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ABSTRACT 
This paper describes how multiagent systems can be used to 
achieve robust software, one of the major goals of software 
engineering.  The paper first positions itself within the software 
engineering domain.  It then develops the hypothesis that robust 
software can be achieved through redundancy, where the 
redundancy is achieved by agents that have different algorithms 
but similar responsibilities.  The agents are produced by wrapping 
conventional algorithms with a minimal set of agent capabilities, 
which we specify.  We show that the same wrapper can be used 
for a variety of algorithms.  We describe our initial experiments in 
verifying our hypothesis and present results that show an 
improvement in robustness due to redundancy.  We also 
completely characterize the decision-making that must occur to 
decide among competing redundant algorithms.  We conclude by 
speculating on the implications of multiagent-based redundancy 
for general software development and future Web services. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– multiagent systems. 

General Terms 
Reliability, Experimentation, Theory 

Keywords 
Robust software; autonomic computing 

1. INTRODUCTION 
When discussing the uses and applications of agents with 
software developers from business, industry, and academia over 
the years, we have often heard the claim, "Agents might be 
appropriate for building a distributed X, but clearly you wouldn't 
use agents to build a sorting algorithm."  The purpose of this 
paper is to show that if the requirements include either robust 
behavior or next-generation Web services, then agents are the 
right technology for constructing algorithms such as sorting. 
Computer systems are now entrusted with control of global 

telecommunications, electric power distribution, water supplies, 
airline traffic, weapon systems, and the manufacturing and 
distribution of goods.  Such tasks typically are complex, involve 
massive amounts of data, affect numerous connected devices, and 
are subject to the uncertainties of open environments like the 
Internet. Our society has come to expect uninterrupted service 
from these systems.  Unfortunately, when problems arise, humans 
are unable to cope with the complexity of the systems and the 
speed with which they must be repaired.  Increasingly, the result 
is that critical missions are in jeopardy. 
To cope with this situation, companies and researchers are 
investigating self-monitoring and self-healing systems, which 
detect problems autonomously and continue operating by fixing 
or bypassing the malfunction [12].  The techniques employed 
include redundant hardware, error-correction codes, and, most 
importantly, models of how a system should behave, so that the 
system can recognize when it misbehaves. 
Such techniques can work well for hardware, but not for software, 
where having identical copies of a module provides no benefit.  
Software reliability is thus an unresolved problem.  The amount 
of money lost due just to software errors is conservatively 
estimated at US$40B annually.  One alternative is to produce 
higher quality software.  To achieve this, researchers are trying to 
define more principled methodologies for software engineering 
[2].  They are also looking to new technologies, such as 
multiagent systems, and this leads to a natural interest in 
combining the latest software engineering methodologies with 
multiagent systems [10]. 
There are three ways that software engineering intersects 
multiagent systems: 
1. Multiagent systems can be used to aid traditional software 

engineering; e.g., in the form of agent-based or agent-
supplemented CASE tools 

2. Traditional or new software engineering techniques can be 
used to build multiagent systems; e.g., the Unified Modeling 
Language (UML) has proven to be useful for conventional 
software, so Agent-Based UML (AUML) and similar efforts 
are underway to extend UML to support agent development  

3. Conventional software can be constructed out of agents, and 
software engineering techniques can be developed to aid in 
this endeavor. 

The focus of this paper is on the last. 
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2. BACKGROUND 
Software engineering principles applied to multiagent systems 
have yielded few new modeling techniques, despite many notable 
efforts.  A comprehensive review of agent-oriented methodologies 
is contained in Iglesias, et al. [6].  Many, such as Agent UML [11] 
and MAS-CommonKADS, are extensions of previous software 
engineering design processes.  Others, such as Gaia [14], were 
developed specifically for multiagent system design.  It was 
formulated from an organization theory perspective, with a 
methodology based on a model consisting of roles, permissions, 
responsibilities, protocols, activities, liveness properties, and 
safety properties. Because agents are useful in such a broad range 
of applications, software engineering methodologies for 
multiagent systems should be a combination of principles and 
techniques.  This combination of will generally give a more 
flexible approach to fit a design team's particular expectations and 
requirements. 
Multiagent systems can form the fundamental building blocks for 
software systems, even if the software systems do not themselves 
require any agent-like behaviors [7].  When a conventional 
software system is constructed with agents as its modules, it can 
exhibit the following benefits [1][4]:  

