

1

Information Management for
Cooperative Engineering

Michael N. Huhns

Department of Electrical and Computer Engineering
University of South Carolina
Columbia, SC 29208, USA

huhns@sc.edu

Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7534, USA

singh@ncsu.edu

Abstract

In this paper we describe how a set of autonomous computational agents can cooperate in
providing coherent management of information in environments where there are many
diverse information resources. The agents use models of themselves and of the resources
that are local to them. Resource models may be the schemas of databases, frame systems
of knowledge bases, or process models of business operations. Models enable the agents
and resources to use the appropriate semantics when they interoperate. This is
accomplished by specifying the semantics in terms of a common ontology. We discuss
the contents of the models, where they come from, and how the agents acquire them. We
then describe a set of agents for telecommunication service provisioning and show how
the agents use such models to cooperate. Their interactions produce an implementation of
relaxed transaction processing.

2

1 Introduction

World-wide production of manufactured goods is currently being affected by six related
factors:

• There are pressures for a shorter time-to-market, forcing a need for all aspects
of product engineering—from conceptualization through delivery and
maintenance—to be considered simultaneously.

• There are changes in the artifacts of production, in that many products that used
to be standardized are being specially designed for each customer, and more
complicated products, such as space stations and fusion power plants, are being
attempted.

• There are increasing data, knowledge, and experience being accumulated about
all aspects of production processes, which can be used to aid future production
processes.

• There are now a plethora of tools for aiding product engineering, including tools
for simulation, visualization, layout, test, aesthetics, compliance with standards,
and manufacturability.

• The scope of the problem has increased to the point that teams of engineers are
typically required.

• Engineering, as a part of overall business operations, can no longer be done in
isolation, but must be done in a global context, i.e., as part of an enterprise. A
characteristic of such enterprises is that their information systems are large and
complex, and the information is in a variety of forms, locations, and computers.
The topology of these systems is dynamic and their content is changing so
rapidly that it is difficult for a user or an application program to obtain correct
information, or for the enterprise to maintain consistent information.

The overall trend in each of the six factors has been towards increasing the complexity of
the engineering task. This in turn has placed additional demands on the computational
aids for engineering, with the foremost demands being for interoperability and coherent
access to all the relevant information available.

3

Imagine the following scenario. An engineer designing the case for a new notebook
computer must choose a fastener to attach two of the pieces. There are three
alternatives—rivets, bolts, and adhesive—and the engineer’s design system must provide
him with comparative information about the sizes, strengths, reliabilities, costs, and
availabilities of these three. There are two manufacturers of rivets and one each for bolts
and adhesive. Information about the properties and costs of the fasteners are in databases
accessible electronically. However, because the databases have been developed
independently, their semantics are different. For example, one manufacturer prices rivets
each, and the other by the hundred. There are also price breaks based on quantity. To take
these into account, the design system must have access to sales projections for the
notebook computer from marketing.

The engineer decides to use rivets, but the standard sizes listed in the database are not
exactly right. Another engineer at the rivet company is contacted about designing a
custom-sized rivet, but she has to query her manufacturing system to determine the date
by when a sufficient quantity can be produced. The first engineer’s design system uses
this information to predict the availability of the notebook computer product. When a
fastener order is finally placed, it results in transactions being committed on engineering,
manufacturing, and sales information systems at several companies. As the product cycle
progresses, changes might cause the information systems to be updated, with some of the
transactions either rolled back or compensated.

There are four major techniques for coping with the size and complexity of enterprise
information systems such as these: modularity, distribution, abstraction, and intelligence,
i.e., being smarter about how you seek and modify information. The use of intelligent,
distributed modules is one way of combining all four of these techniques, yielding a
distributed artificial intelligence approach.

Distributed artificial intelligence (DAI) [Huhns 1987; Gasser and Huhns 1989; Huhns
and Singh 1997] provides some of the technology needed for this integration and
interaction. DAI is concerned with how a decentralized group of intelligent
computational agents should coordinate their activities to achieve their goals. When
pursuing common or overlapping goals, they should act cooperatively so as to
accomplish more as a group than individually; when pursuing conflicting goals, they
should compete intelligently. Interconnected agents can cooperate in solving problems,
share expertise, work in parallel on common problems, be developed, implemented, and
maintained modularly, be fault tolerant through redundancy, represent multiple
viewpoints and the knowledge of multiple human experts, and be reusable.

In accord with this approach, we describe in this paper how to distribute and embed
computational agents throughout an enterprise. The agents are knowledgeable about
information resources that are local to them, and cooperate to provide global access to,
and better management of, the information. For the practical reason that the systems are

4

too large and dynamic (i.e., open) for global solutions to be formulated and implemented,
the agents need to execute autonomously and be developed independently. To cooperate
effectively, the agents must either have models of each other and of the available
information resources or provide models of themselves. We focus on the latter in this
paper.

