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Abstract 

In this paper we describe how a set of autonomous computational agents can cooperate in 
providing coherent management of information in environments where there are many 
diverse information resources. The agents use models of themselves and of the resources 
that are local to them. Resource models may be the schemas of databases, frame systems 
of knowledge bases, or process models of business operations. Models enable the agents 
and resources to use the appropriate semantics when they interoperate. This is 
accomplished by specifying the semantics in terms of a common ontology. We discuss 
the contents of the models, where they come from, and how the agents acquire them. We 
then describe a set of agents for telecommunication service provisioning and show how 
the agents use such models to cooperate. Their interactions produce an implementation of 
relaxed transaction processing. 
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1 Introduction 

World-wide production of manufactured goods is currently being affected by six related 
factors: 

• There are pressures for a shorter time-to-market, forcing a need for all aspects 
of product engineering—from conceptualization through delivery and 
maintenance—to be considered simultaneously. 

• There are changes in the artifacts of production, in that many products that used 
to be standardized are being specially designed for each customer, and more 
complicated products, such as space stations and fusion power plants, are being 
attempted. 

• There are increasing data, knowledge, and experience being accumulated about 
all aspects of production processes, which can be used to aid future production 
processes. 

• There are now a plethora of tools for aiding product engineering, including tools 
for simulation, visualization, layout, test, aesthetics, compliance with standards, 
and manufacturability. 

• The scope of the problem has increased to the point that teams of engineers are 
typically required. 

• Engineering, as a part of overall business operations, can no longer be done in 
isolation, but must be done in a global context, i.e., as part of an enterprise. A 
characteristic of such enterprises is that their information systems are large and 
complex, and the information is in a variety of forms, locations, and computers. 
The topology of these systems is dynamic and their content is changing so 
rapidly that it is difficult for a user or an application program to obtain correct 
information, or for the enterprise to maintain consistent information. 

The overall trend in each of the six factors has been towards increasing the complexity of 
the engineering task. This in turn has placed additional demands on the computational 
aids for engineering, with the foremost demands being for interoperability and coherent 
access to all the relevant information available. 
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Imagine the following scenario. An engineer designing the case for a new notebook 
computer must choose a fastener to attach two of the pieces. There are three 
alternatives—rivets, bolts, and adhesive—and the engineer’s design system must provide 
him with comparative information about the sizes, strengths, reliabilities, costs, and 
availabilities of these three. There are two manufacturers of rivets and one each for bolts 
and adhesive. Information about the properties and costs of the fasteners are in databases 
accessible electronically. However, because the databases have been developed 
independently, their semantics are different. For example, one manufacturer prices rivets 
each, and the other by the hundred. There are also price breaks based on quantity. To take 
these into account, the design system must have access to sales projections for the 
notebook computer from marketing. 

The engineer decides to use rivets, but the standard sizes listed in the database are not 
exactly right. Another engineer at the rivet company is contacted about designing a 
custom-sized rivet, but she has to query her manufacturing system to determine the date 
by when a sufficient quantity can be produced. The first engineer’s design system uses 
this information to predict the availability of the notebook computer product. When a 
fastener order is finally placed, it results in transactions being committed on engineering, 
manufacturing, and sales information systems at several companies. As the product cycle 
progresses, changes might cause the information systems to be updated, with some of the 
transactions either rolled back or compensated. 

There are four major techniques for coping with the size and complexity of enterprise 
information systems such as these: modularity, distribution, abstraction, and intelligence, 
i.e., being smarter about how you seek and modify information. The use of intelligent, 
distributed modules is one way of combining all four of these techniques, yielding a 
distributed artificial intelligence approach. 

Distributed artificial intelligence (DAI) [Huhns 1987; Gasser and Huhns 1989; Huhns 
and Singh 1997] provides some of the technology needed for this integration and 
interaction. DAI is concerned with how a decentralized group of intelligent 
computational agents should coordinate their activities to achieve their goals. When 
pursuing common or overlapping goals, they should act cooperatively so as to 
accomplish more as a group than individually; when pursuing conflicting goals, they 
should compete intelligently. Interconnected agents can cooperate in solving problems, 
share expertise, work in parallel on common problems, be developed, implemented, and 
maintained modularly, be fault tolerant through redundancy, represent multiple 
viewpoints and the knowledge of multiple human experts, and be reusable. 