1. Agents enable dynamic composibility, where the 
components of a system can be unknown until runtime 

2. Agents allow interaction abstractions, where interactions can 
be unknown until runtime 

3. Because agents can be added to a system one-at-a-time, 
software can continue to be customized over its lifetime, 
even potentially by end-users 

4. Because agents can represent multiple viewpoints and can 
use different decision procedures, they can produce more 
robust systems.  The essence of multiple viewpoints and 
multiple decision procedures is redundancy, which is the 
basis for error detection and correction. 

2.1 Bugs, Errors, and Redundancy 
Hardware robustness is typically characterized in terms of faults 
and failures; equivalently, software robustness is typically 
characterized in terms of bugs and errors.  Faults and bugs are 
flaws in a system, whereas errors and failures are the 
consequences of encountering the flaws during the operation or 
execution of the system.  The flaws may be either transient or 
omnipresent.  The general approaches for dealing with flaws are 
the same for both hardware and software:  (1) prediction and 
estimation, (2) prevention, (3) discovery, (4) repair, and (5) 
tolerance or exploitation. 
Fault and bug estimation uses statistical techniques to predict how 
many flaws might be in a system and how severe their effects 
might be.  For example, when Windows XP was released, it was 
estimated that it still contained 60,000 bugs, based on the rate at 
which its bugs were being discovered.  Bug prevention is 
dependent on good software engineering techniques and 
processes.  Good development and run-time tools can aid in bug 
discovery, whereas repair and tolerance depend on redundancy. 
Indeed, redundancy is the basis for most forms of robustness.  It 
can be provided by replication of hardware, software, and 
information, and by repetition of communication messages.  For 

years, NASA has made its satellites more robust by duplicating 
critical subsystems:  if a hardware subsystem fails, there is an 
identical replacement ready to begin operating.  The space shuttle 
has quadruple redundancy, and won't leave the ground without all 
copies functioning.  However, software redundancy has to be 
provided in a different way.  Identical software subsystems will 
fail in identical ways, so extra copies do not provide any benefit. 
Moreover, code cannot be added arbitrarily to a software system, 
just as steel cannot be added arbitrarily to a bridge.  When we 
make a bridge stronger, we do it by adding beams that are not 
identical to ones already there, but that have equivalent 
functionality.  This turns out to be the basis for robustness in 
software systems as well: there must be software components 
with equivalent functionality, so that if one fails to perform 
properly, another can provide what is needed.  The challenge is to 
design the software system so that it can accommodate the 
additional components and take advantage of their redundant 
functionality. 
We hypothesize that agents are a convenient level of granularity 
at which to add redundancy and that the software environment 
that takes advantage of them is akin to a society of such agents, 
where there can be multiple agents filling each societal role [4].  
Agents by design know how to deal with other agents, so they can 
accommodate additional or alternative agents naturally.  They are 
also designed to reconcile different viewpoints. 
Fundamentally, the amount of redundancy required is well 
specified by information theory.  Assume each software module 
in a system can behave either correctly or incorrectly.  Then two 
modules with the same intended functionality are sufficient to 
detect an error in one of them, and three modules are sufficient to 
correct the incorrect behavior (by voting, or choosing the best 
two-out-of-three).  This is exactly how parity bits work in code 
words.  Unlike parity bits, and unlike bricks and steel bridge 
beams, however, the software modules cannot be identical, or else 
they would not be able to correct each other's errors. 
If we want a system to provide n functionalities robustly, we must 
introduce m × n agents, so that there will be m ways of producing 
each functionality.  Each group of m agents must understand how 
to detect and correct inconsistencies in each other's behavior, 
without a fixed leader or centralized controller.  If we consider an 
agent's behavior to be either correct or incorrect (binary), then, 
based on a notion of Hamming distance for error-correcting 
codes, 4 × m agents can detect m-1 errors in their behavior and 
can correct (m-1)/2 errors. 
Redundancy must also be balanced with complexity, which is 
determined by the number and size of the components chosen for 
building a system.  That is, adding more components increases 
redundancy, but also increases the complexity of the system.  This 
is just another form of the common software engineering problem 
of choosing the proper size of the modules used to implement a 
system.  Smaller modules are simpler, but their interactions are 
more complicated because there are more modules. 
An agent-based system can cope with a growing application 
domain by increasing the number of agents, each agent's 
capability, the computational resources available to each agent, or 
the infrastructure services needed by the agents to make them 
more productive.  That is, either the agents or their interactions 