For such an open information environment, the questions arise: what should be modeled,
where do models come from, what are their constituents, and how should they be used?
We discuss the types of models that might be available, and how agents can acquire them
at compile time and use them at run time. We use the ontology developed for the large
knowledge-based system, Cyc, for semantic grounding of the models. The ontology is
made commonly available by providing access to it over a network, such as the Internet
or one of its commercial variants. At compile time, semantic mappings are constructed
relating schema-level models of each information system component to the common
ontology. At run time, a distributed truth maintenance system [Huhns and Bridgeland
1991] is used to maintain semantic consistency of information. The truth maintenance
system is executed by knowledge-based mediating agents—one for each user, resource,
application, and interface—that actively monitor integrity constraints. In addition, the
agents help locate and provide access to the most appropriate information for each user or
application.

We then describe a set of agents for telecommunication service provisioning as an
example of parameterized design. For these agents—a scheduling agent, a schedule-
repairing agent, a schedule-processing agent, and an interface agent—we describe their
models and how they use them to cooperate. We also describe the use of actors [Agha
1986]—one per agent—who manage their communications. Each actor independently
maintains the relationship between its agent and the common ontology (in the form of the
semantic mappings), and updates that relationship as the ontology changes or the agent
evolves.

This achieves our research goal of providing interoperation among separately developed
information resources, thereby enabling them to be accessed and modified coherently.
Our system includes the computational infrastructure, from network communications to
consistency maintenance, that cooperative engineering also requires.

2 Modeling

Enterprise information modeling is a corporate activity that produces the models needed
for interoperability. The resultant models should describe all aspects of a business
environment, including

5

• databases

• database applications

• software repositories

• part description repositories

• expert systems, knowledge bases, and computational agents

• work flows, and the information they create, use, maintain, and own, and

• the organization itself.

The models provide online documentation for the concepts they describe. They enable
application code and data to be reused, data to be analyzed for consistency, databases to
be constructed automatically, the impact of change on an enterprise to be assessed, and
applications to be generated automatically.

An enterprise might have many models available, each describing a portion of the
enterprise and each constructed independently. For example,

• the information present in a database is modeled by the schema for the database,
which is produced through a process of logical data modeling

• the data values present in a database are modeled (weakly, in most cases) by
data dictionary information, which is produced through data engineering

• the information present in an object-centered knowledge base is modeled by the
ontology of the objects, which is produced through ontological engineering

• process models, possibly in the form of Petri nets or IDEFx descriptions, are
produced through logical process modeling

• STEP (Standard for the Exchange of Product model data) schemas, written in
Express, are produced from component and physical process modeling.

Although it might appear that interoperability would require all of these models to be
merged into a single, homogeneous, global model, this is not the case in our approach.
Instead, there are good reasons for retaining the many individual models: 1) they are

6

easier to construct than a single large model; 2) enterprises may be formed dynamically
through mergers, acquisitions, and strategic alliances, and the resultant enterprises might
have inherited many existing models; 3) because enterprises are geographically
dispersed, their resources are typically decentralized; and 4) as enterprises (and thus
models) evolve, it is easier to maintain smaller models.

Unfortunately, the models are often mutually incompatible in syntax and semantics, not
only due to the different things being modeled, but also due to mismatches in hardware,
operating systems, data structures, and corporate usage. In attempting to model some
portion of the real world, information models necessarily introduce simplifications and
inaccuracies that result in semantic incompatibilities. However, the individual models
must be related to each other and their incompatibilities resolved [Sheth and Larson
1990], because

• A coherent picture of the enterprise is needed to enable decision makers to
operate the business efficiently and designers to evaluate information flows to
and from their particular application.

• Applications need to interoperate correctly across a global enterprise. This is
especially important due to the increasing prevalence of strategic business
applications that require intercorporate linkage, e.g., linking buyers with
suppliers, or intracorporate integration, e.g., producing composite information
from engineering and manufacturing views of a product.

• Developers require integrity validation of new and updated models, which must
be done in a global context.

• Developers want to detect and remove inconsistencies, not only among models,
but also among the underlying business operations that are modeled.

We utilize a mediating mechanism based on an existing common ontology to yield the
appearance and effect of semantic homogeneity among existing models. The mechanism
provides logical connectivity among information resources via a semantic service layer
that automates the maintenance of data integrity and provides an enterprise-wide view of
all the information resources, thus enabling them to be used coherently. This logical layer
is implemented as a network of interacting agents. Significantly, the individual systems
retain their autonomy. This is a fundamental tenet of our Carnot architecture [Woelk et
al. 1996; Singh et al. 1997].

7

3 Information Consistency

What technology is available to achieve the requisite consistency among different
information resources?

Distributed truth maintenance: There are many desirable properties for a knowledge
base, such as completeness, conciseness, accuracy, and efficiency. For an agent that can
reason nonmonotonically, there are additional properties used to describe the integrity of
the knowledge base: stability, well-foundedness, and logical consistency. In addition, an
agent’s algorithm for maintaining well-founded stable states of its knowledge base
should be complete, in that the algorithm should find a well-founded stable state if it
exists. Each agent should have a complete algorithm for maintaining the integrity of its
own knowledge base.

