OK

Figure 1. A transaction approach to correcting for the

occurrence of errors in a software system
Because of this, compensation is often a better alternative for
software systems. Figure 2 depicts the architecture of a robust
software system that relies on compensation of failed operations.

Choose Processing Alternative

Perform Software Operation

Test Result

Compensate Operation

Failure

Figure 2. An architecture for software robustness based on

compensating operations

3. ARCHITECTURE AND PROCESS
Suppose there are a number of sorting algorithms available. Each
might have strengths, weaknesses, and possibly errors. One might
work only for integers, while another might be slower but be able
to sort strings as well as integers. How can the algorithms be
combined so that the strengths of each are exploited and the
weaknesses or flaws of each are compensated or covered? In
solving this in a general way, we hypothesize that the end result is
an “agentizing” of each algorithm.

A centralized approach, as shown in Figure 3, would use an
omniscient preprocessing algorithm to receive the data to be
sorted and would then choose the best algorithm to perform the
sorting. Each module's characteristics have to be encoded into the
central unit. The difficulties with this approach are (1) the
preprocessing algorithm might be flawed and (2) it is difficult to
maintain such a preprocessing algorithm as new algorithms are
added and existing algorithms become unavailable.

Choose Algorithm based on: (1) data type, (2) time & space constraints

Sort #1 Sort #2 Sort #3 Sort #4 Sort #5

Single Task

Single Result
Figure 3. Centralized architecture for combining N versions
of a sorting algorithm into a single, more robust system for

sorting, where a preprocessing algorithm chooses which
sorting algorithm will execute

An altermative is a postprocessing algorithm, as shown in Figure
4, that receives the results of all algorithms and chooses the best
as the output. This approach is also centralized and suffers from a
waste of CPU resources, because all algorithms work on the data
and the results have to be compared. However, the comparison of
outcomes is likely to produce better results.

A combination of the preprocessing and postprocessing
centralized systems could also be used. Based on criteria known
about each module, a subgroup could be selected to perform the
desired task. The subgroup would then have its results compared
to determine the best results as above.

A fourth approach is a distributed solution, where the algorithms
jointly decide which one(s) should perform the sorting, and if
there is more than one, they jointly decide on the best result.
Conventional algorithms do not typically have such a distributed
decision-making ability, so we investigate here whether there is a
generic capability that can be added to an algorithm to enable it to

participate in a distributed decision. The generic capability has
the characteristics of a software agent. Distributing the
centralized functions into the different modules creates a
multiagent system.

Sort #1 Sort #2 Sort #3 Sort #4 Sort #5

Single Task

Single Result

Compare Results and Select Best

Figure 4. Centralized architecture for combining N versions
of a sorting algorithm into a single, more robust system for

sorting, where a postprocessing algorithm chooses one result
to be the output

Each agent would have to know its role in this system as well as

• Something about its own algorithm, such as its time and
space complexity, and input and output data structures

• Something about other agents, such as their time and space
complexity and reliability

• How to negotiate

• How to communicate

• How to compare results

• How to manage reputations and trust.

An agent system derived from a redundant system with a
centralized preprocessor might have the agents bid for a task.
This would create an auction environment to determine task
assignment. This is acceptable in a system with many competing
agents, but the value of robustness based on reinforced redundant
involvement is not achieved in an auction.

An agent system transformed from a redundant system with a
centralized postprocessor would entail that each of the agents
attempt the task and some type of voting mechanism (either with
a voting factor or not) be used among the agents. A vote could be
based on reputation or on a comparison of results. The
communication overhead could be large.

The comparison of results can be done in several ways. The
results can all be compared and a majority of exact outcomes
would determine the results that are selected, where each of the
agents have an equal chance at having their results selected.
Alternatively, their chances could be weighted based on external

opinions of their past performances. Other factors could be based
on information that the agent knows about itself, such as whether
it completed the task or not, its time and space requirements, and
the total number of runtime errors it has produced in the past.

4. EXPERIMENTS
We collected a number of algorithms, each of which belongs to
one of two different types (i.e., sorting algorithms and list-
reversing algorithms). Different people wrote each algorithm. For
the sorting algorithms, no specifications were given to the
programmers about how to write them, so the algorithms all have
different characteristics, such as input data type, output data type,
and time and space complexity. For the list-reversing algorithms,
the structure of the class (i.e., methods names, results returned,
types of parameters) was specified, so the differences among
these algorithms are in performance and correctness. For our
experiments, we converted each algorithm into a sorting agent.
Each agent is composed of an algorithm and a wrapper for that
algorithm. The wrapper knows only about the external
characteristics of its algorithm, such as its input and output data
type(s) and its complexity, and nothing about the inner workings
of the algorithm. The algorithms were written in JAVA and the
wrappers in JADE.