In accord with this approach, we describe in this paper how to distribute and embed 
computational agents throughout an enterprise. The agents are knowledgeable about 
information resources that are local to them, and cooperate to provide global access to, 
and better management of, the information. For the practical reason that the systems are 
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too large and dynamic (i.e., open) for global solutions to be formulated and implemented, 
the agents need to execute autonomously and be developed independently. To cooperate 
effectively, the agents must either have models of each other and of the available 
information resources or provide models of themselves. We focus on the latter in this 
paper. 

For such an open information environment, the questions arise: what should be modeled, 
where do models come from, what are their constituents, and how should they be used? 
We discuss the types of models that might be available, and how agents can acquire them 
at compile time and use them at run time. We use the ontology developed for the large 
knowledge-based system, Cyc, for semantic grounding of the models. The ontology is 
made commonly available by providing access to it over a network, such as the Internet 
or one of its commercial variants. At compile time, semantic mappings are constructed 
relating schema-level models of each information system component to the common 
ontology. At run time, a distributed truth maintenance system [Huhns and Bridgeland 
1991] is used to maintain semantic consistency of information. The truth maintenance 
system is executed by knowledge-based mediating agents—one for each user, resource, 
application, and interface—that actively monitor integrity constraints. In addition, the 
agents help locate and provide access to the most appropriate information for each user or 
application. 

We then describe a set of agents for telecommunication service provisioning as an 
example of parameterized design. For these agents—a scheduling agent, a schedule-
repairing agent, a schedule-processing agent, and an interface agent—we describe their 
models and how they use them to cooperate. We also describe the use of actors [Agha 
1986]—one per agent—who manage their communications. Each actor independently 
maintains the relationship between its agent and the common ontology (in the form of the 
semantic mappings), and updates that relationship as the ontology changes or the agent 
evolves. 

This achieves our research goal of providing interoperation among separately developed 
information resources, thereby enabling them to be accessed and modified coherently. 
Our system includes the computational infrastructure, from network communications to 
consistency maintenance, that cooperative engineering also requires. 

2 Modeling 

Enterprise information modeling is a corporate activity that produces the models needed 
for interoperability. The resultant models should describe all aspects of a business 
environment, including 
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• databases 

• database applications 

• software repositories 

• part description repositories 

• expert systems, knowledge bases, and computational agents 

• work flows, and the information they create, use, maintain, and own, and 

• the organization itself. 

The models provide online documentation for the concepts they describe. They enable 
application code and data to be reused, data to be analyzed for consistency, databases to 
be constructed automatically, the impact of change on an enterprise to be assessed, and 
applications to be generated automatically. 

An enterprise might have many models available, each describing a portion of the 
enterprise and each constructed independently. For example, 

• the information present in a database is modeled by the schema for the database, 
which is produced through a process of logical data modeling 

• the data values present in a database are modeled (weakly, in most cases) by 
data dictionary information, which is produced through data engineering 

• the information present in an object-centered knowledge base is modeled by the 
ontology of the objects, which is produced through ontological engineering 

• process models, possibly in the form of Petri nets or IDEFx descriptions, are 
produced through logical process modeling 

• STEP (Standard for the Exchange of Product model data) schemas, written in 
Express, are produced from component and physical process modeling. 

Although it might appear that interoperability would require all of these models to be 
merged into a single, homogeneous, global model, this is not the case in our approach. 
Instead, there are good reasons for retaining the many individual models: 1) they are 
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easier to construct than a single large model; 2) enterprises may be formed dynamically 
through mergers, acquisitions, and strategic alliances, and the resultant enterprises might 
have inherited many existing models; 3) because enterprises are geographically 
dispersed, their resources are typically decentralized; and 4) as enterprises (and thus 
models) evolve, it is easier to maintain smaller models. 

Unfortunately, the models are often mutually incompatible in syntax and semantics, not 
only due to the different things being modeled, but also due to mismatches in hardware, 
operating systems, data structures, and corporate usage. In attempting to model some 
portion of the real world, information models necessarily introduce simplifications and 
inaccuracies that result in semantic incompatibilities. However, the individual models 
must be related to each other and their incompatibilities resolved [Sheth and Larson 
1990], because 

• A coherent picture of the enterprise is needed to enable decision makers to 
operate the business efficiently and designers to evaluate information flows to 
and from their particular application. 