Truth maintenance systems are a common way to achieve knowledge base integrity in a
single agent system, because they deal with the frame problem, they deal with atomicity,
and they lead to efficient search. Furthermore, the justification networks they create can
be used for nonmonotonic reasoning, problem-solving explanations to a user,
explanation-based learning, and multiagent negotiation.

However, the above definitions of properties for a single knowledge base are insufficient
to characterize the multiple knowledge bases in a multiagent environment. When agents
that are nonmonotonic reasoners exchange beliefs and then make inferences based on the
exchanged beliefs, then concepts of distributed knowledge-base integrity are needed
[Huhns and Bridgeland 1991].

Nonmonotonic reasoning: Agents need to be able to maintain independent viewpoints
and skepticism until they receive convincing evidence otherwise, but they should then be
able to revise their beliefs consistently.

Negotiation: Negotiation has been explored as a means to mediate among conflicting
agents. Existing systems involve either monotonic reasoners, or nonmonotonic, but
memoryless, reasoners, i.e., reasoners that simply discard old solutions and re-solve in
the face of conflicts. Negotiation is likely the correct approach, but the agents must be
able to revise their plans incrementally as they interact. They must be able to
communicate directly, with each other and with human agents, and they must be able to
assess and maintain the integrity of both the communicated information and their own
knowledge. Then they can successfully coordinate their activities and cooperate in
solving mutual problems.

Semantic integration: Where the semantics of a resource are expressed (partially) in the
form of data dictionary or schema information, this information must be interrelated with

8

the semantics of the other resources through the use of class servers or global schemas. It
is essential that a common semantics be available and provided computationally.

Database management systems for design: DBMS technology is needed that supports
large and long-duration transactions, relaxed transactions, large structured composite
objects, versions, and aggregation.

Intentionality: Representations for agents and their actions must be developed that can
express their intentions and commitments through communicative acts.

We support the above capabilities in our architecture.

4 Semantic Integration via a Common Ontology

In order for agents to interact productively, they must have something in common, i.e.,
they must be either grounded in the same environment or able to relate their individual
environments. We use an existing common context—the Cyc common-sense knowledge
base [Lenat and Guha 1990]—to provide semantic grounding. The models of agents and
resources are compared and mapped to Cyc but not to each other, making interoperation
easier to attain. For n models, only n mappings are needed, instead of as many as n(n-1)
mappings when the models are related pairwise. Currently, Cyc is the best choice for a
common context, because of 1) its rich set of abstractions, which ease the process of
representing predefined groupings of concepts, 2) its knowledge representation
mechanisms, which are needed to construct, represent, and maintain a common context,
and 3) its size: it covers a large portion of the world and the subject matter of most
information resources.

The large size and broad coverage of Cyc's knowledge enable it to serve as a fixed-point
for representing not only the semantics of various information modeling formalisms, but
also the semantics of the domains being modeled. Carnot can use models constructed
using any of several popular formalisms, such as

• IRDS, IBM's AD/Cycle, or Bellcore's CLDM for entity-relationship models

• Ingres, Oracle, Sybase, Objectivity, or Itasca for database schemas, and

• MCC's RAD or NASA's CLIPS for agent models.

Cyc's knowledge about metamodels for these formalisms and relationships among them
enables transactions to interoperate semantically between, for example, relational and
object-oriented databases.

9

The relationship between a domain concept from a local model and one or more concepts
in the common context is expressed as an articulation axiom [Guha 1990]: a statement of
equivalence between components of two theories. Each axiom has the form

ist(G; φ) ⇔ ist(Ci; ψ)

where φ and ψ are logical expressions and ist is a predicate that means "is true in the
context." This axiom says that the meaning of φ in the common context G is the same as
that of ψ in the local context Ci. Models are then related to each other—or translated
between formalisms—via this common context by means of the articulation axioms, as
illustrated in Figure 1. For example, an application's query about Automobile might
result in subqueries to DB1 about Car, to DB2 about Auto, and to KB1 about car.
Note that each model can be added independently, and the articulation axioms that result
do not have to change when additional models are added. Also note that applications and
resources need not be modified in order to interoperate in the integrated environment. We
have built a graphical tool, MIST, that aids in the construction of articulation axioms.

Application Interface

DB1

TransportationDevice

Vehicle BoatTrain

Automobile JeepTruck

Car id make DB2
Auto no model

Common Context

KB1
Car

Ford VW

Articulation Axiom 1

Articulation Axiom 2

Articulation Axiom 3
Articulation Axiom 4

Articulation Axiom 5

Figure 1: Concepts from different models are related via a common aggregate
context by means of articulation axioms

Figure 2 shows a logical view of the execution environment. During interoperation,
mediator-like agents [Wiederhold 1992], which are implemented by Rosette actors

10

[Tomlinson et al. 1991], apply the articulation axioms that relate each agent or resource
model to the common context. This performs a translation of message semantics. At most
n sets of articulation axioms and n agents are needed for interoperation among n
resources and applications. The agents also apply a syntax translation between each local
data-manipulation language, DMLi, and the global context language, GCL. GCL is based
on extended first-order logic. A local data-manipulation language might be, for example,
SQL for relational databases or OSQL for object-oriented databases. The number of
language translators between DMLi and GCL is no greater than n, and may be a constant
because there are only a small number of data-manipulation languages that are in use
today. Additional details describing how transactions are processed semantically through
the global and local views of several databases can be found in [Woelk et al. 1996].