The system sends data to be either sorted or reversed to all the
corresponding agents (sorting agents or reversing agents,
respectively). Their responsibility (as a group) is the sorting or
reversing of the data, and they should be able to do this better
than any one of them alone.

Two different approaches for combining the wrappers'
functionality were implemented for the initial experiments: a
distributed preprocessing approach and a centralized
postprocessing approach. Each approach was tested with the
sorting and reversing domains, one at a time. An architecture
result we found is that the same wrapper can be used for both
domains. An experimental result is verification of our hypothesis
that more algorithms give better results than any one alone.
However, it is important to note that the approach used for
combining the wrappers’ functionality plays an important role in
obtaining that result.

4.1 Logic of the Preprocessing Approach
(For simplicity, we explain this approach with the sorting domain,
because the results for the reversing domain are the same.) Upon
receiving data to be sorted, each agent determines whether or not
it can sort it successfully (based on the type of the data and its
own knowledge of what types it can sort) and if the agent can, it
broadcasts an INFORM message to every other agent specifying
its intention, along with a measure of performance for its
algorithm (based on execution time supplied by the agent itself).

The decision of which agent (i.e., algorithm) to choose among
those that are capable of sorting the input data is made in a
distributed manner: upon receiving the INFORM messages from
other agents, each agent compares its expected performance
against those received in the messages. If the agent has the best
performance, it will run its algorithm and send the results back to
the system. If it does not have the best, it will do nothing. Figure
5 depicts the AUML diagram of the protocol used. The system
can be considered as the Initiator agent. Also, once they receive
the data to be sorted from the system, the agents will wait for

INFORM messages for only a limited amount of time; this avoids
waiting infinitely long for messages from agents that either have
problems sending a message or are not able to sort the data.

m

k

1 1

1

1

1

1

Initiator Sorting Agent

1 k

n

failure 1 x

1 informnot-understood

request

inform
agree

x deadline

Figure 5. AUML diagram of the agents’ interactions

4.2 Logic of the Postprocessing Approach
(We explain this, arbitrarily, using the reversing domain.) Upon
receiving data to be reversed, n randomly chosen agents, where n
is given by the user, will run their algorithms and send the results
to the postprocessing system. The system compares the results
and chooses the one that represents a majority of similar
outcomes (one is selected randomly when there is not a clear-cut
winner). Figure 6 depicts the AUML diagram of the protocol
used. The system can be considered as the Initiator agent. Also,
once the system sends to the wrappers the request message along
with the data to be reversed and then receives the AGREE
messages, it will wait for INFORM messages for only a limited
amount of time; this avoids waiting infinitely for messages from
agents that either have problems sending a message or reversing
the data.

Table 1. Input data type and additional restrictions for the
sorting algorithms available

Algorithm Characteristics/Restrictions
Used by Default Wrapper

Additional
Restriction

s
C.A.R
Hoare's

Quick Sort

Input data type:
Integer array (positive and

negative numbers accepted)
None

HeapSort
Input data type:

Integer array (positive and
negative numbers accepted)

None

QuickSort

Input data type:
Byte array
Short array

Integer array
Long array
Float array

Double array
String array
Char array

(positive numbers only)

None

RadixSort Input data type: int array 10 inputs
Table 1 summarizes the algorithms collected and information
about them. The Additional Restrictions has restrictions not used
by the default Wrapper to determine whether the agent can sort
the data. Nevertheless, it is possible to cope with these cases by

providing an implementation of a WrapperRestrictions interface,
which only has one method that takes as input the data to be
sorted and returns a Boolean value indicating whether the sorting
algorithm can sort the data. This provides a way of customizing
the wrapper for algorithms that need additional considerations for
the whole system to perform better.

