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Abstract. This paper describes how multiagent systems can be used to
achieve robust software, one of the major goals of software engineering.
The paper first positions itself within the software engineering domain.
It then develops the hypothesis that robust software can be achieved
through redundancy, where the redundancy is achieved by agents that
have different algorithms but similar responsibilities. The agents are pro-
duced by wrapping conventional algorithms with a minimal set of agent
capabilities, which we specify. We describe our initial experiments in
verifying our hypothesis and present results that show an improvement
in robustness due to redundancy. We conclude by speculating on the
implications of multiagent-based redundancy for software development.

1 Introduction

Computer systems are now entrusted with control of global telecommunications,
electric power distribution, water supplies, airline traffic, weapon systems, and
the manufacturing and distribution of goods. Such tasks are typically complex,
involve massive amounts of data, affect numerous connected devices, and are
subject to the uncertainties of open environments like the Internet. Our society
has come to expect uninterrupted service from these systems. Unfortunately,
when problems arise, humans are unable to cope with the complexity of the
systems and the speed with which they must be repaired. Increasingly, the result
is that critical missions are in jeopardy.

To cope with this situation, companies and researchers are investigating self-
monitoring and self-healing systems, which detect problems autonomously and
continue operating by fixing or bypassing the malfunction [25]. The techniques
employed include redundant hardware, error-correction codes, and, most impor-
tantly, models of how a system should behave, so that the system can recognize
when it misbehaves.

The most common technique for hardware, redundant components, is inap-
propriate for software, because having identical copies of a module provides no
benefit. Software reliability is thus a more difficult and still unresolved problem
[2, 3]. The amount of money lost due just to software errors is conservatively es-
timated at US$40B annually. To produce higher quality software, researchers are
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trying to define more principled methodologies for software engineering [6]. They
are also looking to new technologies, such as multiagent systems, and this leads
to a natural interest in combining the latest software engineering methodologies
with multiagent systems [22].

There are at least three ways that software engineering intersects multiagent
systems:

– Multiagent systems can be used to aid traditional software engineering, such
as by agent-based or agent-supplemented CASE tools

– Traditional or new software engineering techniques can be used to build
multiagent systems; e.g., UML has proven to be useful for conventional soft-
ware, so Agent-Based UML and similar efforts are underway to extend it to
support the development of agents [23]

– Conventional software can be constructed out of agents, and software engi-
neering can be used in this endeavor.

The focus of this paper is on the last.

2 Background

2.1 Methodologies for MAS Modeling

Software engineering principles applied to multiagent systems have yielded few
new modeling techniques, despite many notable efforts. A comprehensive review
of agent-oriented methodologies is contained in Iglesias, et al. [13]. Many, such
as Agent UML [23] and MAS-CommonKADS [12], are extensions of previous
software engineering design processes. Others, such as Gaia [28], were developed
specifically for agent modeling. These three have been investigated and applied
the most. Other methodologies include the AAII methodology [18], MaSE[7],
Tropos [26], Prometheus [24], and ROADMAP [16]. Because agents are useful in
such a broad range of applications, software engineering methodologies for mul-
tiagent systems should be a combination of efforts. A combination of principles
and techniques will generally give a more flexible approach to fit a design team’s
particular expectations and requirements.

Agent UML (AUML) extends UML, which emphasizes things, relationships
between things, and diagrams for grouping things and their relationships, by in-
cluding agent interaction protocols. An extension to CommonKADS [12] includes
notations from several object-oriented modeling techniques (pre-UML), and in-
troduces seven knowledge models to take advantage of agent-oriented design.
Gaia was formulated from an organization theory perspective. Its methodology
is based on a system model consisting of roles, permissions, responsibilities, pro-
tocols, activities, liveness properties, and safety properties.