Application 1 Application n

Common
Enterprise-Wide

View

Semantic Translation
by Mappings

Semantic Translation
by Mappings

Semantic Translation
by Mappings

DBj

Agent for Application

Agent for Resource

User

Agent for Application

Local View 1
DMLi

DMLi GCL

Local View n
DMLn

DMLn GCL

GCL DMLj

Local Schema j

Semantic Translation
by Mappings

KBm

Agent for Resource

GCL KMLm

Local Frame System m

Figure 2: Logical view of the execution environment, showing how mediating agents
apply articulation axioms to achieve semantic interoperation

11

The agents also function as communication aides, by managing communications among
the databases, application programs, and other agents in the environment. Figure 3 shows
how they buffer messages, locate message recipients, and translate message semantics.
To implement message transfer, they use a tree-space mechanism—a kind of distributed
virtual blackboard—built on the OSI and TCP/IP protocols [Tomlinson et al. 1991].

Agent A Resource
BMediator

Message
Buffer

Mediator

Message
Buffer

Tree Space
Interface

Tree Space
Interface

Statement,
Demand

Transmit Forward

Figure 3: Each database, application, and reasoning agent has a mediator (actor) that
manages its communications through a tree space.

5 Application to Parameterized System Design

We have applied our methodology to automate parameterized design of
telecommunication services, the task of providing communication facilities to customers
and often called provisioning. This task is executed in a heterogeneous multidatabase
environment. It is an example of workflow control, in that it provides control and data
flows among transactions executing on multiple autonomous systems [Jin et al. 1993;
Tomlinson et al. 1993]. Service provisioning typically takes several weeks and requires
coordination among many operation-support systems and network elements. Configuring
the operation-support systems so that they can perform such a task often takes several
months to complete.

We investigated ways to improve the provisioning of one type of communication
facility—digital services (DS-1). Provisioning DS-1 takes more than two weeks and
involves 48 separate operations—23 of which are manual—against 16 different database
systems. Our goals were to reduce this time to less than two hours and to provide a way
in which new services could be introduced more easily. Our strategy for accomplishing
these goals was to 1) interconnect and interoperate among the previously independent
systems, 2) replace serial operations by concurrent ones by making appropriate use of

12

relaxed transaction processing [Attie et al. 1993; Bukhres et al. 1993; Elmagarmid 1992;
Ansari et al. 1992], and 3) automate previously manual operations, thereby reducing the
incidence of errors and delays. The transaction processing is relaxed in that some
subsystems are allowed to be temporarily inconsistent, although eventual consistency is
guaranteed. Relaxing the consistency requirements allows increased concurrency and,
thus, improved throughput and response time.

The architecture of the agents used to implement relaxed transaction processing is shown
in Figure 4. The agents operate as follows. The graphical-interaction agent helps a user
fill in an order form correctly, and checks inventories to give the user an estimate of
when the order will be completed. It also informs the user about the progress of the order.

Transaction
Scheduling

Agent
User

Schedule
Processing

Agent

DB3 DBnDB2 . . .

Graphical
Interaction

Agent

Schedule
Repairing

Agent

DB1

Figure 4: Multiagent system for relaxed processing of telecommunication transactions

The transaction-scheduling agent constructs the schedule of tasks needed to satisfy an
order. The tasks are scheduled with the maximum concurrency possible, while still
satisfying their precedence constraints. Some of the rules that implement the schedule are
shown in Figure 5. These particular rules, when appropriately enabled, generate a
subtransaction to update the database for customer billing. When executing such rules,

13

the transaction-scheduling agent behaves as a finite-state automaton, as shown in Figure
6. The resultant schedule showing the commit dependencies among the tasks for all such
automata is shown in Figure 7.

The schedule-processing agent maintains connections to the databases involved in
telecommunication provisioning, and implements transactions on them. It knows how to
construct the proper form for a transaction, based on the results of other transactions. The
transactions are processed concurrently, where appropriate. If something goes wrong
during the processing of a transaction that causes it to abort or fail to commit, the
schedule-repairing agent provides advice on how to fix the problem and restore
consistency. The advice can be information on how to restart a transaction, how to abort
a transaction, how to compensate for a previously committed transaction, or how to
clean-up a failed transaction. The integrity knowledge that is stored in the schedule

; This rule set 1) executes an external program that translates an Access
; Service Request into a command file to update the database for customer
; billing, 2) executes the command file, and 3) checks for completion.
; The scheduling agent, due to its truth-maintenance system, halts this
; transaction whenever an abort of the global transaction occurs.
; ?gtid denotes the global transaction identifier.
Bill-Preparation:
 If (service-order(?gtid)
 new-tid(?subtid)
 unless(abort(?gtid)))
 then (do(,run-shell-program “asr2bill”
 :input “asr-?gtid.out” :output “bill-?gtid.sql”)
 bill(?gtid ?subtid)
 tell(GIAgent “task ?gtid BILLING ready”))

