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Abstract 
 
This paper describes how a set of autonomous computational agents can cooperate in 
providing coherent management of transaction workflows in environments where there are 
many diverse information resources.  The agents use models of themselves and of the 
resources that are local to them.  Resource models may be the schemas of databases, frame 
systems of knowledge bases, domain models of business environments, or process models of 
business operations.  Models enable the agents and information resources to use the 
appropriate semantics when they interoperate.  This is accomplished by specifying the 
semantics in terms of a common ontology.  We discuss the contents of the models, where they 
come from, and how the agents acquire them.  We then describe a set of agents for 
telecommunication service provisioning and show how the agents use such models to 
cooperate.  The agents implement virtual state machines, and interact by exchanging state 
information.  Their interactions produce an implementation of relaxed transaction processing. 
 

1 Introduction 
 
Business operations, including sales, marketing, manufacturing, and design, can no longer be 
done in isolation, but must be done in a global context, i.e., as part of an enterprise.  A 
characteristic of such enterprises is that their information systems are large and complex, and 
the information is in a variety of forms, locations, and computers.  The topology of these 
systems is dynamic and their content is changing so rapidly that it is difficult for a user or an 
application program to obtain correct information, or for the enterprise to maintain consistent 
information. 
 
Some of the techniques for dealing with the size and complexity of these enterprise 
information systems are modularity, distribution, abstraction, and intelligence, i.e., being 
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smarter about how you seek and modify information.  Combining these techniques implies the 
use of intelligent, distributed modules—a distributed artificial intelligence approach.  In 
accord with this approach, we distribute and embed computational agents throughout an 
enterprise.  The agents are knowledgeable about information resources that are local to them, 
and cooperate to provide global access to, and better management of, the information.  For the 
practical reason that the systems are too large and dynamic (i.e., open) for global solutions to 
be formulated and implemented, the agents need to execute autonomously and be developed 
independently.  To cooperate effectively, the agents must either have models of each other 
and of the available information resources or provide models of themselves.  We focus on the 
latter in this paper. 
 
For such an open information environment, the questions arise: what should be modeled, 
where do models come from, what are their constituents, and how should they be used?  We 
discuss the types of models that might be available in an enterprise and how agents can 
acquire them.  We use the ontology developed for the large knowledge-based system, Cyc, for 
semantic grounding of the models.  This provides a common structured vocabulary that all of 
the agents use and share.  We then describe a set of agents for telecommunication service 
provisioning—a scheduling agent, a schedule-repairing agent, a schedule-processing agent, 
and an interface agent—and then describe their models and how they use them to cooperate.  
We also describe the use of actors [Agha 1986]—one per agent—who manage 
communications among the agents.  Each actor independently maintains the relationship 
between its agent and the common ontology (in the form of articulation axioms), and updates 
that relationship as the ontology changes or the agent itself evolves. 
 

2 Semantic Inconsistency 
 
A characteristic of all modern enterprises is that they have much information in many 
different forms.  A requirement of enterprise information systems is that applications operate 
correctly and efficiently using all of the information that might be available in the enterprise.  
One of the major problems in satisfying this requirement is that the information often has 
different semantics in each of the systems, and the differences must be resolved before the 
systems can interoperate.  There are several types of semantic inconsistencies that can occur 
among applications and resources, as follows:  
• mismatches in units, e.g., "$" vs. "DM" 
• mismatches in scale, e.g., "thousands" vs. "millions" 
• mismatches in quantization (granularity), e.g., hotels rated by the three categories 

"economy," "deluxe," or "luxurious" in one system, and by the four categories "$," "$$," 
"$$$," or "$$$$" in another 

• synonyms, e.g., "single" vs. "unmarried" 
• abbreviations, e.g., "TX" vs. "Texas" or "Sep" vs. "Sept." 
• combinations of the above mismatches, e.g., an attribute cost with values representing 

"dollars," "before tax," and "for each" vs. an attribute price with values representing 
"francs," "after tax," and "per dozen." 
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Inconsistencies such as these need to be resolved in order for applications and resources to 
interoperate correctly.  We believe resolution can be achieved via modeling. 
 