2.2 Benefits of an Agent-Oriented Approach

Multiagent systems can form the fundamental building blocks for software sys-
tems, even if the software systems do not themselves require any agent-like be-
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haviors [15]. When a conventional software system is constructed with agents as
its modules, it can exhibit the following characteristics:

– Agent-based modules, because they are active, more closely represent real-
world things, which are the subjects of many applications

– Modules can hold beliefs about the world, especially about themselves and
others; if their behavior is consistent with their beliefs, then their behavior
will be more predictable and reliable

– Modules can negotiate with each other, enter into social commitments to
collaborate, and can change their mind about their results

– Modules can volunteer to be part of a software system.

The benefits of building software out of agents are [5, 11]

1. Agents enable dynamic composibility, where the components of a system can
be unknown until runtime

2. Agents allow interaction abstractions, where interactions can be unknown
until runtime

3. Because agents can be added to a system one-at-a-time, software can con-
tinue to be customized over its lifetime, even potentially by end-users

4. Because agents can represent multiple viewpoints and can use different de-
cision procedures, they can produce more robust systems. The essence of
multiple viewpoints and multiple decision procedures is redundancy, which
is the basis for error detection and correction.

2.3 Bugs, Errors, and Redundancy

Hardware robustness is typically characterized in terms of faults and failures;
equivalently, software robustness is typically characterized in terms of bugs and
errors. Faults and bugs are flaws in a system, whereas errors and failures are the
consequences of encountering the flaws during the operation or execution of the
system. The flaws may be either transient or omnipresent. The general aspects
of dealing with flaws are the same for both hardware and software: (1) predict
their occurrence, (2) prevent their occurrence, (3) estimate their severity, (4)
discover them, (5) repair or remove them, and (6) mitigate or exploit them.

Fault and bug estimation uses statistical techniques to predict how many
flaws might be in a system and how severe their effects might be. For exam-
ple, when Windows XP was released by Microsoft, it was estimated that it still
contained 60,000 bugs, based on the rate at which its bugs were being discov-
ered. Bug prevention is dependent on good software engineering techniques and
processes. Good development and run-time tools can aid in bug discovery, bug
repair is knowledge-intensive, and mitigation depends on redundancy.

Indeed, redundancy is the basis for most forms of robustness. It can be pro-
vided by replication of hardware, software, and information, and by repetition of
communication messages. For years, NASA has made its satellites more robust
by duplicating critical subsystems. If a hardware subsystem fails, there is an
identical replacement ready to begin operating. The space shuttle has quadruple
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redundancy, and will not be launched without all copies functioning. However,
software redundancy has to be provided in a different way. Identical software
subsystems will fail in identical ways, so extra copies do not provide any benefit.

Moreover, code cannot be added arbitrarily to a software system, just as steel
cannot be added arbitrarily to a bridge. Bridges are made stronger by adding
beams that are not identical to ones already there, but that have equivalent
functionality. This turns out to be the basis for robustness in software systems as
well: there must be software components with equivalent functionality, so that if
one fails to perform properly, another can provide what is needed. The challenge
is to design the software system so that it can accommodate the additional
components and take advantage of the redundant functionality.

We hypothesize that agents are a convenient level of granularity at which
to add redundancy and that the software environment that takes advantage of
them is akin to a society of such agents, where there can be multiple agents filling
each societal role [10]. Agents by design know how to deal with other agents,
so they can accommodate additional or alternative agents naturally. They also
typically are able to negotiate over and reconcile different viewpoints.

Fundamentally, the amount of redundancy required is well specified by infor-
mation and coding theory. Assume each software module in a system can behave
either correctly or incorrectly (the basis for unit testing as used by most software
development organizations) and is independent of the other modules (so they do
not suffer from the same faults). Then two modules with the same intended
functionality are sufficient to detect an error in one of them, and three modules
are sufficient to correct the incorrect behavior (by voting, or choosing the best
two-out-of-three). This is how parity bits work in code words. Unlike parity bits,
and unlike bricks and steel bridge beams, however, the software modules cannot
be identical, or else they would not be able to correct each other’s errors.

If we want a system to provide n functionalities robustly, we must introduce
m×n agents, so that there will be m ways of producing each functionality. Each
group of m agents must understand how to detect and correct inconsistencies
in each other’s behavior. If we consider an agent’s behavior to be either correct
or incorrect (binary), then, based on a notion of Hamming distance for error-
correcting codes, 4m agents can detect m − 1 errors in their behavior and can
correct (m− 1)/2 errors.