• Applications need to interoperate correctly across a global enterprise. This is 
especially important due to the increasing prevalence of strategic business 
applications that require intercorporate linkage, e.g., linking buyers with 
suppliers, or intracorporate integration, e.g., producing composite information 
from engineering and manufacturing views of a product. 

• Developers require integrity validation of new and updated models, which must 
be done in a global context. 

• Developers want to detect and remove inconsistencies, not only among models, 
but also among the underlying business operations that are modeled. 

We utilize a mediating mechanism based on an existing common ontology to yield the 
appearance and effect of semantic homogeneity among existing models. The mechanism 
provides logical connectivity among information resources via a semantic service layer 
that automates the maintenance of data integrity and provides an enterprise-wide view of 
all the information resources, thus enabling them to be used coherently. This logical layer 
is implemented as a network of interacting agents. Significantly, the individual systems 
retain their autonomy. This is a fundamental tenet of our Carnot architecture [Woelk et 
al. 1996; Singh et al. 1997]. 
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3 Information Consistency 

What technology is available to achieve the requisite consistency among different 
information resources? 

Distributed truth maintenance: There are many desirable properties for a knowledge 
base, such as completeness, conciseness, accuracy, and efficiency. For an agent that can 
reason nonmonotonically, there are additional properties used to describe the integrity of 
the knowledge base: stability, well-foundedness, and logical consistency. In addition, an 
agent’s algorithm for maintaining well-founded stable states of its knowledge base 
should be complete, in that the algorithm should find a well-founded stable state if it 
exists. Each agent should have a complete algorithm for maintaining the integrity of its 
own knowledge base. 

Truth maintenance systems are a common way to achieve knowledge base integrity in a 
single agent system, because they deal with the frame problem, they deal with atomicity, 
and they lead to efficient search. Furthermore, the justification networks they create can 
be used for nonmonotonic reasoning, problem-solving explanations to a user, 
explanation-based learning, and multiagent negotiation. 

However, the above definitions of properties for a single knowledge base are insufficient 
to characterize the multiple knowledge bases in a multiagent environment. When agents 
that are nonmonotonic reasoners exchange beliefs and then make inferences based on the 
exchanged beliefs, then concepts of distributed knowledge-base integrity are needed 
[Huhns and Bridgeland 1991]. 

Nonmonotonic reasoning: Agents need to be able to maintain independent viewpoints 
and skepticism until they receive convincing evidence otherwise, but they should then be 
able to revise their beliefs consistently. 

Negotiation: Negotiation has been explored as a means to mediate among conflicting 
agents. Existing systems involve either monotonic reasoners, or nonmonotonic, but 
memoryless, reasoners, i.e., reasoners that simply discard old solutions and re-solve in 
the face of conflicts. Negotiation is likely the correct approach, but the agents must be 
able to revise their plans incrementally as they interact. They must be able to 
communicate directly, with each other and with human agents, and they must be able to 
assess and maintain the integrity of both the communicated information and their own 
knowledge. Then they can successfully coordinate their activities and cooperate in 
solving mutual problems. 

Semantic integration: Where the semantics of a resource are expressed (partially) in the 
form of data dictionary or schema information, this information must be interrelated with 
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the semantics of the other resources through the use of class servers or global schemas. It 
is essential that a common semantics be available and provided computationally. 

Database management systems for design: DBMS technology is needed that supports 
large and long-duration transactions, relaxed transactions, large structured composite 
objects, versions, and aggregation. 

Intentionality: Representations for agents and their actions must be developed that can 
express their intentions and commitments through communicative acts. 

We support the above capabilities in our architecture. 

4 Semantic Integration via a Common Ontology 

In order for agents to interact productively, they must have something in common, i.e., 
they must be either grounded in the same environment or able to relate their individual 
environments. We use an existing common context—the Cyc common-sense knowledge 
base [Lenat and Guha 1990]—to provide semantic grounding. The models of agents and 
resources are compared and mapped to Cyc but not to each other, making interoperation 
easier to attain. For n models, only n mappings are needed, instead of as many as n(n-1) 
mappings when the models are related pairwise. Currently, Cyc is the best choice for a 
common context, because of 1) its rich set of abstractions, which ease the process of 
representing predefined groupings of concepts, 2) its knowledge representation 
mechanisms, which are needed to construct, represent, and maintain a common context, 
and 3) its size: it covers a large portion of the world and the subject matter of most 
information resources. 