Bill-Execution:
 If (bill(?gtid ?subtid)
 logical-db(?db))
 then (tell(SchedProcAgent
 “task-execute ?subtid BILL ?db bill-?gtid.sql”)
 tell(GIAgent “task ?gtid BILLING active”))

Bill-Completion:
 If (success(?subtid)
 bill(?gtid ?subtid))
 then (tell(GIAgent “task ?gtid BILLING done”))

Bill-Failure:
 If (failure(?subtid)
 excuse(bill(?gtid ?subtid)))
 then (abort(?gtid)
 tell(GIAgent “task ?gtid BILLING failed”))

Figure 5: Rules used by the transaction-scheduling agent to generate a workflow schedule

14

repairing agent comes from a comparison of the models, as expressed in terms of the
common ontology.

Billing
Subtask

?gtid

Ready to
Execute

Executing

Success Failure

Start/Prepare Message

Message ready/
Tell Schedule-Processing Agent

Receive fail from
Schedule-Processing Agent/

Tell G.I. Agent

Receive OK from
Schedule-Processing Agent/

Tell G.I. Agent

Figure 6: Representative finite-state automaton for a telecommunication
service provisioning task assigned by the transaction-scheduling agent

15

The agents, as described above, are simply expert systems whose expertise is in
processing orders for telecommunication services. However, they have the additional
abilities to interact and cooperate with each other. Their interaction is via the mediators
shown in Figure 3.

The agents cooperate, at the knowledge level [Newell 1982], via models of themselves.
For example, a conceptual domain model for the graphical-interaction agent is shown in
Figure 8. An interface form that provides user access and modifications to the knowledge
possessed by this agent is shown in Figure 9. Entries on the form, or the form's
completion, cause queries and transactions to be sent to the other agents or databases in
the environment. Note, however, that the model does not capture the procedural
knowledge necessary to specify the queries and transactions; a technique for modeling
processes is needed to capture such knowledge. In other words, the models represent the
static knowledge of the agents, not (unfortunately) their dynamics. Nevertheless, they
have proven useful in enabling the agents to interact coherently, as we describe next.

Provision
switch

Assign
trunk circuit

Assign
local circuit

Validate
service order

Service request

Span-in-place?

Validate circuit

Assign span
Create

billing record

Create
work order

Record
circuit data

Schedule
work

Figure 7: Workflow for telecommunication service provisioning generated by the
transaction-scheduling agent. Only the default workflow is shown, without any

exception paths.

16

ID*

ServiceOrder

Date Name* Phone

Customer

Circuit

OrderedBy

Orders Quantity

Type

zLocationaLocation

Figure 8: Semantic model (simplified) for the graphical-interaction agent

17

Conceptual models for two more of the agents are shown in Figures 10 and 11. Each
model consists of organized concepts describing the context, domain, or viewpoint of the
knowledge possessed by that agent, i.e., the knowledge base of each agent contains rules
written in terms of these concepts.

Circuit Information

aLocation

DS-1 Access Service Request

DateOrder ID

Customer Name Phone

Quantity

zLocation Type

Figure 9: User interface form (simplified) corresponding to the declarative
knowledge of the graphical-interaction agent

18

ID

Transaction

Status

Initiator

MsgType

Agent

Relation

Class

Subtrans

WorkDir

BinDir

Create bill Assign span
Assign local

circuit
Provision

switch Trunk circuit Database

Figure 10: Semantic model for the transaction-scheduling agent (dashed arrows indicate
instance relationships, and solid arrows indicate subclass relationships)

19

All of the models in Figures 8, 10, and 11 are related to the common context, and thereby
to each other, via articulation axioms. For example, the concept Transaction for the
transaction-scheduling agent and the concept DBTransaction for the schedule-
repairing agent are each related to the common concept DatabaseTransaction via
the axioms

ist(Cyc, DatabaseTransaction(T)) ⇔ ist(Scheduler, Transaction(T))

ist(Cyc, DatabaseTransaction(T)) ⇔ ist(Repairer, DBTransaction(T))

The axioms are used to translate messages exchanged by the agents, so that the agents
can understand each other. In the above example, the two agents would use their axioms
to converse about the status of database transactions, without having to change their
internal terminology. Similar axioms describing the semantics of each of the databases
involved enable the schedule-processing agent to issue transactions to the databases. The
axioms also relate the semantics of the form shown in Figure 9 to the semantics of the
other information resources in the environment. Such axioms are constructed with the aid
of a graphical tool called MIST, for Model Integration Software Tool. The operation of
MIST is described in the Appendix.

ID*

Database
transaction

Status

Command

Database

Agent

Fail
compensate

Abort
compensate

Initial
action

Command

Command

Clause

Subtrans

Figure 11: Semantic model for the schedule-repairing agent

20

Operationally, the axioms are managed and applied by the mediators that assist each
agent. They use the axioms to translate each outgoing message from their agent into the
common context, and to translate each incoming message for their agent into its local
semantics.