can be enhanced, but to maintain the same degree of redundancy 
n, they would have to be enhanced by a factor of n. 
To underscore the importance being given to redundancy and 
robustness, several initiatives are underway around the world to 
investigate them.  IBM has a major initiative to develop 
autonomic computing—“a systemic view of computing modeled 
after the self-regulating autonomic nervous system.”  Systems that 
can run themselves incorporate many biological characteristics, 
such as self-healing (redundancy), adaptability to changing 
environments (reconfigurability), identity (awareness of their own 
resources), and immunity (automatic defense against viruses). An 
autonomic computing system will adhere to self-healing, not by 
“cellular regrowth,” but by making use of redundant elements to 
act as replenishment parts.  By taking advantage of redundant 
services located around the world, a better range of services can 
be provided for customers in business transactions. 
Exemplifying extreme redundancy in hardware, HP Labs has built 
a massively parallel computer, the Teramac, with 220,000 known 
defects, but it still yields correct results.  As long as there is 
sufficient communication bandwidth to find and use healthy 
resources, it can tolerate the defects.  Allowing so many defects 
enables the computer to be built cheaply. 
The National Science Foundation has launched the IRIS project to 
produce a robust, decentralized, and secure Internet infrastructure. 
The infrastructure will be developed using distributed hash table 
technology, which can prevent all the data in a network from 
becoming vulnerable if one server crashes. Rather than 
centralizing the data in a single server, each server contains a 
partial list of the data’s storage location. 

2.2 N-Version Programming 
N-version programming, also called dissimilar software, is a 
technique for achieving robustness first considered in the 1970's.  
It consists of N separately developed implementations of the same 
functionality.  Although it has been used to produce several robust 
systems, it has had limited applicability, because (1) N 
independent implementations have N times the cost, (2) N 
implementations based on the same flawed specification might 
still result in a flawed system, and (3) the resultant system might 
have N times the maintenance cost (e.g., each change to the 
specification will have to be made in all N implementations). 

2.3 Checkpointing, Rollback, Compensation 
Database systems have exploited the idea of transactions for 
maintaining the consistency of their data.  A transaction is an 
atomic unit of processing that moves a database from one 
consistent state to another.  Consistent transactions are achievable 
for databases because the types of processing done are very 
regular and limited. 

Applying this idea to general software execution requires that the 
state of a software system be saved periodically (a checkpoint) so 
that the system can return to that state if an error occurs.  The 
system then returns to that state and processes other transactions 
or alternative software modules.  This is depicted in Figure 1. 

There are two ways of returning to a previous state: (1) reloading 
a saved image of the system before the failed computation, or (2) 
rolling back, i.e., reversing and undoing, each step of the failed 
computation.  Both of the ways suffer from major difficulties: 

1. The state of a software system might be very large, 
necessitating the saving of very large images 

2. Many operations cannot be undone, such as those with side-
effects.  Examples of these are sending a message, which 
cannot be un-sent, and spending resources, which cannot be 
un-spent.  Rollback is successful in database systems, 
because most database operations do not have side-effects. 

Choose Processing Alternative

Perform Software Operation

Test Result

Restore State

Failure

Save Software State

OK

 
Figure 1.  A transaction approach to correcting for the 

occurrence of errors in a software system 
Because of this, compensation is often a better alternative for 
software systems.  Figure 2 depicts the architecture of a robust 
software system that relies on compensation of failed operations. 