The large size and broad coverage of Cyc's knowledge enable it to serve as a fixed-point 
for representing not only the semantics of various information modeling formalisms, but 
also the semantics of the domains being modeled. Carnot can use models constructed 
using any of several popular formalisms, such as 

• IRDS, IBM's AD/Cycle, or Bellcore's CLDM for entity-relationship models 

• Ingres, Oracle, Sybase, Objectivity, or Itasca for database schemas, and 

• MCC's RAD or NASA's CLIPS for agent models. 

Cyc's knowledge about metamodels for these formalisms and relationships among them 
enables transactions to interoperate semantically between, for example, relational and 
object-oriented databases. 
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The relationship between a domain concept from a local model and one or more concepts 
in the common context is expressed as an articulation axiom [Guha 1990]: a statement of 
equivalence between components of two theories. Each axiom has the form 

ist(G; φ) ⇔ ist(Ci; ψ) 

where φ and ψ are logical expressions and ist is a predicate that means "is true in the 
context." This axiom says that the meaning of φ in the common context G is the same as 
that of ψ in the local context Ci.  Models are then related to each other—or translated 
between formalisms—via this common context by means of the articulation axioms, as 
illustrated in Figure 1. For example, an application's query about Automobile might 
result in subqueries to DB1 about Car, to DB2 about Auto, and to KB1 about car. 
Note that each model can be added independently, and the articulation axioms that result 
do not have to change when additional models are added. Also note that applications and 
resources need not be modified in order to interoperate in the integrated environment. We 
have built a graphical tool, MIST, that aids in the construction of articulation axioms. 

 
Application Interface

DB1

TransportationDevice

Vehicle BoatTrain

Automobile JeepTruck

Car     id   make DB2
Auto   no  model

Common Context

KB1
Car

Ford VW

Articulation Axiom 1

Articulation Axiom 2

Articulation Axiom 3
Articulation Axiom 4

Articulation Axiom 5

Figure 1:  Concepts from different models are related via a common aggregate
context by means of articulation axioms  

 

Figure 2 shows a logical view of the execution environment. During interoperation, 
mediator-like agents [Wiederhold 1992], which are implemented by Rosette actors 
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[Tomlinson et al. 1991], apply the articulation axioms that relate each agent or resource 
model to the common context. This performs a translation of message semantics. At most 
n sets of articulation axioms and n agents are needed for interoperation among n 
resources and applications. The agents also apply a syntax translation between each local 
data-manipulation language, DMLi, and the global context language, GCL.  GCL is based 
on extended first-order logic. A local data-manipulation language might be, for example, 
SQL for relational databases or OSQL for object-oriented databases. The number of 
language translators between DMLi and GCL is no greater than n, and may be a constant 
because there are only a small number of data-manipulation languages that are in use 
today. Additional details describing how transactions are processed semantically through 
the global and local views of several databases can be found in [Woelk et al. 1996]. 

 

Application 1 Application n

Common
Enterprise-Wide

View

Semantic Translation
by Mappings

Semantic Translation
by Mappings

Semantic Translation
by Mappings

DBj

Agent for Application

Agent for Resource

User

Agent for Application

Local View 1
DMLi

DMLi  GCL

Local View n
DMLn

DMLn  GCL

GCL  DMLj

Local Schema j

Semantic Translation
by Mappings

KBm

Agent for Resource

GCL  KMLm

Local Frame System m

 

Figure 2:  Logical view of the execution environment, showing how mediating agents 
apply articulation axioms to achieve semantic interoperation 
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The agents also function as communication aides, by managing communications among 
the databases, application programs, and other agents in the environment. Figure 3 shows 
how they buffer messages, locate message recipients, and translate message semantics. 
To implement message transfer, they use a tree-space mechanism—a kind of distributed 
virtual blackboard—built on the OSI and TCP/IP protocols [Tomlinson et al. 1991]. 

Agent A Resource
BMediator

Message
Buffer

Mediator

Message
Buffer

Tree Space
Interface

Tree Space
Interface

Statement,
Demand

Transmit Forward

Figure 3:  Each database, application, and reasoning agent has a mediator (actor) that
manages its communications through a tree space.

