
Towards Service Coalitions: Coordinating the

Commitments in a Workflow

Jiangbo Dang and Michael N. Huhns

Department of Computer Science & Engr., University of South Carolina
Columbia, SC 29208, USA. 1-803-777-3768

{dangj,huhns}@engr.sc.edu

Abstract. Web services are functionalities that can be engaged over the
Internet. A workflow is a set of Web services that are executed by carry-
ing out specified control and data flows among these services to address
some business needs. We believe that commitments among agents can be
used to model a workflow and coordinate several self-interested parties
to execute a workflow. This paper presents a methodology to infer com-
mitments and causal relationships from a workflow by utilizing semantic
descriptions of Web services. We provide an example scenario to show
how commitments of a workflow can be inferred. In addition, we use the
Petri net representation of a workflow to describe our algorithm. With
this technology, agents (service requestors and providers) engaged in a
workflow can negotiate with multiple agents to reach favorable agree-
ments and then coordinate their behaviors through the commitment op-
erations in the context of service-oriented environment, where one or
more self-interested parties can provide services to one or more other
parties.

1 Introduction

In supply chains, e-commerce, and Web services, the participants negotiate con-
tracts and enter into binding agreements with each other by agreeing on func-
tional and quality metrics of the services they request and provide. The function-
ality of a service is the most important factor, especially for discovering services.
Once discovered, however, services are engaged, composed, and executed by the
participants’ negotiating over issues besides QoS (quality of service) metrics to
maximize their profits.

As more complex business operations become candidates for automation, it
is difficult to find one Web service to fulfill a complete business process. The
situation becomes even more complicated when there is no single Web service,
but only a combination of several Web services that can satisfy a business need.
To solve this problem, various standards for coordinating the Web services have
been developed, such as BPEL4WS, OWL-S, and WS-Coordination. We use
OWL-S in our paper since it provides richer semantic descriptions than the
alternatives.



Semantic Web service technologies, such as OWL-S enable more flexible au-
tomation of service discovery and execution and monitoring, and support the
composition of more complicated workflows represented as composite services.
OWL-S provides a standard language for describing the composition of Web
services. Thus we can treat composite services as a process model.

Negotiation is a process by which agents communicate and compromise to
reach agreement on matters of mutual interest while maximizing their individ-
ual utilities. In a service-oriented environment, it is very likely there are multiple
service requestors and providers negotiating simultaneously. Concurrent negoti-
ation is preferred, since it is both time efficient and robust when an agent needs
to negotiate with multiple other agents to make a good deal or to request a
service involving multiple agents as in a workflow model.

Commitment among agents can be used to model business processes by
capturing the interactions among agents. Chopra and Singh [2] proposed a
commitment-based formalism to represent multiagent interaction protocols. To
be coordinated with other agents in a workflow execution, all participating agents
negotiate to reach beneficial contracts and coordinate their commitments to ful-
fill a business process. The commitments of the agents lend coherence to their
interactions over time. For our work, we are interested in inferring commitments
and causalities from a business process model and support multiple-issue con-
current negotiation for a workflow among collaborative parties in the future.

2 Background and Related Work

2.1 BPEL4WS, OWL-S, and SWRL

When we choose a representation for Web services, the trade-offs must be made
among the expressive power, the rigor, the ease of use, and the computational
tractability of a representation [10]. IBM, Microsoft and BEA released BPEL4WS
(Business Process Execution Language for Web services) for expressing work-
flows consisting of Web services. BPEL4WS enables the specification of exe-
cutable business processes (including Web services) and business process proto-
cols in terms of their execution logic or control flow.

OWL-S is an initiative of the Semantic Web community to facilitate auto-
matic discovery, invocation, composition, interoperation, and monitoring of Web
services through their semantic description [4]. OWL-S supports a richer seman-
tic description of Web services by: (1) a profile that describes what the service
does, (2) a process model that specifies how the service works in terms of inputs,
outputs, preconditions, and result, a.k.a., IOPR, and (3) a grounding that defines
how the service is accessed. Both OWL-S and BPEL4WS provide a mechanism
for describing a business process model. OWL-S augments the input and output
specifications of BPEL4WS with preconditions and results: this enables the side
effects of services to be encoded. We can then reason about how services may be
composed and infer the commitments and causalities from them.