3 Modeling 
 
Enterprise information modeling is a corporate activity that produces the models needed for 
interoperability.  The resultant models should describe all aspects of a business environment, 
including 
• databases 
• database applications 
• software repositories 
• part description repositories 
• expert systems, knowledge bases, and computational agents 
• business work flows, and the information they create, use, maintain, and own, and 
• the business organization itself. 
The models provide online documentation for the concepts they describe.  They enable 
application code and data to be reused, data to be analyzed for consistency, databases to be 
constructed automatically, the impact of change on an enterprise to be assessed, and 
applications to be generated automatically. 
 
An enterprise might have many models available, each describing a portion of the enterprise 
and each constructed independently.  For example, 
• the information present in a database is modeled by the schema for the database, which is 

produced through a process of logical data modeling 
• the data values present in a database are modeled (weakly, in most cases) by data 

dictionary information, which is produced through data engineering 
• the information present in an object-centered knowledge base is modeled by the ontology 

of the objects, which is produced through ontological engineering 
• process models, possibly in the form of Petri nets or IDEFx descriptions, are produced 

through logical process modeling 
• STEP (Standard for the Exchange of Product model data) schemas, written in Express, are 

produced from component and physical process modeling. 
 
Although it might appear that interoperability would require all of these models to be merged 
into a single, homogeneous, global model, this is not the case in our approach.  Instead, there 
are good reasons for retaining the many individual models:  1) they are easier to construct 
than a single large model; 2) enterprises may be formed dynamically through mergers, 
acquisitions, and strategic alliances, and the resultant enterprises might have inherited many 
existing models; 3) because enterprises are geographically dispersed, their resources are 
typically decentralized; and 4) as enterprises (and thus models) evolve, it is easier to maintain 
smaller models.  
 
Making use of small individual models means they must be related and reconciled.  
Unfortunately, the models are often mutually incompatible in syntax and semantics, not only 
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due to the different things being modeled, but also due to mismatches in underlying hardware 
and operating systems, in data structures, and in corporate usage.  In attempting to model 
some portion of the real world, information models necessarily introduce simplifications and 
inaccuracies that result in semantic incompatibilities.  However, the individual models must 
be related to each other and their incompatibilities resolved [Sheth and Larson 1990], because 
• A coherent picture of the enterprise is needed to enable decision makers to operate their 

business efficiently and designers to evaluate information flows to and from their 
particular application. 

• Applications need to interoperate correctly across a global enterprise.  This is especially 
important due to the increasing prevalence of strategic business applications that require 
intercorporate linkage, e.g., linking buyers with suppliers, or intracorporate integration, 
e.g., producing composite information from engineering and manufacturing views of a 
product. 

• Developers require integrity validation of new and updated models, which must be done 
in a global context. 

• Developers want to detect and remove inconsistencies, not only among models, but also 
among the underlying business operations that are modeled. 

 
We utilize a mediating mechanism based on an existing common ontology to yield the 
appearance and effect of semantic homogeneity among existing models.  The mechanism 
provides logical connectivity among information resources via a semantic service layer that 
automates the maintenance of data integrity and provides an enterprise-wide view of all the 
information resources, thus enabling them to be used coherently.  This logical layer is 
implemented as a network of interacting agents.  Significantly, the individual systems retain 
their autonomy.  This is a fundamental tenet of the Carnot architecture that we developed and 
deployed [Woelk et al. 1995], which provides the tools and infrastructure for interoperability 
across global enterprises. 
 

4 Semantic Integration via a Common Ontology 
 
In order for agents to interact productively, they must have something in common, i.e., they 
must be either grounded in the same environment or able to relate their individual 
environments.  We use an existing common context—the Cyc common-sense knowledge base 
[Lenat and Guha 1990]—to provide semantic grounding.  The models of agents and resources 
are compared and mapped to Cyc but not to each other, making interoperation easier to attain.  
For n models, only n mappings are needed, instead of as many as n(n-1) mappings when the 
models are related pairwise.  Currently, Cyc is the best choice for a common context, because 
of 1) its rich set of abstractions, which ease the process of representing predefined groupings 
of concepts, 2) its knowledge representation mechanisms, which are needed to construct, 
represent, and maintain a common context, and 3) its size: it covers a large portion of the real 
world and the subject matter of most information resources. 
 