1 n

n

n

n

1

1

Initiator Wrapper Agent

1 n

n

failure n x

1 not-understood

request

inform

x

agree
deadline

Fig. 6. AUML diagram of the agents’ interactions

Our next set of experiments used 25 individually produced
implementations of a doubly-linked list, each containing a method
for reversing a list. The implementations differed in performance
and correctness.
Table 2 provides a summary of the tests performed using the
distributed preprocessing approach for the sorting domain. The
best algorithm that can handle the input data is always chosen. It
is different for the reversing domain, where the decision of which
algorithm to execute is based on a measure of performance for
each algorithm, which is calculated and stored by its agent.
Unfortunately, a small value for time will be assigned for
reversing algorithms that do nothing or that raise an exception
(because they fail quickly). This will cause the wrong algorithms
to be selected with the distributed preprocessing approach.

Table 2. Results for distributed preprocessing by agent-
wrapped sorting algorithms

Data Input Algorithm Selected Data
Output

Comments

12, 45, 3, 2,
56

C.A.R Hoare's
Quick Sort

2, 3, 12, 45,
56

ann, john,
sue, marie QuickSort ann, john,

marie, sue

Only this
algorithm
can handle

strings

9, 8, 7, 4, 3,
2, 12, 4, 5,

10
RadixSort

2, 3, 4, 4, 5,
7, 8, 9, 10,

12

Best
performance

but only
works for
10 inputs

3.54, 90,
23.4, 3.55,

60, 60.1
QuickSort

3.54, 3.55,
23.4, 60,
60.1, 90

Only this
algorithm
can handle

reals
Finally, Table 3 provides a summary of the tests performed using
the postprocessing approach in the reversing domain. This
approach is generally better, but performs worse for cases with
large data sets or selected algorithms with long execution times.
An alternative is to base a decision on test results from each
agent.

Table 3. Results for distributed postprocessing in the
reversing domain

Data input Selected Algorithm Results Final Results

[9,5,3,1,8,7]
DList5 = [9,5,3,1,8,7]
DList12 = [7,8,1,3,5,9]
DList8 = [7,8,1,3,5,9]

[7,8,1,3,5,9]

[9,6,4,3]
DList16 = [3,4,6,9]
DList11 = [3,4,6,9]
DList23 = [3,4,6,9]

[3,4,6,9]

[3,5,2,9,11]
DList19 = [11,9,2,5,3]

DList1 = Exception raised
DList4 = [11,9,2,5,3]

[11,9,2,5,3]

[8,7,32,19]
DList24 = [19,32,7,8]
DList9 = [19,32,7,8]
DList14 = [19,32,7,8]

[19,32,7,8]

An agent-based wrapper, such as we have developed here for a
redundant algorithm, can also serve as the basis for future agent-
based Web services. Current practices for Web services suffer
from the following limitations, which agents will be able to
rectify:

• A Web service knows only about itself, but not about its
users/clients/customers. Agents are often self-aware at a
metalevel, and through learning and model building gain
awareness of other agents and their capabilities as
interactions among the agents occur. This is important,
because without such awareness a Web service would be
unable to take advantage of new capabilities in its
environment, and could not customize its service to a client,
such as by providing improved services to repeat customers.

• Web services, unlike agents, are not designed to use and
reconcile ontologies. If the client and provider of the service
happen to use different ontologies, then the result of
invoking the Web service would be incomprehensible to the
client.

• Agents are inherently communicative, whereas Web services
are passive until invoked. Agents can provide alerts and
updates when new information becomes available. Current
standards and protocols make no provision for even
subscribing to a service to receive periodic updates.

• A Web service, as currently defined and used, is not
autonomous. Autonomy is a characteristic of agents, and it
is also a characteristic of many envisioned Internet-based
applications. Among agents, autonomy generally refers to
social autonomy, where an agent is aware of its colleagues
and is sociable, but nevertheless exercises its independence
in certain circumstances. Autonomy is in natural tension
with coordination or with the higher-level notion of a
commitment. To be coordinated with other agents or to keep
its commitments, an agent must relinquish some of its
autonomy. However, an agent that is sociable and
responsible can still be autonomous. It would attempt to
coordinate with others where appropriate and to keep its
commitments as much as possible, but it would exercise its

autonomy in entering into those commitments in the first
place.

• Agents are cooperative, and by forming teams and coalitions
can provide higher-level and more comprehensive services.
Current standards for Web services do not provide for
composing functionalities.

If Web services were wrapped with our agents, clients would be
able to take advantage of redundant Web services, thereby
attaining more reliable and robust results.