Semantic Web Rule Language (SWRL) expressions may be used in OWL-
S preconditions, process control conditions (such as If-then-Else), and results.

2



SWRL expressions may also mention process inputs and outputs as variables,
thus tying together the two languages. SWRL can make OWL-S more powerful,
since it uses the expressive power of rules in a potential emerging standard. In
our work, we just use SWRL in a primitive way, as a conjunction of conditions.

2.2 Web Services and Workflow

Semantic Web services, as envisioned by Berners-Lee, are intended to be applied
not statically by developers, but dynamically by the services themselves through
automatic and autonomous selection, composition, and execution. Web services
are standard-based software components that can be accessed over the Internet
by other software components [6]. Web services can vary in functionality from
simple operations, such as a retrieval of a stock quote, to complex business
operations, such as supply chain problems.

Many efforts have been made to automate service composition. In [6], the au-
thors introduced a workflow composer agent to compose Web service workflows
by finding and matching the semantic descriptions of Web services. Mandell and
McIlraith [7] used a bottom-up approach to integrate Semantic Web technology
into automating the dynamic discovery and binding of Web services. Chung et
al. [3] presented a Web service framework to support collaborative product com-
merce. Given a workflow, what issues different participating agents negotiate to
reach service agreements and how to coordinate agents to execute a workflow are
still challenging problems. In this paper, we focus on how to infer commitments
from a workflow and extract issues for collaborative service negotiation.

Given a workflow consisting of several services, service agents negotiate with
one another and with resource agents to ensure that global constraints are not
violated and that global efficiencies can be achieved. As described in [10], the ser-
vice agents must be able to engage in negotiation, and they must be describable
declaratively, not procedurally, in terms of high level abstractions. As a binary
relationship binding two participants, a commitment is a proper abstraction for
coordinating different parties of a workflow.

2.3 Negotiation and Commitment

Current standards for Web services do not support multiple-issue negotiations.
As a result, several researchers have attempted to merge negotiation from the
MAS domain into Web service selection and composition. Petrone [8] proposed
a conversation model to enrich the communication and coordination capabilities
of Web services by adapting agent-based concepts to the communications among
Web services and users.

Multi-linked negotiation describes a situation where one agent needs to nego-
tiate with many other agents about different issues, and the negotiation over one
issue influences the negotiation over the other issues. Multi-linked negotiation
becomes important in a workflow scenario where a service requestor negotiates
with several service providers to reach agreements over a composite service.

3



Zhang et al. [14] presented a mechanism for multi-linked negotiation of task al-
location in a cooperative system where a contractee tries to ask another agent
to fulfill one of its subtasks that it cannot do itself. Since their protocol does not
support concurrent negotiation, it is not possible for a contractee to coordinate
among multiple subtasks.

In [13], an approach is proposed to deal with multi-linked negotiation in the
context of task allocation. a partial order scheduler is used to find the consistence
range for issues in each task and the relationships among them by sorting all
issues with their flexibilities and dependencies. In their model, negotiation is
viewed as a multidimensional search over multiple issues (time, cost, and the
flexibility of the commitment). It is a plan-globally-then-negotiate-separately
procedure in which there is no mutual influence among negotiation threads.

Commitments are a key element of the semantics of agent communications [9].
Commitment among agents can be used to model business processes by captur-
ing the interactions among agents. In [11], researchers extract commitments from
a set of conversions via Dooley graphs and map Dooley graphs to π-calculus. The
formalization of π-calculus helps to derive useful properties and prove soundness
of their models. To further apply commitment into Web service, they [12] in-
tegrate commitments into service specification by which service providers and
requestors exchange commitments instead of messages. Most existing workflow
technologies can only apply centralized methods to coordinate and monitor the
execution of a workflow through the procedural specifications. In contrast, this
paper advances the state of the art in the following ways: Our methodology
(1) infers the commitments of service agents involved in a workflow; (2) allows
flexible workflow coordination through commitments; (3) makes it possible for
service agents to negotiate over issues from the inferred commitments to improve
their utilities while optimizing the workflow (4) potentially provides a way to
build a flexible and robust workflow by concurrent service negotiation.

The remainder of the paper is organized as follows: Section 3 introduces a
motivating workflow scenario and provides its Petri net representation. Section
4 identifies control constructs of a workflow in different representations and de-
scribes the algorithm to derive commitments from a workflow. Section 5 discusses
further issues related to negotiating a workflow, and Section 6 concludes.