The large size and broad coverage of Cyc's knowledge enables it to serve as a fixed-point for 
representing not only the semantics of various information modeling formalisms, but also the 
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semantics of the domains being modeled.  Our system can use models constructed using any 
of several popular formalisms, such as 
• IRDS, IBM's AD/Cycle, or Bellcore's CLDM for entity-relationship models 
• Ingres, Oracle, Sybase, Objectivity, or Itasca for database schemas, and 
• MCC's RAD or NASA's CLIPS for agent models. 
Cyc's knowledge about metamodels for these formalisms and the relationships among them 
enables transactions to interoperate semantically between, for example, relational and object-
oriented databases. 
 
The relationship between a domain concept from a local model and one or more concepts in 
the common context is expressed as an articulation axiom [Guha 1990]:  a statement of 
equivalence between components of two theories.  Each axiom has the form 
 

ist(G; φ) ⇔ ist(Ci; ψ) 
 
where φ and ψ are logical expressions and ist is a predicate that means "is true in the context."  
This axiom says that the meaning of φ in the common context G is the same as that of ψ in the 
local context Ci.  Models are then related to each other—or translated between formalisms—
via this common context by means of the articulation axioms.  For example, an application's 
query about Automobile might result in subqueries to DB1 about Car, to DB2 about 
Auto, and to KB1 about car.  Note that each model can be added independently, and the 
articulation axioms that result do not have to change when additional models are added.  Also 
note that applications and resources need not be modified in order to interoperate in the 
integrated environment.  The Appendix contains a description of the graphical tool, MIST, 
that we have built to aid in the construction of articulation axioms. 
 
Figure 1 shows a logical view of the execution environment. During interoperation, mediator-
like agents [Wiederhold 1992], which are implemented by Rosette actors [Tomlinson et al. 
1991], apply the articulation axioms that relate each agent or resource model to the common 
context.  This performs a translation of message semantics.  At most n sets of articulation 
axioms and n agents are needed for interoperation among n resources and applications.  The 
agents also apply a syntax translation between each local data-manipulation language, DMLi, 
and the global context language, GCL.  GCL is based on extended first-order logic.  A local 
data-manipulation language might be, for example, SQL for relational databases or OSQL for 
object-oriented databases.  The number of language translators between DMLi and GCL is no 
greater than n, and may be a constant because there are only a small number of data-
manipulation languages that are in use today.  Additional details describing how transactions 
are processed semantically through the global and local views of several databases can be 
found in [Woelk et al. 1992]. 
 
The agents also function as communication aides, by managing communications among the 
various agents, databases, and application programs in the environment.  They buffer 
messages, locate message recipients, and translate message semantics.  To implement 
message transfer, they use a tree-space mechanism—a kind of distributed virtual blackboard 
[Tomlinson et al. 1991]. 
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Figure 1:  Logical view of the execution environment, showing how mediating agents apply 

articulation axioms to achieve semantic interoperation 
 

5 Acquiring and Applying Semantic Metadata 
 
Interoperation requires the semantic translation of not only requests, but also data.  The 
approach taken in [Sciore et al. 1993] is to attach metadata, in the form of a property list, to 
each data item.  The metadata describes a context within which the data item can be validly 
interpreted.  The context can be thought of as a multidimensional space, with each property 
defining one of the dimensions and each data item representing a point in the space.  The 
metadata is then used to construct conversion functions that map the data items among 
different contexts, or between different points in the space. 
 