Choose Processing Alternative

Perform Software Operation

Test Result

Compensate Operation

Failure

 
Figure 2.  An architecture for software robustness based on 

compensating operations 



3. ARCHITECTURE AND PROCESS 
Suppose there are a number of sorting algorithms available.  Each 
might have strengths, weaknesses, and possibly errors.  One might 
work only for integers, while another might be slower but be able 
to sort strings as well as integers.  How can the algorithms be 
combined so that the strengths of each are exploited and the 
weaknesses or flaws of each are compensated or covered?  In 
solving this in a general way, we hypothesize that the end result is 
an “agentizing” of each algorithm. 

A centralized approach, as shown in Figure 3, would use an 
omniscient preprocessing algorithm to receive the data to be 
sorted and would then choose the best algorithm to perform the 
sorting.  Each module's characteristics have to be encoded into the 
central unit.  The difficulties with this approach are (1) the 
preprocessing algorithm might be flawed and (2) it is difficult to 
maintain such a preprocessing algorithm as new algorithms are 
added and existing algorithms become unavailable. 

Choose Algorithm based on: (1) data type, (2) time & space constraints

Sort #1 Sort #2 Sort #3 Sort #4 Sort #5

Single Task

Single Result
Figure 3.  Centralized architecture for combining N versions 
of a sorting algorithm into a single, more robust system for 

sorting, where a preprocessing algorithm chooses which 
sorting algorithm will execute 

An altermative is a postprocessing algorithm, as shown in Figure 
4, that receives the results of all algorithms and chooses the best 
as the output.  This approach is also centralized and suffers from a 
waste of CPU resources, because all algorithms work on the data 
and the results have to be compared.  However, the comparison of 
outcomes is likely to produce better results. 

A combination of the preprocessing and postprocessing 
centralized systems could also be used.  Based on criteria known 
about each module, a subgroup could be selected to perform the 
desired task.  The subgroup would then have its results compared 
to determine the best results as above. 

A fourth approach is a distributed solution, where the algorithms 
jointly decide which one(s) should perform the sorting, and if 
there is more than one, they jointly decide on the best result.  
Conventional algorithms do not typically have such a distributed 
decision-making ability, so we investigate here whether there is a 
generic capability that can be added to an algorithm to enable it to 

participate in a distributed decision.  The generic capability has 
the characteristics of a software agent.  Distributing the 
centralized functions into the different modules creates a 
multiagent system. 

Sort #1 Sort #2 Sort #3 Sort #4 Sort #5

Single Task

Single Result

Compare Results and Select Best

Figure 4.  Centralized architecture for combining N versions 
of a sorting algorithm into a single, more robust system for 

sorting, where a postprocessing algorithm chooses one result 
to be the output 

Each agent would have to know its role in this system as well as 

• Something about its own algorithm, such as its time and 
space complexity, and input and output data structures 

• Something about other agents, such as their time and space 
complexity and reliability 

• How to negotiate 

• How to communicate 

• How to compare results 

• How to manage reputations and trust. 

An agent system derived from a redundant system with a 
centralized preprocessor might have the agents bid for a task.  
This would create an auction environment to determine task 
assignment.  This is acceptable in a system with many competing 
agents, but the value of robustness based on reinforced redundant 
involvement is not achieved in an auction. 

An agent system transformed from a redundant system with a 
centralized postprocessor would entail that each of the agents 
attempt the task and some type of voting mechanism (either with 
a voting factor or not) be used among the agents.  A vote could be 
based on reputation or on a comparison of results.  The 
communication overhead could be large. 

The comparison of results can be done in several ways. The 
results can all be compared and a majority of exact outcomes 
would determine the results that are selected, where each of the 
agents have an equal chance at having their results selected.  
Alternatively, their chances could be weighted based on external 



opinions of their past performances.  Other factors could be based 
on information that the agent knows about itself, such as whether 
it completed the task or not, its time and space requirements, and 
the total number of runtime errors it has produced in the past. 