 

5 Application to Parameterized System Design 

We have applied our methodology to automate parameterized design of 
telecommunication services, the task of providing communication facilities to customers 
and often called provisioning. This task is executed in a heterogeneous multidatabase 
environment. It is an example of workflow control, in that it provides control and data 
flows among transactions executing on multiple autonomous systems [Jin et al. 1993; 
Tomlinson et al. 1993]. Service provisioning typically takes several weeks and requires 
coordination among many operation-support systems and network elements. Configuring 
the operation-support systems so that they can perform such a task often takes several 
months to complete. 

We investigated ways to improve the provisioning of one type of communication 
facility—digital services (DS-1). Provisioning DS-1 takes more than two weeks and 
involves 48 separate operations—23 of which are manual—against 16 different database 
systems. Our goals were to reduce this time to less than two hours and to provide a way 
in which new services could be introduced more easily. Our strategy for accomplishing 
these goals was to 1) interconnect and interoperate among the previously independent 
systems, 2) replace serial operations by concurrent ones by making appropriate use of 
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relaxed transaction processing [Attie et al. 1993; Bukhres et al. 1993; Elmagarmid 1992; 
Ansari et al. 1992], and 3) automate previously manual operations, thereby reducing the 
incidence of errors and delays. The transaction processing is relaxed in that some 
subsystems are allowed to be temporarily inconsistent, although eventual consistency is 
guaranteed. Relaxing the consistency requirements allows increased concurrency and, 
thus, improved throughput and response time. 

The architecture of the agents used to implement relaxed transaction processing is shown 
in Figure 4. The agents operate as follows. The graphical-interaction agent helps a user 
fill in an order form correctly, and checks inventories to give the user an estimate of 
when the order will be completed. It also informs the user about the progress of the order. 

 

Transaction
Scheduling

Agent
User

Schedule
Processing

Agent

DB3 DBnDB2 .   .   .

Graphical
Interaction

Agent

Schedule
Repairing

Agent

DB1

Figure 4:  Multiagent system for relaxed processing of telecommunication transactions

The transaction-scheduling agent constructs the schedule of tasks needed to satisfy an 
order. The tasks are scheduled with the maximum concurrency possible, while still 
satisfying their precedence constraints. Some of the rules that implement the schedule are 
shown in Figure 5. These particular rules, when appropriately enabled, generate a 
subtransaction to update the database for customer billing. When executing such rules, 
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the transaction-scheduling agent behaves as a finite-state automaton, as shown in Figure 
6. The resultant schedule showing the commit dependencies among the tasks for all such 
automata is shown in Figure 7. 

The schedule-processing agent maintains connections to the databases involved in 
telecommunication provisioning, and implements transactions on them. It knows how to 
construct the proper form for a transaction, based on the results of other transactions. The 
transactions are processed concurrently, where appropriate. If something goes wrong 
during the processing of a transaction that causes it to abort or fail to commit, the 
schedule-repairing agent provides advice on how to fix the problem and restore 
consistency. The advice can be information on how to restart a transaction, how to abort 
a transaction, how to compensate for a previously committed transaction, or how to 
clean-up a failed transaction. The integrity knowledge that is stored in the schedule 

; This rule set 1) executes an external program that translates an Access 
; Service Request into a command file to update the database for customer 
; billing, 2) executes the command file, and 3) checks for completion. 
; The scheduling agent, due to its truth-maintenance system, halts this 
; transaction whenever an abort of the global transaction occurs. 
; ?gtid denotes the global transaction identifier. 
Bill-Preparation: 
  If   (service-order(?gtid) 
        new-tid(?subtid) 
        unless(abort(?gtid))) 
  then (do(,run-shell-program “asr2bill” 
              :input “asr-?gtid.out”  :output “bill-?gtid.sql”) 
        bill(?gtid ?subtid) 
        tell(GIAgent “task ?gtid BILLING ready”)) 
 
Bill-Execution: 
  If   (bill(?gtid ?subtid) 
        logical-db(?db)) 
  then (tell(SchedProcAgent 
               “task-execute ?subtid BILL ?db bill-?gtid.sql”) 
        tell(GIAgent “task ?gtid BILLING active”)) 
 
Bill-Completion: 
  If   (success(?subtid) 
        bill(?gtid ?subtid)) 
  then (tell(GIAgent “task ?gtid BILLING done”)) 
 
Bill-Failure: 
  If   (failure(?subtid) 
        excuse(bill(?gtid ?subtid))) 
  then (abort(?gtid) 
        tell(GIAgent “task ?gtid BILLING failed”)) 
 

Figure 5: Rules used by the transaction-scheduling agent to generate a workflow schedule 
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repairing agent comes from a comparison of the models, as expressed in terms of the 
common ontology. 