Our approach to resolving mismatches in quantization is based on mapping a data item to a 
finer-grained representation.  With such a representation, each data item can be specified 
unambiguously.  For example, 
 
create table Hotel (name       char(16) not null, 
                    category   char(8) ); 
insert into Hotel values ('Sheraton', 'deluxe'); 
insert into Hotel values ('Motel6', 'moderate'); 
insert into Hotel values ('ShackUp', 'cheap'); 
 
Articulation Axioms: 
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Hotel.name     ⇔ Lodging.name (name.arg2 = LispString) 
    [Character ⇔ LispString]  OK 
 
Hotel.category ⇔ Lodging.cost (cost.arg2 = Money 
                                Money.allGenls = ScalarInterval 
                                cost.format = IntervalEntry) 
    [Character <xx> ScalarInterval] Not OK, so... 
 
    Is Hotel.category an enumerated value?  <Yes> 
    Are the values enumerable? <Yes> 
    List the enumerated values, and indicate their ranges 
    on the following scale: 
 
<--------------------------+---------------------------> 
-∞                         0                          +∞ 
 
Resultant Value Maps: 
 
= deluxe    > 100 
= moderate  50 <= ... < 100 
= cheap     < 50 
 
The mappings used to convert a data item to another representation are called “value maps” in 
our system.  They are similar to the “conversion functions” in [Sciore et al. 1993], except that 
they convert data items into a common ontology, instead of among pairs of data item 
ontologies. 
 
The use of a common context into which all data items are mapped has several advantages, as 
follows:  
• For n types of data, n value maps are needed, compared to n(n-1) value maps to convert 

between any pair of n data types. 
• An administrator constructing or maintaining value maps needs to consider only his own 

data types, not those in any other resource or application program.  Each value map can be 
maintained independently of the others. 

• Value maps can be associated with each resource and application, and can be applied by 
mediators that represent each of these. 

• There is no ambiguity about which value map to apply to convert a given data item to the 
common context. 

 
The value maps that are developed are applied to the data returned from queries, to the data 
that is in updates, and to the data that is part of query specifications.  For an example of the 
last application, consider 
 

select * from Product where cost='125.75' 
 
where 125.75 is in francs, but the Product table stores cost in dollars.  In this case, the 
query cannot be processed until 125.75 is converted to dollars. 
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The representation to which a data item is mapped must be finer-grained than the data item’s 
own representation, so that information is not lost due to the mapping.  This does not 
guarantee that all operations can be carried out unambiguously, but only that they will be 
unambiguous whenever possible.  For the above example, suppose the rate for Motel6 is 
increased by 10%.  Applying the value maps yields a cost in the range 55 to 110, but this 
cannot be translated back into the three-value representation of the database.  However, if the 
rate had been doubled, then it would be in the range 100 to 200, and this could be 
unambiguously translated back into the category “deluxe.” 
 

6 Application to Transaction Processing 
 
We have applied our semantic modeling and mediation methodology to achieve relaxed 
transaction processing in the provisioning of telecommunication services, i.e., the task of 
providing communication facilities to customers.  This task is executed in a heterogeneous 
multidatabase environment.  It is an example of workflow control, in that it provides control 
and data flows among transactions executing on multiple autonomous systems [Jin et al. 
1993; Tomlinson et al. 1993; Georgakopoulas et al. 1995]. 
 
In the extant workflow, a telecommunication company receives a set of paper forms that gives 
details about the service (DS-1) being ordered.  It enters these forms into their system, and 
tests to determine if certain essential equipment is already in place.  If it is, the service can be 
provided quickly; otherwise, the processing must be delayed until the equipment is installed. 
 
Providing the digital communication service using this workflow takes more than two weeks 
and involves 48 separate operations—23 of which are manual—against 16 different database 
systems.  In addition, configuring the operation-support systems so that they can perform such 
a task often takes several months.  This is significant in the company’s business environment:  
many of its competitors were formed in the last decade or so, and they typically have more 
modern computational facilities than the company’s legacy systems. 
 
We sought to reduce this time to less than two hours and to provide a way in which new 
services could be introduced more easily.  Our goals were to develop a prototype workflow 
management system that could apply to workflows in general, and that would let the company 
operate as efficiently as its competition without discarding its legacy systems.  Our strategy 
for accomplishing these goals was to interconnect and interoperate among the previously 
independent systems, replace serial operations with parallel ones by using relaxed transaction 
processing [Attie et al. 1993; Bukhres et al. 1993; Elmagarmid 1992; Ansari et al. 1992], and 
automate previously manual operations, thereby reducing errors and delays. 
 