4. EXPERIMENTS 
We collected a number of algorithms, each of which belongs to 
one of two different types (i.e., sorting algorithms and list-
reversing algorithms). Different people wrote each algorithm. For 
the sorting algorithms, no specifications were given to the 
programmers about how to write them, so the algorithms all have 
different characteristics, such as input data type, output data type, 
and time and space complexity. For the list-reversing algorithms, 
the structure of the class (i.e., methods names, results returned, 
types of parameters) was specified, so the differences among 
these algorithms are in performance and correctness. For our 
experiments, we converted each algorithm into a sorting agent. 
Each agent is composed of an algorithm and a wrapper for that 
algorithm. The wrapper knows only about the external 
characteristics of its algorithm, such as its input and output data 
type(s) and its complexity, and nothing about the inner workings 
of the algorithm. The algorithms were written in JAVA and the 
wrappers in JADE. 

The system sends data to be either sorted or reversed to all the 
corresponding agents (sorting agents or reversing agents, 
respectively). Their responsibility (as a group) is the sorting or 
reversing of the data, and they should be able to do this better 
than any one of them alone. 

Two different approaches for combining the wrappers' 
functionality were implemented for the initial experiments: a 
distributed preprocessing approach and a centralized 
postprocessing approach. Each approach was tested with the 
sorting and reversing domains, one at a time. An architecture 
result we found is that the same wrapper can be used for both 
domains.  An experimental result is verification of our hypothesis 
that more algorithms give better results than any one alone. 
However, it is important to note that the approach used for 
combining the wrappers’ functionality plays an important role in 
obtaining that result. 

4.1 Logic of the Preprocessing Approach 
(For simplicity, we explain this approach with the sorting domain, 
because the results for the reversing domain are the same.) Upon 
receiving data to be sorted, each agent determines whether or not 
it can sort it successfully (based on the type of the data and its 
own knowledge of what types it can sort) and if the agent can, it 
broadcasts an INFORM message to every other agent specifying 
its intention, along with a measure of performance for its 
algorithm (based on execution time supplied by the agent itself). 

The decision of which agent (i.e., algorithm) to choose among 
those that are capable of sorting the input data is made in a 
distributed manner: upon receiving the INFORM messages from 
other agents, each agent compares its expected performance 
against those received in the messages. If the agent has the best 
performance, it will run its algorithm and send the results back to 
the system. If it does not have the best, it will do nothing.  Figure 
5 depicts the AUML diagram of the protocol used. The system 
can be considered as the Initiator agent. Also, once they receive 
the data to be sorted from the system, the agents will wait for 

INFORM messages for only a limited amount of time; this avoids 
waiting infinitely long for messages from agents that either have 
problems sending a message or are not able to sort the data. 
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Initiator Sorting Agent
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n
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1 informnot-understood 

request 

inform 
agree 

x deadline

Figure 5.  AUML diagram of the agents’ interactions 

4.2 Logic of the Postprocessing Approach 
(We explain this, arbitrarily, using the reversing domain.)  Upon 
receiving data to be reversed, n randomly chosen agents, where n 
is given by the user, will run their algorithms and send the results 
to the postprocessing system. The system compares the results 
and chooses the one that represents a majority of similar 
outcomes (one is selected randomly when there is not a clear-cut 
winner). Figure 6 depicts the AUML diagram of the protocol 
used. The system can be considered as the Initiator agent. Also, 
once the system sends to the wrappers the request message along 
with the data to be reversed and then receives the AGREE 
messages, it will wait for INFORM messages for only a limited 
amount of time; this avoids waiting infinitely for messages from 
agents that either have problems sending a message or reversing 
the data. 