6 Background and Discussion

Integrating enterprise models is similar to integrating heterogeneous databases. Two
approaches have been suggested previously for this [Buneman et al. 1990]. The
composite approach produces a global schema by merging the schemas of the individual
databases. Explicit resolutions are specified in advance for any semantic conflicts among
the databases, so users and applications are presented with the illusion of a single,
centralized database. However, the centralized view may differ from the previous local
views and existing applications might not execute correctly any more. Further, a new
global schema must be constructed every time a local schema changes or is added.

The federated approach [Heimbigner and McLeod 1985, Litwin et al. 1990] presents a
user with a collection of local schemas, along with tools for information sharing. The
user resolves conflicts in an application-specific manner, and integrates only the required
portions of the databases. This approach yields easier maintenance, increased security,
and the ability to deal with inconsistencies. However, a user must understand the contents
of each database to know what to include in a query: there is no global schema to provide
advice about semantics. Also, each database must maintain knowledge about the other
databases with which it shares information, e.g., in the form of models of the other
databases or partial global schemas [Ahlsen and Johannesson 1990]. For n databases, as
many as n(n-1) partial global schemas might be required, while n mappings would suffice
to translate between the databases and a common schema.

We base our methodology on the composite approach, but make three changes that
enable us to combine the advantages of both approaches while avoiding some of their
shortcomings. First, we use an existing common schema or context. In a similar attempt,
[Sull and Kashyap 1992] describes a method for integrating schemas by translating them
into an object-oriented data model, but this method maintains only the structural
semantics of the resources.

Second, we capture the mapping between each model and the common context in a set of
articulation axioms. The axioms provide a means of translation that enables the
maintenance of a global view of all information resources and, at the same time, a set of
local views that correspond to each individual resource. An application can retain its
current view, but use the information in other resources. Of course, any application can
be modified to use the global view directly to access all available information.

21

Third, we consider knowledge-based systems (KBSs), interfaces, and applications, as
well as databases.

Our use of agents for interoperating among applications and information resources is
similar to the uses of mediators described in [Wiederhold 1992]. However, we also
specify a means for semantic translation among the agents, as well as an implemented
prototype. Other applications of similar agents, such as the Pilot's Associate developed by
Lockheed et al. [Smith and Broadwell 1988], handcrafted their agents. This is not
possible for large “open” applications: the agents must be such that they can be
developed independently and execute autonomously.

Our architecture employs two kinds of computational agents: finer-grained, concurrent
actors and coarser-grained, knowledge-based systems. The actors are used to control
interactions among the components of the architecture. The knowledge-based agents are
used where reasoning is needed, such as in deciding what tasks should be performed next
or how to repair the environment when a task has failed. This seems to be a natural
division of responsibilities for our example application. However, we took an
engineering, rather than a scientific, approach, in that we did not investigate any
alternative architectures.

7 Conclusion

For years, information-system personnel managed corporate data that was centralized on
mainframes. The data was kept consistent, but eventually the amount of data increased to
the point that centralized storage was no longer viable. Also, users wanted a way to share
data across applications and wanted more direct involvement in the management of the
data. So, data then began proliferating onto workstations and personal computers, where
users could manage it themselves. But this resulted in redundancy, inconsistency, and no
coherent global view. Hence, there are now attempts to reintegrate data. Users still need
to manage their own data, which remains distributed, but they and their applications need
coherent global access and consistency must be restored.

This paper describes Carnot's approach to enabling interoperation among enterprise
information objects, i.e., among suppliers and consumers of information. In this
approach, an enterprise information object is integrated based on articulation axioms
defined between two contexts: the context of a model of the object and a common context
provided by the Cyc knowledge base. The methodology is based on the following
principles:

• Existing information resources should not have to be modified and data should
not have to migrate.

22

• Existing applications should not have to be modified.

• Users should not have to adopt a new language for communicating with the
resultant integrated system, unless they are accessing new types of information.

• Resources and applications should be able to be integrated independently, and
the mappings that result should not have to change when additional objects are
integrated.

The above principles are incorporated in an integration tool, MIST, for assisting an
administrator in generating articulation axioms for a model, and in a set of agents that
utilize the resultant axioms to provide users and applications with access to the integrated
resources. They can use a familiar local context, while still benefiting from newly added
resources. These systems constitute part of the semantic services of Carnot [Cannata
1991]. They help specify and maintain the semantics of an organization's integrated
information resources.

Extensions of our work are focused on developing additional information-system
applications for agents, including intelligent directory service agents, negotiating
electronic data interchange (EDI) agents, database administration agents, and intelligent
information retrieval agents. Our most important future work is centered on ways in
which agents can acquire and maintain models of each other in order to improve their
interactions.

References

[Agha 1986] Gul Agha, Actors: A Model of Concurrent Computation in Distributed
Systems, MIT Press, Cambridge, MA, 1986.