We defined a distributed agent architecture, shown in Figure 2, for intelligent workflow 
management that functions on top of Carnot’s distributed execution environment.  The four 
agents interact as follows to produce the desired behavior.  The graphical-interaction agent 
helps a user fill in an order form correctly, and checks inventories to give the user an estimate 
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of when the order will be completed.  It also informs the user about the order’s progress.  This 
enables the detection of data inconsistencies early in the process. 
 

 
Figure 2:  Multiagent system for relaxed processing of telecommunication transactions 

 
The transaction-scheduling agent constructs the initial schedule of tasks needed to satisfy an 
order.  The tasks are scheduled with the maximum concurrency possible, while still satisfying 
all precedence constraints.  Some of the rules that implement the scheduling are shown in 
Figure 3.  These particular rules, when appropriately enabled, generate a subtransaction to 
update the database for customer billing.  When executing such rules, the transaction-
scheduling agent behaves as a finite-state automaton, as shown in Figure 4.  The resultant 
schedule showing the commit dependencies among the tasks for all such automata is shown in 
Figure 5. 

Transaction
Scheduling

Agent

User

Schedule
Processing

Agent

DB3 DBnDB2 .    .    .

Graphical
Interaction

Agent

Schedule
Repairing

Agent

DB1



 10

 

; This rule set 1) executes an external program that translates an Access 
; Service Request into a command file to update the database for customer 
; billing, 2) executes the command file, and 3) checks for completion. 
; The scheduling agent, due to its truth-maintenance system, halts this 
; transaction whenever an abort of the global transaction occurs. 
; ?gtid denotes the global transaction identifier. 
Bill-Preparation: 
  If   (service-order(?gtid) 
        new-tid(?subtid) 
        unless(abort(?gtid))) 
  then (do(,run-shell-program “asr2bill” 
              :input “asr-?gtid.out”  :output “bill-?gtid.sql”) 
        bill(?gtid ?subtid) 
        tell(GIAgent “task ?gtid BILLING ready”)) 
 
Bill-Execution: 
  If   (bill(?gtid ?subtid) 
        logical-db(?db)) 
  then (tell(SchedProcAgent 
               “task-execute ?subtid BILL ?db bill-?gtid.sql”) 
        tell(GIAgent “task ?gtid BILLING active”)) 
 
Bill-Completion: 
  If   (success(?subtid) 
        bill(?gtid ?subtid)) 
  then (tell(GIAgent “task ?gtid BILLING done”)) 
 
Bill-Failure: 
  If   (failure(?subtid) 
        excuse(bill(?gtid ?subtid))) 
  then (abort(?gtid) 
        tell(GIAgent “task ?gtid BILLING failed”)) 
 

Figure 3: Rules used by the transaction-scheduling agent to generate a workflow schedule 
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Figure 4: Finite-state automaton for a DS-1 task assigned by the transaction-scheduling agent 

 
 

 
Figure 5: Workflow for telecommunication service provisioning generated by the transaction-

scheduling agent.  Only the default workflow is shown, without any exception paths. 
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The schedule-processing agent executes the schedule by invoking tasks as necessary.  It 
maintains connections to the databases involved in telecommunication provisioning, and 
implements transactions on them.  It knows how to construct the proper form for a 
transaction, based on the results of other transactions.  The schedule-processing agent also 
ensures that different workflows do not interact spuriously.  This is akin to the problem of 
concurrency control in traditional database systems—ensuring that different transactions that 
access the same data items do not access them in relative orders for which there are no 
equivalent serial executions [Kamath and Ramamritham 1996].  With a workflow, we need to 
ensure that subtasks on each database can be serialized in semantically consistent orders.  
This might require delaying some tasks, or aborting and retrying them. 
 