 

 

Billing
Subtask

?gtid

Ready to
Execute

Executing

Success Failure

Start/Prepare Message

Message ready/
Tell Schedule-Processing Agent

Receive fail from
Schedule-Processing Agent/

Tell G.I. Agent

Receive OK from
Schedule-Processing Agent/

Tell G.I. Agent

Figure 6: Representative finite-state automaton for a telecommunication
service provisioning task assigned by the transaction-scheduling agent
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The agents, as described above, are simply expert systems whose expertise is in 
processing orders for telecommunication services. However, they have the additional 
abilities to interact and cooperate with each other. Their interaction is via the mediators 
shown in Figure 3. 

The agents cooperate, at the knowledge level [Newell 1982], via models of themselves. 
For example, a conceptual domain model for the graphical-interaction agent is shown in 
Figure 8. An interface form that provides user access and modifications to the knowledge 
possessed by this agent is shown in Figure 9. Entries on the form, or the form's 
completion, cause queries and transactions to be sent to the other agents or databases in 
the environment. Note, however, that the model does not capture the procedural 
knowledge necessary to specify the queries and transactions; a technique for modeling 
processes is needed to capture such knowledge. In other words, the models represent the 
static knowledge of the agents, not (unfortunately) their dynamics. Nevertheless, they 
have proven useful in enabling the agents to interact coherently, as we describe next. 

Provision
switch

Assign
trunk circuit

Assign
local circuit

Validate
service order

Service request

Span-in-place?

Validate circuit

Assign span
Create

billing record

Create
work order

Record
circuit data

Schedule
work

Figure 7: Workflow for telecommunication service provisioning generated by the
transaction-scheduling agent.  Only the default workflow is shown, without any

exception paths.
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ID*

ServiceOrder

Date Name* Phone

Customer

Circuit

OrderedBy

Orders Quantity

Type

zLocationaLocation

Figure 8:  Semantic model (simplified) for the graphical-interaction agent
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Conceptual models for two more of the agents are shown in Figures 10 and 11. Each 
model consists of organized concepts describing the context, domain, or viewpoint of the 
knowledge possessed by that agent, i.e., the knowledge base of each agent contains rules 
written in terms of these concepts. 

 

Circuit Information

aLocation

DS-1 Access Service Request

DateOrder ID

Customer Name Phone

Quantity

zLocation Type

Figure 9:  User interface form (simplified) corresponding to the declarative
knowledge of the graphical-interaction agent
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ID

Transaction

Status

Initiator

MsgType

Agent

Relation

Class

Subtrans

WorkDir

BinDir

Create bill Assign span
Assign local

circuit
Provision

switch Trunk circuit Database

Figure 10:  Semantic model for the transaction-scheduling agent (dashed arrows indicate
instance relationships, and solid arrows indicate subclass relationships)
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All of the models in Figures 8, 10, and 11 are related to the common context, and thereby 
to each other, via articulation axioms. For example, the concept Transaction for the 
transaction-scheduling agent and the concept DBTransaction for the schedule-
repairing agent are each related to the common concept DatabaseTransaction via 
the axioms 

ist(Cyc, DatabaseTransaction(T)) ⇔ ist(Scheduler, Transaction(T)) 

ist(Cyc, DatabaseTransaction(T)) ⇔ ist(Repairer, DBTransaction(T)) 

The axioms are used to translate messages exchanged by the agents, so that the agents 
can understand each other. In the above example, the two agents would use their axioms 
to converse about the status of database transactions, without having to change their 
internal terminology. Similar axioms describing the semantics of each of the databases 
involved enable the schedule-processing agent to issue transactions to the databases. The 
axioms also relate the semantics of the form shown in Figure 9 to the semantics of the 
other information resources in the environment. Such axioms are constructed with the aid 
of a graphical tool called MIST, for Model Integration Software Tool. The operation of 
MIST is described in the Appendix.  