5. MULTIAGENT DECISION MAKING
The decision domain consists of identical agents wrapping
dissimilar algorithms, which differ in time and space complexity,
input and output data structures, and data type. Given such agents
and a single task to be performed, a single result needs to be
produced. The possible decision strategies in this domain can be
classified into two basic categories, as summarized in Table 3.
One category, preprocessing, involves choosing an agent before
any data processing has begun, while the other category,
postprocessing, would require some if not all the processing to be
completed before deciding. By choosing one agent to deliver the
output or the plan for specifying the output, preprocessing saves
on CPU resources. By having many agents working redundantly
on the same task, postprocessing uses more CPU resources.
However, postprocessing decision strategies consider the actual
output, while preprocessing decision strategies do not.

Table 3. Distributed decision strategies that are applicable to
the agent wrapper system.

Preprocessing Postprocessing

Random/lottery Performance-based

Auction/election/criteria selection Voting

Team Collaboration

 Incremental

In a preprocessing decision strategy, there are three general
methodologies that are applicable. The first and simplest would
be to have one agent randomly chosen to perform the task, which
is equivalent to a lottery. The output would be based solely on
the results from that agent. Any bugs or errors in the agent would
not be caught or corrected. The lottery method would be
appropriate in a system where all agents have the same
capabilities or in a system with a relatively large number of
correct agents and the probability of selecting an appropriate
agent is high. Communication overhead would be low as it would
be needed only for determining the winner of the lottery.
Auctions, voting, and selection by a known set of criteria are all
viable and similar options and are the second preprocessing
methodology. Since this is a single input, single output
subsystem, an agent’s desire to perform the task would be based
on mitigating factors the agent knows or can deduce about itself,
such as speed, complexity, and reputation. These factors would
help in determining which agent is chosen to perform the task. It
would be the means for determining the agent’s bid in an auction
or the value (or weight) of an agent’s vote in an election. This
method while also based on a single agent’s response is a more

intelligent choice since justifying factors are involved in the
selection. The domain is similar to that of the lottery method.
A team approach would be the third general methodology for a
preprocessing decision strategy. This approach would entail
distributing the task to be performed into subtasks to individual
agents. The individual agents would be responsible for
processing only a subset of the original task. The subsets would
then be collected and combined to contribute to the single answer
required by the system. This methodology would increase speed
as far as the processor goes. If all agents are equally competent,
then this method is practical for a large problem could be divided
into smaller subsets. If bugs or errors are present, however, this
method will not find or correct them. A large team would require
massive communication overhead. Teams also have to be
organized and setup, which requires additional overhead.
In a postprocessing decision strategy where all agents process the
data, there are four general methodologies that can be chosen.
The first and simplest would be to have all the agents process the
data and select the one whose processing was the fastest or used
the least amount of space. The same problem would arise as with
the preprocessing methods: not being able to determine or correct
bugs and errors. A domain in which the agents are sufficiently
competent would be an appropriate for this methodology.
A second postprocessing methodology would be to vote. This is
different from the voting scheme above, in that the proposed
output would be based on a direct comparison of information.
Agents would compare their results to other agents and a running
tally kept. The result with the most votes is given as the final
answer. To handle ties, a weight could be assigned to each agent
based on additional factors such as speed and reputation.
Alternatively, an evaluation mechanism could be applied by the
other agents based on the following factors:

AgentEvaluation =
f(%Completed, %Correct, Time used, Space used, Reputation)
where reputation is based on past successes in a group. Resource
usage would increase due to the increased deliberations, so the
methodology would be best with smaller groups of agents.
A collaboration methodology would require that data be
compared between agents so that any common data subsets would
be kept and only a decision about controversial data subsets
would have to be made. The decision about any controversial
subsets could be made by any of the methods mentioned. An
average, a minimum, or a maximum could be computed and
utilized by such collaboration methods.
A final postprocessing methodology is an incremental one. An
agent is selected by some means already discussed. One agent’s
result is compared to another’s and, if they are the same, the result
is forwarded. If the comparison is different or if more
comparisons are desired, then more agents are included before a
result is forwarded. A variation to this would be for agents to
sample a subset of the data and compare results. Agents who
differ from the majority are culled from the sampling, and
comparisons continue until a single result emerges.
The above decision-making approaches do not specify the number
of agents. More agents lead to more robustness, but
communication overhead and processor time are limiting factors.
A messaging system where only a single message is sent from

agent-to-agent has n! complexity, where n is the number of
agents. Large sets of data cause complexities for postprocessing
decision strategies. Ultimately, the “best” algorithm is
determined by

Performance × Flexibility × Reliability

where Performance is a function of time and space complexity,
Flexibility is a function of how broad a range of input and output
data structures the agent can handle, and Reliability is a measure
of how well the agent can avoid run-time errors and exceptions.