3 A Motivating Scenario

In order to illustrate our methodology, we present a motivating workflow scenario
where several parties work together to produce a product. In Figure 1, there are
five service agents: ProductRequestor, ProductMaker, Analyzer, PartsMaker, and
Driller. ProductRequestor agent A initiates this workflow by sending a product
requirement to ProductMaker agent B. To meet A’s requirement, B designs this
product and send its design to the third party Analyzer C. C performs some
specific tests to ensure this design will meet the requirements. Once the product
design is approved, B will generate the requirements for different parts of this
product and send them to PartsMaker agent D. PartsMaker D will design these

4



parts and send the design to C. If C approves the parts design, D will produce
the parts for the product. In addition, if the design requires a specific treatment
like drilling, a Driller agent E will drill the parts. Finally, ProductMaker B will
polish the parts and assemble the product to finish this workflow.

This workflow is complicated because:

– From the workflow’s view, the structure of the workflow is dynamic and un-
certain, since it depends on the outputs/results from the antecedent processes.
For example, the execution of process DrillParts depends on the output from
the process DesignParts; therefore, we can not know in advance whether
Driller agent E will be involved.

– From the participant’s view, the processes or tasks it needs to perform are
also uncertain. It depends on the input of ReceiveAnalysisRequest whether
the Analyzer agent C performs AnalyzeProductDesign process or AnalyzePart-

Design process. Moreover, C has to repeat its processes many times if the
outputs from DesignProduct or DesignParts cannot pass the tests.

Due to the dynamic property of workflow, we believe that commitments and con-
ditional commitments are the proper abstraction to characterize and coordinate
collaborative service agents in a workflow.

Fig. 1. A ProduceProduct Workflow Example

We describe the above workflow as a composite process in an OWL-S file. Its
behavior is described in terms of its process model, where the functionality of
each subprocess is described by its IOPR. OWL-S adopts two views of processes.
First, a process produces a data transformation from a set of inputs to a set of
outputs. Second, a process produces a transition in the world from one state
to another. This transition is described by the preconditions and results of the
process [4]. Inputs and outputs specify the data transformation produced by the
process. Inputs specify the information that the process requires for its execution.
The inputs are either provided by other processes in the process model or by
service clients through message passing. Equivalently, the outputs are either sent
to other processes through the data-flow constructs, or to other Web services.
The execution of a process may also result in changes of the state of the world.

5



Preconditions specify conditions that should be satisfied for a process to execute
correctly. The IOPRs for the ProduceProduct example are shown in Table 1.

Table 1. IOPRs of the Processes from the ProduceProduct Example

Process Inputs Outputs Preconditions Results

SendProdRequirement ProductRequirements
CheckProdDesignStatus ProductRequirements ProductRequirements Set Approved

AnalysisReport
DesignProduct ProductRequirements ProductDesign
GeneratePartsRequirement ProductDesign PartRequirements
PolishParts Parts Parts Polished=true
AssembleProduct Parts Products
ReceiveAnalysisRequest Design Design

DesignType
AnalyzeProductDesign ProductDesign ?Approved

AnalysisReport
AnalyzePartsDesign PartDesign ?Approved

AnalysisReport
CheckPartDesignStatus PartsRequirements ProductRequirements Set Approved

AnalysisReport
DesignParts PartRequirements PartDesign
ProduceParts PartDesign Parts

?needDrilled
DrillParts Parts Parts Drilled=true

Conditions have a pervasive presence in OWL-S. They are used to describe
outputs and results that result from the execution of processes. They are also
used in the specification of constructs such as if-statements and loops. We use
the primitive SWRL rules encoded as XML Literals. These SWRL rules uses
rdf:List to represent a conjunction of expressions of true or false values.

In this example, the production of a product would follow the sequential
process of receiving a requirement, designing a product or parts, and analyzing
product design or parts design, producing a part, drilling if necessary, and pol-
ishing and assembling the product. ReceiveAnalysisRequest would involve the
atomic process of either AnalyzeProductDesign or AnalyzePartsDesign. More-
over, designing and analyzing would be an iterative process.