Fundamentally, redundancy must be balanced with complexity, which is de-
termined by the number and size of the components chosen for building a system.
That is, adding more components increases redundancy, but also increases the
complexity of the system. This is just another form of the common software
engineering problem of choosing the proper size of the modules used to imple-
ment a system. Smaller modules are simpler, but their interactions are more
complicated because there are more modules.

An agent-based system can cope with a growing application domain by in-
creasing the number of agents, each agent’s capability, the computational re-
sources available to each agent, or the infrastructure services needed by the
agents to make them more productive. That is, either the agents or their inter-
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actions can be enhanced, but to maintain the same degree of redundancy n, they
would have to be enhanced by a factor of n.

To underscore the importance being given to redundancy and robustness,
several initiatives are underway around the world to investigate them. IBM has
a major initiative to develop autonomic computing—“a systemic view of com-
puting modeled after the self-regulating autonomic nervous system.” Systems
that can run themselves incorporate many biological characteristics, such as
self-healing (redundancy), adaptability to changing environments (reconfigura-
bility), identity (awareness of their own resources), and immunity (automatic
defense against viruses). An autonomic computing system will adhere to self-
healing, not by “cellular regrowth,” but by making use of redundant elements to
act as replenishment parts. By taking advantage of redundant services located
around the world, a better range of services can be provided for customers in
business transactions.

For example, IBM’s Tivoli Risk Manager monitors a network’s health, pro-
tects it against attack, and heals it in the event of attack. Among its autonomic
features is a monitoring function referred to as the “heartbeat” that tracks so-
called “keepalive” messages from third party security products and gives ad-
ministrators an early warning about failures in their security infrastructure. If a
connection is lost, the heartbeat monitor issues an alert to the Risk Manager to
take action or notify a human operator.

Exemplifying extreme redundancy in hardware, HP Labs has built a mas-
sively parallel computer, the Teramac, with 220,000 known defects, but it still
yields correct results. As long as there is sufficient communication bandwidth
to find and use healthy resources, it can tolerate the defects. Allowing so many
defects enables the computer to be built cheaply.

The National Science Foundation has launched the Infrastructure for Re-
silient Internet Systems (IRIS) project, which is a five-year initiative to produce
a robust, decentralized, and secure Internet infrastructure. The infrastructure
will be developed using distributed hash table (DHT) technology, which can pre-
vent all the data in a network from becoming vulnerable if one server crashes.
Rather than centralizing the data in a single server, each server contains a par-
tial list of the data’s storage location; the challenge lies in developing a lookup
algorithm that can locate data using the fewest possible steps. IRIS grew out of
rising worries of the Internet’s susceptibility to failure and attacks from viruses,
worms, and possibly cyberterrorists.

2.4 N-Version Programming

N-version programming [8, 20], also called dissimilar software and design diver-
sity, is a technique for achieving robustness first considered in the 1970’s. It
consists of N disparate and separately developed implementations of the same
functionality. Although it has been used to produce several robust systems, it
has had limited applicability, because (1) N independent implementations have
N times the cost, (2) N implementations based on the same flawed specification
might still result in a flawed system, (3) the resultant system might have N
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times the maintenance cost (e.g., each change to the specification will have to
be made in all N implementations), and (4) the N versions must be combined
without introducing additional errors. Our work addresses this last problem.

2.5 Transaction Checkpointing, Rollback, and Recovery

Database systems have exploited the idea of transactions for maintaining the
consistency of their data. A transaction is an atomic unit of processing that
moves a database from one consistent state to another. Consistent transactions
are achievable for databases because the types of processing done are very regular
and limited.