If the schedule-processing agent encounters an unexpected condition, such as a task failure, it 
notifies the transaction-scheduling agent, which asks the schedule-repairing agent for advice 
on how to fix the problem.  The advice can be information on how to restart a transaction, 
how to abort a transaction, how to compensate for a previously committed transaction, or how 
to clean-up a failed transaction.  These actions are meant to restore semantic consistency 
across the system.  For example, if the system cannot allocate a span to a given service 
request, it aborts the entire request; the billing task, if already committed, is compensated.  On 
the other hand, if the billing task fails but the span allocation succeeds, the service order is 
allowed to proceed and the billing task is retried later.  This example highlights the distinction 
between vital and nonvital tasks.  The failure of a vital subtask  propagates to the global task; 
nonvital tasks can simply be retried.  A conceptual model for the knowledge of the schedule-
repairing agent is shown in Figure 9.  The integrity knowledge that is stored in this agent 
comes from a comparison of the models, as expressed in terms of the common ontology. 
 
The agents, as described above, are simply expert systems whose expertise is in processing 
orders for telecommunication services.  However, they have the additional abilities to interact 
and cooperate with each other via the mediators described above. 
 
The agents cooperate, at the knowledge level [Newell 1982], via models of themselves.  For 
example, a conceptual domain model for the graphical-interaction agent is shown in Figure 6.  
An interface form that provides user access and modifications to the knowledge possessed by 
this agent is shown in Figure 7.  Entries on the form, or the form's completion, cause queries 
and transactions to be sent to the other agents or databases in the environment.  Note, 
however, that the model does not capture the procedural knowledge necessary to specify the 
queries and transactions; a technique for modeling processes is needed to capture such 
knowledge.  In other words, the models represent the static knowledge of the agents, and not 
(unfortunately) their dynamics.  Nevertheless, they have proven useful in enabling the agents 
to interact coherently, as we describe next. 
 
Conceptual models for two more of the agents are shown in Figures 8 and 9.  Each model 
consists of organized concepts describing the context, domain, or viewpoint of the knowledge 
possessed by that agent, i.e., the knowledge base of each agent contains rules written in terms 
of these concepts. 
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Figure 6:  Semantic model (simplified) for the graphical-interaction agent 

 
 

 
Figure 7:  User interface form (simplified) corresponding to the declarative knowledge of the 

graphical-interaction agent 
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Figure 8:  Semantic model for the transaction-scheduling agent (dashed arrows indicate 

instance relationships, and solid arrows indicate subclass relationships) 
 

 
Figure 9:  Semantic model for the schedule-repairing agent 

 

ID

Transaction

Status

Initiator

MsgType

Agent

Relation

Class

Subtrans

WorkDir

BinDir

Create bill Assign span
Assign local

circuit
Provision

switch Trunk circuit Database

ID*

Database
transaction

Status

Command

Database

Agent

Fail
compensate

Abort
compensate

Initial
action

Command

Command

Clause

Subtrans



 15

All of the models in Figures 6, 8, and 9 are related to the common context, and thereby to 
each other, via articulation axioms.  For example, the concept Transaction for the 
transaction-scheduling agent and the concept DBTransaction for the schedule-repairing 
agent are each related to the common concept DatabaseTransaction via the axioms 
 

ist(Cyc, DatabaseTransaction(?T)) ⇔ ist(Scheduler, Transaction(?T)) 
 

ist(Cyc, DatabaseTransaction(?T)) ⇔ ist(Repairer, DBTransaction(?T)) 
 
The axioms are used to translate messages exchanged by the agents, so that the agents can 
understand each other.  In the above example, the two agents would use their axioms to 
converse about the status of database transactions, without having to change their internal 
terminology.  Similar axioms describing the semantics of each of the databases involved 
enable the schedule-processing agent to issue transactions to the databases.  The axioms also 
relate the semantics of the form shown in Figure 7 to the semantics of the other information 
resources in the environment.  Such axioms are constructed with the aid of a graphical tool 
called MIST, for Model Integration Software Tool.  The operation of MIST is described in the 
Appendix.  
 
Operationally, the axioms are managed and applied by the mediators that assist each agent.  
They use the axioms to translate each outgoing message from their agent into the common 
context, and to translate each incoming message for their agent into its local semantics. 
 