[Ahlsen and Johannesson 1990] Matts Ahlsen and Paul Johannesson, “Contracts in
Database Federations,” in S. M. Deen, ed., Cooperating Knowledge Based Systems 1990,
Springer-Verlag, London, 1991, pp. 293–310.

[Ansari et al. 1992] Mansoor Ansari, Marek Rusinkiewicz, Linda Ness, and Amit Sheth,
“Executing Multidatabase Transactions,” Proceedings 25th Hawaii International
Conference on Systems Sciences, January 1992.

[Attie et al. 1993] Paul C. Attie, Munindar P. Singh, Amit P. sheth, and Marek
Rusinkiewicz, “Specifying and Enforcing Intertask Dependencies,” Proceedings of the
19th VLDB Conference, 1993.

23

[Bukhres et al. 1993] Omran A. Bukhres, Jiansan Chen, Weimin Du, Ahmed K.
Elmagarmid, and Robert Pezzoli, “InterBase: An Execution Environment for
Heterogeneous Software Systems,” IEEE Computer, Vol. 26, No. 8, Aug. 1993, pp. 57–
69.

[Buneman et al. 1990] O. P. Buneman, S. B. Davidson, and A. Watters, “Querying
Independent Databases,” Information Sciences, Vol. 52, Dec. 1990, pp. 1–34.

[Cannata 1991] Philip E. Cannata, “The Irresistible Move towards Interoperable
Database Systems,” First International Workshop on Interoperability in Multidatabase
Systems, Kyoto, Japan, April 7–9, 1991.

[Ceri and Widom 1992] Stefano Ceri and Jennifer Widom, “Production Rules in Parallel
and Distributed Database Environments,” Proceedings of the 18th VLDB Conference,
Vancouver, 1992, pp. 339–351.

[Collet et al. 1991] Christine Collet, Michael N. Huhns, and Wei-Min Shen, “Resource
integration using a large knowledge base in Carnot,” IEEE Computer, Vol. 24, No. 12,
Dec. 1991, pp. 55–62.

[Elmagarmid 1992] Ahmed Elmagarmid, ed., Database Transaction Models, Morgan
Kaufmann Publishers, San Mateo, CA, 1992.

[Gasser and Huhns 1989] Les Gasser and Michael N. Huhns, eds., Distributed Artificial
Intelligence, Volume II, Pitman Publishing, London, 1989.

[Guha 1990] R. V. Guha, “Micro-theories and Contexts in Cyc Part I: Basic Issues,”
MCC Technical Report Number ACT-CYC-129-90, Microelectronics and Computer
Technology Corporation, Austin, TX, June 1990.

[Heimbigner and McLeod 1985] Dennis Heimbigner and Dennis McLeod, “A Federated
Architecture for Information Management,” ACM Transactions on Office Information
Systems, Vol. 3, No. 3, July 1985, pp. 253–278.

[Huhns 1987] Michael N. Huhns, ed., Distributed Artificial Intelligence, Pitman
Publishing, London, 1987.

[Huhns and Bridgeland 1991] Michael N. Huhns and David M. Bridgeland, “Multiagent
Truth Maintenance,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 21, No.
6, December 1991, pp. 1437–1445.

[Huhns and Singh 1997] Michael N. Huhns and Munindar P. Singh, eds., Readings in
Agents, Morgan Kaufmann Publishers, San Francisco, 1997.

24

[Jin et al. 1993] W. Woody Jin, Linda Ness, Marek Rusinkiewicz, and Amit Sheth,
“Executing Service Provisioning Applications as Multidatabase Flexible Transactions,”
Bellcore Technical Report (unpublished), 1993.

[Lenat and Guha 1990] Doug Lenat and R. V. Guha, Building Large Knowledge-Based
Systems: Representation and Inference in the Cyc Project, Addison-Wesley, Reading,
MA, 1990.

[Litwin et al. 1990] Witold Litwin, Leo Mark, and Nick Roussopoulos, “Interoperability
of Multiple Autonomous Databases,” ACM Computing Surveys, Vol. 22, No. 3, Sept.
1990, pp. 267–296.

[Newell 1982] Allen Newell, “The Knowledge Level,” Artificial Intelligence, Vol. 18,
No. 1, January 1982, pp. 87–127.

[Sheth and Larson 1990] Amit P. Sheth and James A. Larson, “Federated Database
Systems for Managing Distributed, Heterogeneous, and Autonomous Databases,” ACM
Computing Surveys, Vol. 22, No. 3, Sept. 1990, pp. 183–236.

[Singh et al. 1997] Munindar P. Singh, Philip E. Cannata, Michael N. Huhns, Nigel
Jacobs, Tomasz Ksiezyk, Kayliang Ong, Amit Sheth, Christine Tomlinson, and Darrell
Woelk “The Carnot Heterogeneous Database Project: Implemented Applications,”
Distributed and Parallel Databases: An International Journal, Vol. 5, No. 2, April 1997,
pp. 207-225.

[Smith and Broadwell 1988] David Smith and Martin Broadwell, “The Pilot's
Associate—an overview,” Proceedings of the SAE Aerotech Conference, Los Angeles,
CA, May 1988.