Applying this idea to general software execution requires that the state of
a software system be saved periodically (a checkpoint) so that the system can
return to that state if an error occurs. The system then returns to that state and
processes other transactions or alternative software modules, known as recovery
blocks [1, 17, 27]. This is depicted in Figure 1.
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Fig. 1. A transaction (recovery block) approach to correcting for the occurrence of
errors in a software system

There are two ways of returning to a previous state: (1) reloading a saved
image of the system before the recently failed computation, or (2) rolling back,
i.e., reversing and undoing, each step of the failed computation [4]. Both of the
ways suffer from major difficulties:
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1. The state of a software system might be very large, necessitating the saving
of very large images

2. Many operations cannot be undone, such as those that have side-effects. Ex-
amples of these are sending a message, which cannot be un-sent, and spend-
ing resources, which cannot be un-spent. Rollback is successful in database
systems, because most database operations do not have side-effects.

2.6 Compensation

Because of this, compensation is often a better alternative for software systems.
As in database systems, it is often better to perform a compensating action,
rather than save a checkpoint of a system with a large state. Figure 2 depicts
the architecture of a robust software system that relies on compensation of failed
operations.
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Fig. 2. An architecture for software robustness based on compensating operations

3 Architecture and Process

Suppose there are a number of sorting algorithms available. Each might have
strengths, weaknesses, and possibly errors. One might work only for integers,
while another might be slower but be able to sort strings as well. How can the
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algorithms be combined so that the strengths of each are exploited and the
weaknesses or flaws of each are covered? In solving this in a general way, we
hypothesize that the end result is an “agentizing” of each algorithm.

3.1 Architectural Approaches

A centralized approach, as shown in Figure 3, would use an omniscient prepro-
cessing algorithm to receive the data to be sorted and would choose the best
algorithm to perform the sorting. Each module’s characteristics would have to
be encoded into the central unit. The central unit could use a simplistic algo-
rithm for determining best, based on known facts about each of the modules.
The difficulties with this approach are (1) the preprocessing algorithm might be
flawed and (2) its maintenance is difficult as new algorithms are added and ex-
isting algorithms become unavailable. Also, only one module at-a-time executes,
there is low CPU usage, and results are taken as-is when completed.
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Fig. 3. Centralized architecture for combining N versions of a sorting algorithm into a
single, more robust system for sorting, where a preprocessing algorithm chooses which
sorting algorithm will execute

An improvement might be a postprocessing algorithm, as shown in Figure 4,
that receives the results of all sorting algorithms and chooses the best result to be
the output. Results have to be compared and voted on in order to determine the
best. This approach is also centralized and suffers from a waste of CPU resources,
because all algorithms work on the data. However, due to the comparison of
outcomes, it is likely to produce better results.

A combination of the pre- and postprocessing centralized systems could also
be used. Since criteria are known about each module, a subgroup could be se-
lected to perform the desired task based on known factors such as speed, time,
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Fig. 4. Centralized architecture for combining N versions of a sorting algorithm into a
single, more robust system for sorting, where a postprocessing algorithm chooses one
result to be the output

and space. This subgroup would then have its results compared to determine the
best results as above.

A fourth approach is a distributed solution, where the algorithms jointly
decide which one(s) should perform the sorting, and if there is more than one
qualified algorithm, they jointly decide on the best result. Conventional algo-
rithms do not typically have such a distributed decision-making ability, so in
this paper we investigate whether there is a generic capability that can be added
to an algorithm to enable it to participate in distributed decision-making. We
also show that the result has the characteristics of a software agent.

3.2 Multiagent System Approach

Moving the administrative responsibilities from the central intelligent unit and
distributing those responsibilities into the different modules creates a multiagent
system. An agent in this system would have to know about itself: what it needs,
what it can accomplish, and how. Before accepting a task, it would have to
believe it could accomplish the task. Specifically, each agent must know

– Something about its own algorithm, such as its time and space complexity,
its input data structures, and its output data structures

– Something about other agents, such as their time and space complexity and
reliability

– How to negotiate
– How to communicate
– How to compare results
– How to manage reputations and trust.
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A transformation from the three conventional systems to an agent system would
entail moving the responsibilities from a central unit, either a preprocessor, post-
processor, or combination, to the individual agents.