7 Background and Discussion 
 
Integrating enterprise models is similar to integrating heterogeneous databases.  Two 
approaches have been suggested previously for this [Buneman et al. 1990].  The composite 
approach produces a global schema by merging the schemas of the individual databases.  
Explicit resolutions are specified in advance for any semantic conflicts among the databases, 
so users and applications are presented with the illusion of a single, centralized database.  
However, the centralized view may differ from the previous local views and existing 
applications might not execute correctly any more.  Further, a new global schema must be 
constructed every time a local schema changes or is added. 
 
The federated approach [Heimbigner and McLeod 1985; Litwin et al. 1990] presents a user 
with a collection of local schemas, along with tools for information sharing.  The user 
resolves conflicts in an application-specific manner, and integrates only the required portions 
of the databases.  This approach yields easier maintenance, increased security, and the ability 
to deal with inconsistencies.  However, a user must understand the contents of each database 
to know what to include in a query:  there is no global schema to provide advice about 
semantics.  Also, each database must maintain knowledge about the other databases with 
which it shares information, e.g., in the form of models of the other databases or partial global 
schemas [Ahlsen and Johannesson 1990].  For n databases, as many as n(n-1) partial global 
schemas might be required, while n mappings would suffice to translate between the 
databases and a common schema. 
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We base our methodology on the composite approach, but make three changes that enable us 
to combine the advantages of both approaches while avoiding some of their shortcomings.  
First, we use an existing common schema or context.  In a similar attempt, [Sull and Kashyap 
1992] describes a method for integrating schemas by translating them into an object-oriented 
data model, but this method maintains only the structural semantics of the resources. 
 
Second, we capture the mapping between each model and the common context in a set of 
articulation axioms.  The axioms provide a means of translation that enables the maintenance 
of a global view of all information resources and, at the same time, a set of local views that 
correspond to each individual resource.  An application can retain its current view, but use the 
information in other resources.  Of course, any application can be modified to use the global 
view directly to access all available information. 
 
Third, we consider knowledge-based systems, process models, and applications, as well as 
databases. 
 
Our use of agents for interoperating among applications and information resources is similar 
to the uses of mediators described in [Wiederhold 1992].  However, we also specify a means 
for semantic translation among the agents, as well as an implemented prototype.  Other 
applications of similar agents, such as the Pilot's Associate developed by Lockheed et al. 
[Smith and Broadwell 1988], handcrafted their agents.  This is not practical for large "open" 
applications:  the agents must be such that they can be developed independently and execute 
autonomously. 
 
Our architecture employs two kinds of computational agents:  finer-grained, concurrent actors 
and coarser-grained, knowledge-based systems.  The actors are used to control interactions 
among the components of the architecture.  The knowledge-based agents are used where 
reasoning is needed, such as in deciding what tasks should be performed next or how to repair 
the environment when a task has failed.  This seems to be a natural division of responsibilities 
for our example application.  However, we took an engineering, rather than a scientific, 
approach, in that we did not investigate any alternative architectures. 
 

8 Conclusion 
 
For years, information-system personnel managed corporate data that was centralized on 
mainframes.  The data was kept consistent, but eventually the amount of data increased to the 
point that centralized storage was no longer viable.  Also, users wanted a way to share data 
across applications and wanted more direct involvement in the management of the data.  So, 
data began proliferating onto workstations and personal computers, where users could 
manage it themselves.  But this resulted in redundancy, inconsistency, and no coherent global 
view.  Hence, there are now attempts to reintegrate data.  Users still need to manage their own 
data, which remains distributed, but they and their applications need coherent global access, 
and consistency must be restored. 
 



 17

This paper describes our approach to enabling interoperation among enterprise information 
objects, i.e., among suppliers and consumers of information.  In this approach, an enterprise 
information object is integrated based on articulation axioms defined between two contexts: 
the context of a model of the object and a common enterprise-wide context.  The 
methodology is based on the following principles: 
• Existing information resources should not have to be modified and data should not have to 

migrate. 
• Existing applications should not have to be modified. 
• Users should not have to adopt a new language for communicating with the resultant 

integrated system, unless they are accessing new types of information. 
• Resources and applications should be able to be integrated independently, and the 

mappings that result should not have to change when additional objects are integrated. 
 