Petri nets have been used to model and analyze many kinds of processes, and
the colored Petri net extension facilitates the modeling of complex processes
where data and time are important factors. Petri nets for workflow modeling
provide: (1) a clear and precise formal representation, (2) an intuitive graphical
language, (3) full expressiveness with explicitly represented states, and (4) a
firm mathematical foundation for property investigation and analysis [1]. To
illustrate our algorithm, we transform our example workflow into a colored Petri
net. A Petri net N = (P, T, F ) consists of a set of transitions T (bars), a set of
places P (ellipses), and a flow relation F (arcs) [1]. In a workflow Petri net, a
transition represents an atomic process and a place is a passive state. Petri nets
are well suited for modeling workflow processes, since there are many available
simulation tools for them [1]. Therefore, we can test the Petri nets to determine
the soundness and equivalence of workflows and those commitments inferred
from a workflow.

6



A Petri net extended with color, time, and hierarchy is called a high-level
Petri net [1]. In this paper we use the first extension to model conditions and
relations of processes within a workflow. Other extensions are useful in dealing
with time and scale issues of processes, which are beyond the scope of this
paper. In a colored Petri net, each token has a value often referred to as ‘color’.

Fig. 2. A ProduceProduct Petri Net

Transitions determine the values of the produced tokens on the basis of the
values of the consumed tokens, i.e., a transition describes the relation between
the values of the ‘input tokens’ and the values of the ‘output tokens’. It is
also possible to specify ‘preconditions’, which take the colors of tokens to be
consumed into account. These values match the inputs of a process, the outputs
and results of a process, and the preconditions of a process from an OWL-
S definition, respectively. Figure 2 shows the Petri net model of our example
workflow. The details are discussed in Section 4.

4 Deriving Commitments from a Workflow

4.1 Workflow Control Constructs

Given a workflow, four types of routing are identified by the Workflow Manage-
ment Coalition (WfMC) in specifying how cases are routed along the processes
that need to be executed: sequential, parallel, conditional and iteration. In the
process dimension, building blocks such as the AND-split, AND-join, OR-split,
OR-join, explicit OR-split, and explicit OR-join are used to model the routing [1].

Sequential routing is used to deal with causal relationships between tasks.
Consider t1 and t2 from Figure 2. If t2 is executed after the completion of t1,
then t1 and t2 are executed sequentially. Place p1 represents a result for t1 and
a precondition for t2. Parallel routing is used in situations where two processes
need to be executed, but the order of execution is arbitrary. Considering the two
sets of ProductMaker and PartsMaker in our example, processes after t1 can be
executed in parallel. To model such a parallel routing, two building blocks are
used: (1) the AND-split and (2) the AND-join. Conditional routing is used to

7



allow for a routing that may vary between cases. To model a choice between
two or more alternatives, the explicit OR-split is used. In Figure 2, t2 has two
output places p2 and p′2. The choice between p2 and p′2 is based on the attribute
Approved. If Approved is true, t6 will be executed, otherwise t3 is executed. The
iteration routing can be modeled using an explicit OR-split as the iteration of
t2 − t3 − t4 − t5 defined in Figure 2. t2 is a control task that checks the result of
t5. Based on this check, t3, t4, t5 may be executed once more.

Fig. 3. The Building Blocks for Workflow Modeling [1]

All OWL-S control constructs can be categorized into the discussed four
classes of routings or modeled by PN (Petri net) building blocks from Figure
3, e.g., OWL-S Sequence is equal to the PN sequential routing, OWL-S Split
and Split-and-Join can be represented by the PN AND-split and AND-join,
OWL-S choice is equivalent to the PN explicit OR-split, OWL-S Any-Order
can be modeled by the PN parallel routing, OWL-S Condition and If-Then-Else
constructs can be represented by the PN conditional routings, OWL-S Iterate,
Repeat-While, and Repeat-Until may be modeled by the PN iteration routings.

4.2 Inference Algorithm

In service-oriented environments, the participating agents are distinguished by
the services they provide, the services they seek, and the negotiated service
agreements to which they commit. The coherent behavior of systems in such an
environment is governed by interactions among the agents, and commitments
are the proper abstraction to characterize the interactions for monitoring and
control of the systems [5].