An agent system transformed from a conventional system based on a pre-
processor approach would have the agents themselves deciding on who would do
the assigned task. Since an agent knows about itself, it could choose to submit a
bid, which implies an auction environment to determine task assignment. This is
an acceptable approach when there are many competing agents, but robustness
due to reinforced redundant involvement would be lost.

An auction environment, where agent interactions take place without any
dependencies among the agents’ abilities, can be represented by Lorge and
Solomon’s “Model A:”

P = 1− (1− p)r

where the probability, P , of a group of individuals solving a problem is the
probability that the group size r contained at least one individual solver, given
the probability, p, of a correct solution by an individual [21]. This representation
is based on the agents’ being able to detect a correct solution. The result is that
a group of agents will outperform an individual on a consistent basis [9].

An agent system transformed from a conventional system based on a cen-
tralized postprocessor would entail that each of the agents attempt the task and
some type of voting mechanism (either with a voting factor or not) would be set
up among the agents. A vote could be based on reputation only (more later) or
on a majority rule vote based on a comparison of results. The communication
overhead could be significant.

It should be noted that a group can sometimes be wrong, but with a func-
tional basis, a group will be correct more often than its most accurate member.
Shapley and Grofman give the following example of five weather forecasters pre-
dicting whether it will rain or not on a given day. The decision is “yes, it will
rain” or “no, it will not rain.” The forecasters are given weights in proportion
to log(pi/(1 − pi)), where pi is the probability of forecaster i making a correct
decision. Assigning the following weights to the forecasters: 0.9, 0.9, 0.6, 0.6, and
0.6, yields a group decision correctness probability of 0.927. This is higher than
that of any one individual and also of unweighted voting, which has a group
probability of 0.877.

The notion of a group is determined by the number of its members, the
amount of communication among the members, and the identity of the members.
Infrequent communication between individuals indicates casual relationships and
not a group. A group can have its own way of identifying each of its members,
but the members do not cease to be individuals while in the group, because they
still have a personal responsibility to themselves, their own reputation, and their
own desires.

Group decision-making is uninteresting for fewer than two members, but
there is also a maximum size for a group. Beyond 10 to 15 members, a group
becomes an assembly (where members do more waiting around than not) or a
mob (where members are out of control) [19].
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The comparison of results can be done in several ways. The results can all be
compared and a majority of exact outcomes would determine the results that are
selected, where each of the agents have an equal chance at having their results
selected. (For example, assume that there are four different results: A, B, C, and
D. Five agents have result A, while two agents each have results B, C, and D.
Therefore, result A is passed on as the accepted result.) This method is fine when
there is a clear-cut winner, as above, but in the following case this methodology
becomes cloudy. (For another example, assume three agents have result A and
three agents have result B, while two agents have result C and D, respectively. A
and B have the same number of votes, so an additional procedure must be used
to choose between them.) A secondary factor might be information the agent
knows about itself, such as whether it completed the task or not, its time and
space requirements, and the total number of runtime errors it has produced in
the past.

4 Initial Experiments

We collected a number of sorting algorithms, each written by a different person
and therefore having different input and output signatures and performance
characteristics. We converted each algorithm into a sorting agent composed of
the algorithm without any modifications and a wrapper for that algorithm. The
wrapper knows nothing about the inner workings of its associated algorithm.
It has knowledge only about the external characteristics of its algorithm, such
as the data type(s) it can sort, the data type it produces, its time complexity,
and its space complexity. The sorting algorithms were written in Java and the
wrappers in JADE [14].

Figure 5 is the AUML diagram of the protocol used. The sorting system
begins by a notification sent to the Initiator agent about data to be sorted,
which notifies the sorting agents. Upon receiving data to be sorted, each agent
determines whether or not it can sort it successfully (based on the type of the
data and its own knowledge of what types it can sort). If the agent believes
it can sort the data, it broadcasts an INFORM message to every other agent
specifying its intention, along with a measure of performance for its algorithm
(based on time and space complexity).