Table 1. Input data type and additional restrictions for the 
sorting algorithms available 

Algorithm Characteristics/Restrictions 
Used by Default Wrapper 

Additional 
Restriction

s 
C.A.R 
Hoare's 

Quick Sort 

Input data type: 
Integer array (positive and 

negative numbers accepted) 
None 

HeapSort 
Input data type: 

Integer array (positive and 
negative numbers accepted) 

None 

QuickSort 

Input data type: 
Byte array 
Short array 

Integer array 
Long array 
Float array 

Double array 
String array 
Char array 

(positive numbers only) 

None 

RadixSort Input data type:  int array 10 inputs  
Table 1 summarizes the algorithms collected and information 
about them. The Additional Restrictions has restrictions not used 
by the default Wrapper to determine whether the agent can sort 
the data. Nevertheless, it is possible to cope with these cases by 



providing an implementation of a WrapperRestrictions interface, 
which only has one method that takes as input the data to be 
sorted and returns a Boolean value indicating whether the sorting 
algorithm can sort the data. This provides a way of customizing 
the wrapper for algorithms that need additional considerations for 
the whole system to perform better. 
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Fig. 6. AUML diagram of the agents’ interactions 

Our next set of experiments used 25 individually produced 
implementations of a doubly-linked list, each containing a method 
for reversing a list. The implementations differed in performance 
and correctness. 
Table 2 provides a summary of the tests performed using the 
distributed preprocessing approach for the sorting domain. The 
best algorithm that can handle the input data is always chosen. It 
is different for the reversing domain, where the decision of which 
algorithm to execute is based on a measure of performance for 
each algorithm, which is calculated and stored by its agent. 
Unfortunately, a small value for time will be assigned for 
reversing algorithms that do nothing or that raise an exception 
(because they fail quickly). This will cause the wrong algorithms 
to be selected with the distributed preprocessing approach. 

Table 2. Results for distributed preprocessing by agent-
wrapped sorting algorithms  

Data Input Algorithm Selected Data 
Output 

Comments 

12, 45, 3, 2, 
56 

C.A.R Hoare's 
Quick Sort 

2, 3, 12, 45, 
56 

 

ann, john, 
sue, marie QuickSort ann, john, 

marie, sue 

Only this 
algorithm 
can handle 

strings 

9, 8, 7, 4, 3, 
2, 12, 4, 5, 

10 
RadixSort 

2, 3, 4, 4, 5, 
7, 8, 9, 10, 

12 

Best 
performance 

but only 
works for 
10 inputs 

3.54, 90, 
23.4, 3.55, 

60, 60.1 
QuickSort 

3.54, 3.55, 
23.4, 60, 
60.1, 90 

Only this 
algorithm 
can handle 

reals 
Finally, Table 3 provides a summary of the tests performed using 
the postprocessing approach in the reversing domain. This 
approach is generally better, but performs worse for cases with 
large data sets or selected algorithms with long execution times. 
An alternative is to base a decision on test results from each 
agent. 

Table 3. Results for distributed postprocessing in the 
reversing domain 

Data input Selected Algorithm Results Final Results 

[9,5,3,1,8,7] 
DList5 = [9,5,3,1,8,7] 
DList12 = [7,8,1,3,5,9] 
DList8 = [7,8,1,3,5,9] 

[7,8,1,3,5,9] 

[9,6,4,3] 
DList16 = [3,4,6,9] 
DList11 = [3,4,6,9] 
DList23 = [3,4,6,9] 

[3,4,6,9] 

[3,5,2,9,11] 
DList19 = [11,9,2,5,3] 

DList1 = Exception raised 
DList4 = [11,9,2,5,3] 

[11,9,2,5,3] 

[8,7,32,19] 
DList24 = [19,32,7,8] 
DList9 = [19,32,7,8] 
DList14 = [19,32,7,8] 

[19,32,7,8] 

An agent-based wrapper, such as we have developed here for a 
redundant algorithm, can also serve as the basis for future agent-
based Web services.  Current practices for Web services suffer 
from the following limitations, which agents will be able to 
rectify: 

• A Web service knows only about itself, but not about its 
users/clients/customers.  Agents are often self-aware at a 
metalevel, and through learning and model building gain 
awareness of other agents and their capabilities as 
interactions among the agents occur.  This is important, 
because without such awareness a Web service would be 
unable to take advantage of new capabilities in its 
environment, and could not customize its service to a client, 
such as by providing improved services to repeat customers. 