The above principles are incorporated in an integration tool, MIST, for assisting an 
administrator in generating articulation axioms for a model, and in a set of agents that utilize 
the resultant axioms to provide users and applications with access to the integrated resources.  
They can use a familiar local context, while still benefiting from newly added resources.  
These systems constitute part of the semantic service layer of Carnot [Cannata 1991].  They 
help specify and maintain the semantics of an organization's integrated information resources. 
 
Extensions of our work are focused on developing additional information-system applications 
for agents, including intelligent directory service agents, negotiating electronic data 
interchange (EDI) agents, database administration agents, and intelligent information retrieval 
agents.  Our most important future work is centered on ways in which agents can acquire and 
maintain models of each other in order to improve their interactions. 
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Appendix:  The Development of Articulation Axioms 
 
We have developed a graphical tool, the Model Integration Software Tool (MIST), that 
automates the routine aspects of model integration, while clearly displaying the information 
needed for effective user interaction.  The tool produces articulation axioms in the following 
three phases: 
 
1. MIST automatically represents an enterprise model in a local context as an instance of a 

given formalism.  The representation is declarative, and uses an extensive set of semantic 
properties. 

2. By constraint propagation and user interaction it matches concepts from the local context 
with concepts from the common context. 

3. For each match, it automatically constructs an articulation axiom by instantiating axiom 
templates. 

 
MIST displays enterprise models both before and after they are represented in a local context.  
MIST enables a global knowledge base, representing a common enterprise-wide context, to 
be browsed graphically and textually to allow the correct concept matches to be located.  
With MIST, a user to create frames in the common context or augment the local context for a 
model with additional properties when needed to ensure a successful match. MIST also 
displays the articulation axioms that it constructs.  The three phases of articulation axiom 
development are described next in more detail. 
 
In the model representation phase, we represent the model as a set of frames and slots in a 
context created specially for it.  These frames are instances of frames describing the 
metamodel of the schema, e.g., Relation and DatabaseAttribute for a relational 
schema. 
 
In the matching phase, the problem is:  given a representation for a concept in a local context, 
find its corresponding concept in the common context.  The two factors that affect this phase 
are 1) there may be a mismatch between the local and common contexts in the depth of 
knowledge representing a concept, and 2) there may be mismatches between the structures 
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used to encode the knowledge.  For example, a concept in Cyc can be represented as either a 
collection or an attribute [Lenat and Guha 1990, pp. 339ff]. 
 
If the common context's knowledge is more than or equivalent to that of the local context's for 
some concept, then the interactive matching process described in this section will find the 
relevant portion of the common context's knowledge.  If the common context has less 
knowledge than the local context, then knowledge will be added to the common context until 
its knowledge equals or exceeds that in the local context; otherwise, the common context 
would be unable to model the semantics of the resource.  The added knowledge refines the 
common context.  This does not affect previously integrated resources, but can be useful 
when further resources are integrated. 
 
Finding correspondences between concepts in the local and common contexts is a subgraph-
matching problem.  We base subgraph matching on a simple string matching between the 
names or synonyms of frames representing the model and the names or synonyms of frames 
in the common context.  Matching begins by finding associations between attribute/link 
definitions and existing slots in the common context.  After a few matches have been 
identified, either by exact string matches or by a user indicating the correct match out of a set 
of candidate matches, possible matches for the remaining model concepts are greatly 
constrained.  Conversely, after integrating an entity or object, possible matches for its 
attributes are constrained. 
 
In the third phase, an articulation axiom is constructed for each match found.  For example, 
the match between a relational attribute phone in model AAA and the Cyc slot 
phoneNumber yields the axiom 
 

ist(Cyc phoneNumber(?L ?N)) ⇔ ist(AAA phone(?L ?N)) 
 
which means that the phone attribute definition determines the phoneNumber slot in the 
common schema, and vice versa.  Articulation axioms are generated automatically by 
instantiating stored templates with the matches found.  
 