The decision of which agent (i.e., algorithm) to choose among those that
are capable of sorting the input data is made in a distributed manner: upon
receiving the INFORM messages from other agents, each agent compares its
own performance measure against those received in the messages. If the agent
has the best performance measure, it will run its algorithm and send the results
back to the system. If it does not have the best performance measure, it will
do nothing. Also, once they receive the data to be sorted from the system, the
agents will wait for INFORM messages for only a limited amount of time; this
avoids waiting infinitely long for messages from agents that either have problems
sending a message or are not able to sort the data.



12 Huhns et al.

 

�

�

��

�

�

�

�

Initiator Sorting Agent 

� �

�

�����
	���
�� �
�

� ��������
�����
� � �
������

���
�
���


������������

��������
��

�
��
��
�

� �� �!"��#%$ �  

Fig. 5. AUML diagram of the agents’ interactions

As can be seen, the current implementation of the wrappers is a preprocess-
ing approach. Agents themselves decide on who will do the task placed before
them. Even with the simplicity of the current implementation, results showing
improvement in robustness due to redundancy were obtained. As a group, the
agents sort data better than any one of them alone.

Table 1 summarizes the algorithms collected and information about them.
The Additional Restrictions column shows restrictions not used by the default
Wrapper to determine whether the agent can sort the data. Nevertheless, it is
possible to cope with these cases by providing an implementation of a Wrap-
perRestrictions interface, which only has one method that takes as input the
data to be sorted and returns a Boolean value indicating whether the sorting
algorithm can sort the data. This provides a way of customizing the wrapper for
algorithms that need additional considerations, resulting in better performance
for the whole system.

Finally, Table 2 provides a summary of the initial tests performed with the
system. For the first set of inputs all the algorithms but RadixSort were ap-
propriate. C.A.R Hoare’s Quick Sort algortihm was selected because it had the
best performance. For the second set of inputs only the QuickSort algorithm was
selectable, because it was the only one that could handle strings. In the runs it
was selected only when appropriate. For the third set of inputs RadixSort was
selected. For the last set of inputs only the QuickSort algorithm could be selected
because it was the only one that could handle reals.

As a group, the agents sorted data better than any one of them alone. Both
C.A.R Hoare’s Quick Sort and HeapSort algorithms could not handle inputs 2
and 3. The RadixSort algorithm could handle only one of the data sets. Finally,
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Table 1. Input data type and additional restrictions for the sorting algorithms available

Algorithm Characteristics/Restrictions Additional Restrictions
Used by Default Wrapper

C.A.R Hoare’s Input data type: None
Quick Sort int array

(positive and negative
numbers accepted)

HeapSort Input data type: None
int array

(positive and negative
numbers accepted)

QuickSort Input data type: None
Byte array
Short array
Integer array
Long array
Float array
Double array
String array
Char array

RadixSort Input data type: Only 10 inputs accepted
int array

although the QuickSort algorithm was able to handle all the inputs, it did not
have the best performance.

5 Group Decision Making

The system sends data to be sorted to the group of sorting agents. For simplicity,
we assume that no matter what kind of data is sent, there is at least one agent
that can sort the data. Each agent receives the data, decides whether it can sort
the data, and broadcasts its decision. This first step will then determine the
subgroup size. Because at least one agent can sort the data, the group size will
range from 1 to N , where N is the total number of sorting agents in the group.

When only one agent indicates it can sort the data, the decision is trivial.
When there is more than one agent with the ability to sort a data input, then a
decision strategy must be put to use to determine which output to accept.

A voting strategy is considered for our experiments. There are three basic
voting incentives: the data, reputation, or secondary factors. If the strategy in-
volves the data, then direct comparisons need to be made about the data. An
agent could compare another agent’s result, which was positive, with its own.
An array could be used to tabulate the results for each agent based on whether
there is an exact match with itself or not.
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Table 2. Initial results for wrapping sorting algorithms with agents

Data Input Algorithm Selected Data Output Comments

12, 45, 3, 2, 56 C.A.R Hoare’s 2, 3, 12, 45, 56
Quick Sort

ann, john, sue, QuickSort ann, john, marie, Only this algorithm
marie sue could handle strings