• Web services, unlike agents, are not designed to use and 
reconcile ontologies.  If the client and provider of the service 
happen to use different ontologies, then the result of 
invoking the Web service would be incomprehensible to the 
client. 

• Agents are inherently communicative, whereas Web services 
are passive until invoked.  Agents can provide alerts and 
updates when new information becomes available.  Current 
standards and protocols make no provision for even 
subscribing to a service to receive periodic updates. 

• A Web service, as currently defined and used, is not 
autonomous.  Autonomy is a characteristic of agents, and it 
is also a characteristic of many envisioned Internet-based 
applications.  Among agents, autonomy generally refers to 
social autonomy, where an agent is aware of its colleagues 
and is sociable, but nevertheless exercises its independence 
in certain circumstances.  Autonomy is in natural tension 
with coordination or with the higher-level notion of a 
commitment.  To be coordinated with other agents or to keep 
its commitments, an agent must relinquish some of its 
autonomy.  However, an agent that is sociable and 
responsible can still be autonomous.  It would attempt to 
coordinate with others where appropriate and to keep its 
commitments as much as possible, but it would exercise its 



autonomy in entering into those commitments in the first 
place. 

• Agents are cooperative, and by forming teams and coalitions 
can provide higher-level and more comprehensive services.  
Current standards for Web services do not provide for 
composing functionalities. 

If Web services were wrapped with our agents, clients would be 
able to take advantage of redundant Web services, thereby 
attaining more reliable and robust results.  

5. MULTIAGENT DECISION MAKING 
The decision domain consists of identical agents wrapping 
dissimilar algorithms, which differ in time and space complexity, 
input and output data structures, and data type.  Given such agents 
and a single task to be performed, a single result needs to be 
produced.  The possible decision strategies in this domain can be 
classified into two basic categories, as summarized in Table 3.  
One category, preprocessing, involves choosing an agent before 
any data processing has begun, while the other category, 
postprocessing, would require some if not all the processing to be 
completed before deciding.  By choosing one agent to deliver the 
output or the plan for specifying the output, preprocessing saves 
on CPU resources.  By having many agents working redundantly 
on the same task, postprocessing uses more CPU resources.  
However, postprocessing decision strategies consider the actual 
output, while preprocessing decision strategies do not.  

Table 3. Distributed decision strategies that are applicable to 
the agent wrapper system. 

Preprocessing Postprocessing 

Random/lottery  Performance-based  

Auction/election/criteria selection Voting 

Team Collaboration 

 Incremental  

In a preprocessing decision strategy, there are three general 
methodologies that are applicable.  The first and simplest would 
be to have one agent randomly chosen to perform the task, which 
is equivalent to a lottery.  The output would be based solely on 
the results from that agent.  Any bugs or errors in the agent would 
not be caught or corrected.  The lottery method would be 
appropriate in a system where all agents have the same 
capabilities or in a system with a relatively large number of 
correct agents and the probability of selecting an appropriate 
agent is high.  Communication overhead would be low as it would 
be needed only for determining the winner of the lottery. 
Auctions, voting, and selection by a known set of criteria are all 
viable and similar options and are the second preprocessing 
methodology.  Since this is a single input, single output 
subsystem, an agent’s desire to perform the task would be based 
on mitigating factors the agent knows or can deduce about itself, 
such as speed, complexity, and reputation.  These factors would 
help in determining which agent is chosen to perform the task.  It 
would be the means for determining the agent’s bid in an auction 
or the value (or weight) of an agent’s vote in an election.  This 
method while also based on a single agent’s response is a more 