6. CONCLUSION: CHALLENGES AND
IMPLICATIONS FOR DEVELOPERS
Producing robust software has never been easy, and the approach
recommended here would have major effects on the way that
developers construct software systems:

• It is difficult enough to write one algorithm to solve a
problem, let alone n algorithms. However, algorithms, in the
form of agents, are easier to reuse than when coded
conventionally and easier to add to an existing system,
because agents are designed to interact with an arbitrary
number of other agents.

• Agent organizational specifications need to be developed to
take full advantage of redundancy.

• Agents will need to understand how to detect and correct
inconsistencies in each other's behavior, without a fixed
leader or centralized controller.

• There are problems when the agents either represent or use
nonrenewable resources, such as CPU cycles, power, and
bandwidth, because they will use it n times as fast.

• Although error-free code will always be important,
developers will spend more time on algorithm development
and less on debugging, because different algorithms will
likely have errors in different places and can cover for each
other.

• In some organizations, software development is competitive
in that several people might write an algorithm to yield a
given functionality, and the “best” algorithm will be
selected. Under the approach suggested here, all algorithms
would be selected.

Ultimately, the production of robust software will require that we
understand the relationship between

• the social world as represented by humans and their physical
environment, and

• the social world as represented by agents and other
automated systems.

7. ACKNOWLEDGMENTS
The US National Science Foundation supported this work under
grant number IIS-0083362.

8. REFERENCES
[1] Coelho, H., L. Antunes, and L. Moniz: “On Agent Design

Rationale.” In Proc. XI Simposio Brasileiro de Inteligencia
Artificial, Fortaleza (Brasil), October 17-21, 1994, pp. 43-58.

[2] Cox, B. J.: Planning the Software Industrial Revolution.
IEEE Software, (Nov. 1990) 25--33.

[3] Dignum, F., B. Dunin-Keplicz, and R. Verbrugge: “Dialogue
in team formation: a formal approach” In van der Hoek, W.,
Meyer, J.J., and Wittenveen, C., Eds, ESSLLI Workshop:
Foundations and applications of collective agent based
systems, (1999).

[4] Holderfield, V.T. and M.N. Huhns: “A Foundational
Analysis of Software Robustness Using Redundant Agent
Collaboration.” Proc. Int’l Workshop on Agent Technology
and Software Engineering, Erfurt, Germany, October 2002.

[5] Huhns, Michael N. and Vance T. Holderfield: “Robust
Software,” IEEE Internet Computing, vol. 6, no. 2, March-
April 2002, pp. 80-82.

[6] C. Iglesias, M. Garijo, and J. Gonzalez: “A survey of agent-
oriented methodologies.” In J. Muller, M.P. Singh, and A.S.
Rao, editors, Proc. 5th International Workshop on Intelligent
Agents V: Agent Theories, Architectures, and Languages
(ATAL-98). Springer-Verlag: Heidelberg, 1999.

[7] Jennings, Nick R.: “On Agent-Based Software Engineering”
Artificial Intelligence 117, 2 (2000), 277-296.

[8] David Kalinsky: “Design Patterns for High Availability.”
Embedded Systems Programming (August 2002) 24--33.

[9] Laddaga, Robert: “Creating Robust Software through Self-
Adaptation,” IEEE Intelligent Systems, Vol. 14, No. 3,
May/June 1999, pp. 26-29.

[10] Nwana, H.S. and Michael Wooldridge: “Software Agent
Technologies.” BT Technology Journal, 14(4):68-78 (1996).

[11] Odell, J., H. Van Dyke Parunak, and Bernhard Bauer:
“Extending UML for Agents.” In Proceedings of the Agent-
Oriented Information Systems Workshop, Gerd Wagner,
Yves Lesperance, and Eric Yu eds., Austin, TX, 2000.

[12] Paulson, Linda Dailey: “Computer System, Heal Thyself,”
IEEE Computer, (August 2002) 20--22.

[13] Schreiber, A. T., B. J. Wielinga, and J. M. A. W. Van de
Velde: “CommonKADS: A comprehensive methodology for
KBS development,” 1994.

[14] Wooldridge, M., N. R. Jennings, and D. Kinny: “The Gaia
Methodology for Agent-Oriented Analysis and Design.” J.
Autonomous Agents and Multi-Agent Systems, 2000.