ID*

Database
transaction

Status

Command

Database

Agent

Fail
compensate

Abort
compensate

Initial
action

Command

Command

Clause

Subtrans

Figure 11:  Semantic model for the schedule-repairing agent
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Operationally, the axioms are managed and applied by the mediators that assist each 
agent. They use the axioms to translate each outgoing message from their agent into the 
common context, and to translate each incoming message for their agent into its local 
semantics. 

6 Background and Discussion 

Integrating enterprise models is similar to integrating heterogeneous databases. Two 
approaches have been suggested previously for this [Buneman et al. 1990]. The 
composite approach produces a global schema by merging the schemas of the individual 
databases. Explicit resolutions are specified in advance for any semantic conflicts among 
the databases, so users and applications are presented with the illusion of a single, 
centralized database. However, the centralized view may differ from the previous local 
views and existing applications might not execute correctly any more. Further, a new 
global schema must be constructed every time a local schema changes or is added. 

The federated approach [Heimbigner and McLeod 1985, Litwin et al. 1990] presents a 
user with a collection of local schemas, along with tools for information sharing. The 
user resolves conflicts in an application-specific manner, and integrates only the required 
portions of the databases. This approach yields easier maintenance, increased security, 
and the ability to deal with inconsistencies. However, a user must understand the contents 
of each database to know what to include in a query: there is no global schema to provide 
advice about semantics. Also, each database must maintain knowledge about the other 
databases with which it shares information, e.g., in the form of models of the other 
databases or partial global schemas [Ahlsen and Johannesson 1990]. For n databases, as 
many as n(n-1) partial global schemas might be required, while n mappings would suffice 
to translate between the databases and a common schema. 

We base our methodology on the composite approach, but make three changes that 
enable us to combine the advantages of both approaches while avoiding some of their 
shortcomings. First, we use an existing common schema or context. In a similar attempt, 
[Sull and Kashyap 1992] describes a method for integrating schemas by translating them 
into an object-oriented data model, but this method maintains only the structural 
semantics of the resources. 

Second, we capture the mapping between each model and the common context in a set of 
articulation axioms. The axioms provide a means of translation that enables the 
maintenance of a global view of all information resources and, at the same time, a set of 
local views that correspond to each individual resource. An application can retain its 
current view, but use the information in other resources. Of course, any application can 
be modified to use the global view directly to access all available information. 
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Third, we consider knowledge-based systems (KBSs), interfaces, and applications, as 
well as databases. 

Our use of agents for interoperating among applications and information resources is 
similar to the uses of mediators described in [Wiederhold 1992]. However, we also 
specify a means for semantic translation among the agents, as well as an implemented 
prototype. Other applications of similar agents, such as the Pilot's Associate developed by 
Lockheed et al. [Smith and Broadwell 1988], handcrafted their agents. This is not 
possible for large “open” applications: the agents must be such that they can be 
developed independently and execute autonomously. 

Our architecture employs two kinds of computational agents: finer-grained, concurrent 
actors and coarser-grained, knowledge-based systems. The actors are used to control 
interactions among the components of the architecture. The knowledge-based agents are 
used where reasoning is needed, such as in deciding what tasks should be performed next 
or how to repair the environment when a task has failed. This seems to be a natural 
division of responsibilities for our example application. However, we took an 
engineering, rather than a scientific, approach, in that we did not investigate any 
alternative architectures. 

7 Conclusion 

For years, information-system personnel managed corporate data that was centralized on 
mainframes. The data was kept consistent, but eventually the amount of data increased to 
the point that centralized storage was no longer viable. Also, users wanted a way to share 
data across applications and wanted more direct involvement in the management of the 
data. So, data then began proliferating onto workstations and personal computers, where 
users could manage it themselves. But this resulted in redundancy, inconsistency, and no 
coherent global view. Hence, there are now attempts to reintegrate data. Users still need 
to manage their own data, which remains distributed, but they and their applications need 
coherent global access and consistency must be restored. 

This paper describes Carnot's approach to enabling interoperation among enterprise 
information objects, i.e., among suppliers and consumers of information. In this 
approach, an enterprise information object is integrated based on articulation axioms 
defined between two contexts: the context of a model of the object and a common context 
provided by the Cyc knowledge base. The methodology is based on the following 
principles: 

• Existing information resources should not have to be modified and data should 
not have to migrate. 
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• Existing applications should not have to be modified. 