A service is what an agent performs when it works on and completes a task or
process. In this paper, a workflow is represented as a composite service in OWL-S
format where each sub-service is described by its IOPR properties. Each sub-
service is associated with agents via a process of negotiation. The execution of the
workflow is monitored via commitments. A commitment is a well-defined data
structure with algebra of operations that have a formal semantics. The agent

8



that is bound to fulfill the commitment is called the debtor of the commitment.
The agent that is the beneficiary of the commitment is called the creditor. A
commitment has the form C(a; b; q), where a is its creditor, b is its debtor, and q is
the condition the debtor will bring about. A conditional commitment C(a; b; p →

q) denotes that if a condition p is brought about, then the commitment C(a; b; q)
will hold. Commitments capture the dependencies among the agents with regard
to the workflow and can be inferred by the algorithm 1.

We assume that the data flows and message mappings are well defined in
the semantic description. Let e(v1, v2) denote an arc from vertex v1 to vertex v2.
Given a workflow defined as a Petri net N = (P, T, F ), we define a directed graph
N ′(V,E) where V = T and e(v1, v2) ∈ E if ∃p, e(v1, p) ∈ F and e(p, v2) ∈ F .
The neighbor nodes of v ∈ V are stored in adjacent(v) and the color of each
vertex v ∈ V is stored in the variable color(v). We define the start transaction
v0 as the root node of N ′.

Since same service agent may execute several atomic processes in one work-
flow, we need to distinguish between the concepts of agent and role. A role is an
abstraction of capabilities used by an agent in dealing with one atomic process.
An agent may have several roles, each associated with one commitment. Algo-
rithm 1 produces a set of commitments for service agents. Each commitment
is represented as the OWL-S IOPRs, which can be easily transformed into the
commitment format we defined in the previous section. These commitments can
be used in two ways: coordinating and guiding the negotiations among service
agents in a competitive service-oriented environment, and monitoring and con-
trolling the debtor agents to fulfill the workflow by fulfilling their committed
tasks. To make this possible, the services have to be defined with a semantic
description, and the preconditions/results and inputs/outputs should refer to an
ontology. Given IOPRs of the processes defined in Table 1 and the Petri net in
Figure 2, let us illustrate Algorithm 1 with our example scenario. For Driller E

with one process: DrillParts.
[DrillParts]
Input: Parts
Output: Parts
Precondition: Completed(ProduceParts) ∧ needDrilled
Result: Drilled
For ProductMaker B that owns three atomic processes: CheckProdDesign-

Status, DesignProduct, and GeneratePartRequirement.
[CheckProdDesignStatus]
Input: ProductRequirements ∧ AnalysisReport
Output: ProductRequirements ∧ AnalysisReport
Pre-conditions: Completed(SendProdReuqirement)
Result: Set Approved true or false

[DesignProduct]
Input: ProductRequirements
Output: ProductDesign
Pre-conditions: Completed(CheckProdDesignStatus)∧ ¬approved
Result:

9



Notations:
type(i) is the routing block type from vertex i;
Owner(i) is the debtor of the process i;
Q is an empty first-in, first-out queue;
enqueue(i, Q) adds element i into Q;
dequeue(Q) removes and returns the first element from Q;
Initialization:
foreach v ∈ V do

color(v)←WHITE

end

enqueue(v0, Q);
color(v0)← BLACK ;
Inference:
while Q 6= φ do

i = dequeue(Q)
foreach v ∈ adjacent(i) do

if color(v) = WHITE then

color(v)← BLACK;
enqueue(v, Q);

end
end

switch type(i) do

case Sequence

for j,where e(i, j) ∈ E do

precondition(j) = precondition(j) ∧ result(i) ∧ completed(i);
end

break;
case AND − split

forall j,where e(i, j) ∈ E do

precondition(j) = precondition(j) ∧ result(i) ∧ completed(i);
end

break;
case Explicit−OR− split

forall j,where e(i, j) ∈ E do

precondition(j) =
precondition(j) ∧ result(i) ∧ completed(i) ∧OR− condition(i);

end

break;
end

forall j,where e(i, j) ∈ E do

if e(i, j) ∈ E ∧ owner(i) 6= owner(j) then

remove e
end

end
Algorithm 1: Commitment Inference Algorithm

10



[GeneratePartRequirement]
Input: ProductDesign
Output: PartsRequirements
Pre-conditions: Completed(CheckProdDesignStatus)∧ approved
Result:

5 Negotiation and Commitments for Workflows

In service-oriented environments, the participating agents negotiate and commit
to a service agreement about the execution and completion of a workflow. During
the negotiation, the agents communicate and compromise to reach an agreement
on matters of mutual interest while maximizing their utilities. The negotiated
agreements can be encapsulated as commitment promises [5]. These inferred
commitments and relations can be used for collaborative service negotiation.
Moreover, we can identify the significant paths or processes and improve the
robustness of a workflow by duplicating vital services through negotiations.