[Sull and Kashyap 1992] Wonhee Sull and Rangaswami L. Kashyap, “A Self-Organizing
Knowledge Representation Scheme for Extensible Heterogeneous Information
Environment,” IEEE Transactions on Knowledge and Data Engineering, Vol. 4, No. 2,
April 1992, pp. 185–191.

[Tomlinson et al. 1991] Chris Tomlinson, Mark Scheevel, and Vineet Singh, “Report on
Rosette 1.1,” MCC Technical Report Number ACT-OODS-275-91, Microelectronics and
Computer Technology Corporation, Austin, TX, July 1991.

[Tomlinson et al. 1993] Christine Tomlinson, Paul Attie, Philip Cannata, Greg Meredith,
Amit Sheth, Munindar Singh, and Darrell Woelk, “Workflow Support in Carnot,” IEEE
Data Engineering, 1993.

25

[Wiederhold 1992] Gio Wiederhold, “Mediators in the Architecture of Future
Information Systems,” IEEE Computer, Vol. 25, No. 3, March 1992, pp. 38–49.

[Woelk et al. 1996] Darrell Woelk, Philip E. Cannata, Michael N. Huhns, Nigel Jacobs,
Tomasz Ksiezyk, Greg Lavender, Greg Meredith, Kayliang Ong, Wei-Min Shen,
Munindar P. Singh, and Christine Tomlinson, “Carnot Prototype,” in Omran A. Bukhres
and Ahmed K. Elmagarmid, eds., Object-Oriented Multidatabase Systems: A Solution for
Advanced Applications, Prentice-Hall, 1996, pp. 621-648.

Appendix: The Development of Articulation Axioms

Carnot provides a graphical tool, the Model Integration Software Tool (MIST), that
automates the routine aspects of model integration, while clearly displaying the
information needed for effective user interaction. The tool produces articulation axioms
in the following three phases:

1. MIST automatically represents an enterprise model in a local context as an
instance of a given formalism. The representation is declarative, and uses an
extensive set of semantic properties.

2. By constraint propagation and user interaction it matches concepts from the
local context with concepts from the common context.

3. For each match, it automatically constructs an articulation axiom by
instantiating axiom templates.

MIST displays enterprise models both before and after they are represented in a local
context. MIST enables a global knowledge base, representing a common enterprise-wide
context, to be browsed graphically and textually to allow the correct concept matches to
be located. With MIST, a user to create frames in the common context or augment the
local context for a model with additional properties when needed to ensure a successful
match. MIST also displays the articulation axioms that it constructs. Figure 12 illustrates
the components of an information environment that MIST uses in producing articulation
axioms. The three phases of articulation axiom development are described next in more
detail.

26

Cognition

Universe of
Discourse 1

Conceptual
Schema

CASE
Tool

Interface

Application

Database

use generate

Cognition Conceptual
Schema

CASE
Tool

Interface

Application

Database

use generate

Universe of
Discourse 1

MIST

Figure 12: MIST relates the conceptual schemas of information systems, thereby aiding
in the development of articulation axioms that enable the information systems to

interoperate
In the model representation phase, we represent the model as a set of frames and slots in
a context created specially for it. These frames are instances of frames describing the
metamodel of the schema, e.g., Relation and DatabaseAttribute for a relational
schema.

In the matching phase, the problem is: given a representation for a concept in a local
context, find its corresponding concept in the common context. The two factors that
affect this phase are 1) there may be a mismatch between the local and common contexts
in the depth of knowledge representing a concept, and 2) there may be mismatches
between the structures used to encode the knowledge. For example, a concept in Cyc can
be represented as either a collection or an attribute [Lenat and Guha 1990, pp. 339ff].

If the common context's knowledge is more than or equivalent to that of the local
context's for some concept, then the interactive matching process described in this section
will find the relevant portion of the common context's knowledge. If the common context
has less knowledge than the local context, then knowledge will be added to the common
context until its knowledge equals or exceeds that in the local context; otherwise, the
common context would be unable to model the semantics of the resource. The added
knowledge refines the common context. This does not affect previously integrated
resources, but can be useful when further resources are integrated.

27

Finding correspondences between concepts in the local and common contexts is a
subgraph-matching problem. We base subgraph matching on a simple string matching
between the names or synonyms of frames representing the model and the names or
synonyms of frames in the common context. Matching begins by finding associations
between attribute/link definitions and existing slots in the common context. After a few
matches have been identified, either by exact string matches or by a user indicating the
correct match out of a set of candidate matches, possible matches for the remaining
model concepts are greatly constrained. Conversely, after integrating an entity or object,
possible matches for its attributes are constrained.

In the third phase, an articulation axiom is constructed for each match found. For
example, the match between a relational attribute phone in model AAA and the Cyc slot
phoneNumber yields the axiom

ist(Cyc phoneNumber(L, N)) ⇔ ist(AAA phone(L, N))

which means that the phone attribute definition determines the phoneNumber slot in
the common schema, and vice versa. Articulation axioms are generated automatically by
instantiating stored templates with the matches found.