• Users should not have to adopt a new language for communicating with the 
resultant integrated system, unless they are accessing new types of information. 

• Resources and applications should be able to be integrated independently, and 
the mappings that result should not have to change when additional objects are 
integrated. 

The above principles are incorporated in an integration tool, MIST, for assisting an 
administrator in generating articulation axioms for a model, and in a set of agents that 
utilize the resultant axioms to provide users and applications with access to the integrated 
resources. They can use a familiar local context, while still benefiting from newly added 
resources. These systems constitute part of the semantic services of Carnot [Cannata 
1991]. They help specify and maintain the semantics of an organization's integrated 
information resources. 

Extensions of our work are focused on developing additional information-system 
applications for agents, including intelligent directory service agents, negotiating 
electronic data interchange (EDI) agents, database administration agents, and intelligent 
information retrieval agents.  Our most important future work is centered on ways in 
which agents can acquire and maintain models of each other in order to improve their 
interactions. 
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Appendix: The Development of Articulation Axioms 

Carnot provides a graphical tool, the Model Integration Software Tool (MIST), that 
automates the routine aspects of model integration, while clearly displaying the 
information needed for effective user interaction. The tool produces articulation axioms 
in the following three phases: 

1. MIST automatically represents an enterprise model in a local context as an 
instance of a given formalism. The representation is declarative, and uses an 
extensive set of semantic properties. 

2. By constraint propagation and user interaction it matches concepts from the 
local context with concepts from the common context. 

3. For each match, it automatically constructs an articulation axiom by 
instantiating axiom templates. 

MIST displays enterprise models both before and after they are represented in a local 
context. MIST enables a global knowledge base, representing a common enterprise-wide 
context, to be browsed graphically and textually to allow the correct concept matches to 
be located. With MIST, a user to create frames in the common context or augment the 
local context for a model with additional properties when needed to ensure a successful 
match. MIST also displays the articulation axioms that it constructs. Figure 12 illustrates 
the components of an information environment that MIST uses in producing articulation 
axioms. The three phases of articulation axiom development are described next in more 
detail. 
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Figure 12: MIST relates the conceptual schemas of information systems, thereby aiding
in the development of articulation axioms that enable the information systems to

interoperate
In the model representation phase, we represent the model as a set of frames and slots in 
a context created specially for it. These frames are instances of frames describing the 
metamodel of the schema, e.g., Relation and DatabaseAttribute for a relational 
schema. 

In the matching phase, the problem is: given a representation for a concept in a local 
context, find its corresponding concept in the common context. The two factors that 
affect this phase are 1) there may be a mismatch between the local and common contexts 
in the depth of knowledge representing a concept, and 2) there may be mismatches 
between the structures used to encode the knowledge. For example, a concept in Cyc can 
be represented as either a collection or an attribute [Lenat and Guha 1990, pp. 339ff]. 

If the common context's knowledge is more than or equivalent to that of the local 
context's for some concept, then the interactive matching process described in this section 
will find the relevant portion of the common context's knowledge. If the common context 
has less knowledge than the local context, then knowledge will be added to the common 
context until its knowledge equals or exceeds that in the local context; otherwise, the 
common context would be unable to model the semantics of the resource. The added 
knowledge refines the common context. This does not affect previously integrated 
resources, but can be useful when further resources are integrated. 
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Finding correspondences between concepts in the local and common contexts is a 
subgraph-matching problem. We base subgraph matching on a simple string matching 
between the names or synonyms of frames representing the model and the names or 
synonyms of frames in the common context. Matching begins by finding associations 
between attribute/link definitions and existing slots in the common context. After a few 
matches have been identified, either by exact string matches or by a user indicating the 
correct match out of a set of candidate matches, possible matches for the remaining 
model concepts are greatly constrained. Conversely, after integrating an entity or object, 
possible matches for its attributes are constrained. 

In the third phase, an articulation axiom is constructed for each match found. For 
example, the match between a relational attribute phone in model AAA and the Cyc slot 
phoneNumber yields the axiom 

ist(Cyc phoneNumber(L, N)) ⇔ ist(AAA phone(L, N)) 

which means that the phone attribute definition determines the phoneNumber slot in 
the common schema, and vice versa. Articulation axioms are generated automatically by 
instantiating stored templates with the matches found. 