intelligent choice since justifying factors are involved in the 
selection.  The domain is similar to that of the lottery method.  
A team approach would be the third general methodology for a 
preprocessing decision strategy.  This approach would entail 
distributing the task to be performed into subtasks to individual 
agents.  The individual agents would be responsible for 
processing only a subset of the original task.  The subsets would 
then be collected and combined to contribute to the single answer 
required by the system.  This methodology would increase speed 
as far as the processor goes.  If all agents are equally competent, 
then this method is practical for a large problem could be divided 
into smaller subsets.  If bugs or errors are present, however, this 
method will not find or correct them.  A large team would require 
massive communication overhead.  Teams also have to be 
organized and setup, which requires additional overhead.  
In a postprocessing decision strategy where all agents process the 
data, there are four general methodologies that can be chosen.  
The first and simplest would be to have all the agents process the 
data and select the one whose processing was the fastest or used 
the least amount of space.  The same problem would arise as with 
the preprocessing methods:  not being able to determine or correct 
bugs and errors.  A domain in which the agents are sufficiently 
competent would be an appropriate for this methodology. 
A second postprocessing methodology would be to vote.  This is 
different from the voting scheme above, in that the proposed 
output would be based on a direct comparison of information.  
Agents would compare their results to other agents and a running 
tally kept.  The result with the most votes is given as the final 
answer.  To handle ties, a weight could be assigned to each agent 
based on additional factors such as speed and reputation.  
Alternatively, an evaluation mechanism could be applied by the 
other agents based on the following factors: 

AgentEvaluation = 
f( %Completed, %Correct, Time used, Space used, Reputation ) 
where reputation is based on past successes in a group.  Resource 
usage would increase due to the increased deliberations, so the 
methodology would be best with smaller groups of agents.  
A collaboration methodology would require that data be 
compared between agents so that any common data subsets would 
be kept and only a decision about controversial data subsets 
would have to be made.  The decision about any controversial 
subsets could be made by any of the methods mentioned.  An 
average, a minimum, or a maximum could be computed and 
utilized by such collaboration methods. 
A final postprocessing methodology is an incremental one.  An 
agent is selected by some means already discussed.  One agent’s 
result is compared to another’s and, if they are the same, the result 
is forwarded.  If the comparison is different or if more 
comparisons are desired, then more agents are included before a 
result is forwarded.  A variation to this would be for agents to 
sample a subset of the data and compare results.  Agents who 
differ from the majority are culled from the sampling, and 
comparisons continue until a single result emerges. 
The above decision-making approaches do not specify the number 
of agents.  More agents lead to more robustness, but 
communication overhead and processor time are limiting factors.  
A messaging system where only a single message is sent from 



agent-to-agent has n! complexity, where n is the number of 
agents.  Large sets of data cause complexities for postprocessing 
decision strategies.  Ultimately, the “best” algorithm is 
determined by 

Performance × Flexibility × Reliability 

where Performance is a function of time and space complexity, 
Flexibility is a function of how broad a range of input and output 
data structures the agent can handle, and Reliability is a measure 
of how well the agent can avoid run-time errors and exceptions. 

6. CONCLUSION: CHALLENGES AND 
IMPLICATIONS FOR DEVELOPERS 
Producing robust software has never been easy, and the approach 
recommended here would have major effects on the way that 
developers construct software systems: 

• It is difficult enough to write one algorithm to solve a 
problem, let alone n algorithms.  However, algorithms, in the 
form of agents, are easier to reuse than when coded 
conventionally and easier to add to an existing system, 
because agents are designed to interact with an arbitrary 
number of other agents. 

• Agent organizational specifications need to be developed to 
take full advantage of redundancy. 

• Agents will need to understand how to detect and correct 
inconsistencies in each other's behavior, without a fixed 
leader or centralized controller. 

• There are problems when the agents either represent or use 
nonrenewable resources, such as CPU cycles, power, and 
bandwidth, because they will use it n times as fast. 

• Although error-free code will always be important, 
developers will spend more time on algorithm development 
and less on debugging, because different algorithms will 
likely have errors in different places and can cover for each 
other. 

• In some organizations, software development is competitive 
in that several people might write an algorithm to yield a 
given functionality, and the “best” algorithm will be 
selected.  Under the approach suggested here, all algorithms 
would be selected. 

Ultimately, the production of robust software will require that we 
understand the relationship between 

• the social world as represented by humans and their physical 
environment, and 

• the social world as represented by agents and other 
automated systems. 
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