9, 8, 7, 4, 3, 2, RadixSort 2, 3, 4, 4, 5, 7, Best performance
12, 4, 5, 10 8, 9, 10, 12 but only worked

for 10 inputs

3.54, 90, 23.4, QuickSort 3.54, 3.55, 23.4, Only this algorithm
3.55, 60, 60.1 60, 60.1, 90 could handle reals

For example, assuming only sortAgents 1, 2, 4, and 6 are capable of sorting
the data, the array for sortAgent1 could be as follows:

compare = Array(sortAgent2 => yes, sortAgent4 => no, sortAgent6 => yes)

Counting itself, sortAgent1 would receive three positives and one negative.
Comparisons could also be normalized according to the amount of similarity

between different agent’s results. Comparison could have a direct relationship
between exact locations, a relationship between substrings, and/or a relationship
between the number of location matches or exact substrings.

CPU usage could be reduced if the result (yes or no) of a comparison is cal-
culated only once, instead of by both agents. Logic could also aid in a reduction
of CPU usage. If an agent A agrees with an agent B exactly, and agent A also
agrees with agent C exactly, then agent B and agent C also agree. The sortAgent
with the highest percentage of positives is selected. A tie can have two possibili-
ties: (1) when the agents in the tie are a perfect match, then it does not matter
which is chosen, or (2) when the agents are not a perfect match, then deciding
is a problem.

If the strategy involves reputation, then a single sortAgent’s vote is just its
reputation factor; the result would be determined based on this factor alone.
A tie here is a problem. Note that a reputation can be computed by many
different means: e.g., neural nets, Bayesian networks, expert systems, or a simple
normality based on successes. Reputation requires feedback for the system, either
internally among the agents or externally from a user.

Secondary factors, such as what the agent knows about itself, can affect a
sortAgent’s vote. Completion of the task has to be taken into consideration.
Time and space constraints and runtime errors encountered during execution
could be sorted in relative order of importance. A high number of runtime errors
could affect a vote; a long delay or large space requirements could also affect a
vote. A formula based on its time and space constraints and any runtime errors
could be formed and used. A tie could be broken by hierarchically organizing
each mitigating factor as above.
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Combinations of these three basic voting incentives could be used. First, a
formula based on secondary factors would be used (since the presence of runtime
errors is a very important fact); second, the data comparison would be made;
and finally, a normalized reputation factor based on past successes in a group
would be used. For example:

decisionVote = a * Completed? +
b * number of runtime errors +
c * time used +
d * space used +
e * exact comparisons +
f * reputation (if there is one)

Variables a, b, c, d are secondary factors, variable e is a data factor, and variable
f is a reputation variable. The “best” algorithm is determined by

Performance× Flexibility ×Reliability

where Performance is a function of time and space complexity, Flexibility is a
function of how broad a range of input and output data structures the algorithm
can handle, and Reliability is a measure of how well the algorithm can avoid run-
time errors and exceptions.

6 Conclusion: Challenges and Implications for Developers

Producing robust software has never been easy, and the approach recommended
here would have major effects on the way that developers construct software
systems:

– It is difficult enough to write one algorithm to solve a problem, let alone n
algorithms. However, algorithms, in the form of agents, are easier to reuse
than when coded conventionally and easier to add to an existing system,
because agents are designed to interact with an arbitrary number of other
agents.

– Agent organizational specifications need to be developed to take full advan-
tage of redundancy.

– Agents will need to understand how to detect and correct inconsistencies in
each other’s behavior, without a fixed leader or centralized controller.

– There are problems when the agents either represent or use nonrenewable
resources, such as CPU cycles, power, and bandwidth, because they will use
it n times as fast.

– Although error-free code will always be important, developers will spend
more time on algorithm development and less on debugging, because different
algorithms will likely have errors in different places and can cover for each
other.
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– In some organizations, software development is competitive in that several
people might write an algorithm to yield a given functionality, and the “best”
algorithm will be selected. Under the approach suggested here, all algorithms
would be selected.

Ultimately, the production of robust software will require that we understand
the relationship between

– the social world as represented by humans and their physical environment,
and

– the social world as represented by agents and other automated systems.
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