In a competitive service-oriented environment, explicit representation of com-
mitments is the proper abstraction to coordinate participating agents in a work-
flow since: (1) It refers to interagent dependencies through the IOPRs of a task,
thus allowing agents to recognize focus points in the revision process where co-
ordination with other agents is needed; and focusing the distributed search this
way benefits the efficiency of coordination; (2) An agent first tries to revise task
timings that do not involve its commitments during the process of revising its
local plan, this heuristic modularizes the revision as much as possible, making
it more scalable [5]. Therefore, a centralized workflow execution engine is not
necessary for coordinating, monitoring the execution of the workflows, and for
verifying the output of the workflow.

ebXML addresses the broad problem of B2B interaction from a workflow
perspective. ebXML uses Collaboration Protocol Profiles (CPP) to describe the
business processes supported by Web services. A Collaborative Partner Agree-
ment (CPA), an intersection of two CPPs, represents a technical agreement
between two or more partners. A business process in ebXML is considered to
be a set of business document exchanges between a set of Web services. OWL-
S descriptions could be used within ebXML to describe the business processes
of interacting Web services. The negotiations and commitments considered in
this paper provide a potential representation, semantics, and methodology for
establishing the CPA in ebXML.

6 Conclusions

This paper presents a methodology to infer commitments and relations from a
workflow by utilizing semantic descriptions of Web services. With a motivating
workflow scenario, we provide its semantic descriptions with IOPRs and a Petri
net representation. We first identify the control constructs and then describe the
algorithm to derive commitments from a workflow.

11



There are several possible directions for future work. First, this method can
be applied to support the negotiation for a composed service with different ser-
vice agents under constraints such as QoS and dependency issues. Second, we
can further explore the power of semantic rule language to describe the rela-
tions within a workflow. Third, a process algebra, π-calculus, can be adopted to
improve the flexibility of the current commitment model.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. Amit K. Chopra and Munindar P. Singh. Nonmonotonic commitment machines.
In Proceedings of the International Workshop on Agent Communication Languages
and Conversation Policies (ACL). Springer, 2003.

3. Moon-Jung Chung, Hong Suk Jung, Woongsup Kim, Ravi Goplannalan, and Hyun
Kim. A framework for collaborative product commerce using web services. In
ICWS, pages 52–60, 2004.

4. The OWL Service Coalition. OWL-S: Semantic Markup for Web Services.
5. Jiangbo Dang, Devendra Shrotri, and Michael N. Huhns. Distributed coordination

of an agent society based on obligations and commitments to negotiated agree-
ments. In Paul Scerri, editor, Challenges in the Coordination of Large-Scale Mul-
tiagent Systems. Springer Verlag, 2005.

6. Mikko Laukkanen and Heikki Helin. Composing workflows of semantic web ser-
vices. In Proceedings of the Workshop on Web-Services and Agent-based Engineer-
ing, 2003.

7. Daniel J. Mandell and Sheila A. McIlraith. Adapting bpel4ws for the semantic web:
The bottom-up approach to web service interoperation. In International Semantic
Web Conference, pages 227–241, 2003.

8. G. Petrone. Managing flexible interaction with web services. In Proc. Workshop
on Web Services and Agent-based Engineering (WSABE 2003), pages 41–47, Mel-
bourne, Australia, 2003.

9. Munindar P. Singh and Michael N. Huhns. Social abstractions for information
agents. In Matthias Klusch, editor, Intelligent Information Agents. Kluwer Acad-
emic Publishers, 1999.

10. Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing: Seman-
tics, Processes, Agents. Wiley, London, UK, 2005.

11. Feng Wan and Munindar P. Singh. Mapping dooley graphs and commitment
causality to the pi-calculus. In AAMAS ’04: Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, pages
412–419, Washington, DC, USA, 2004. IEEE Computer Society.

12. Feng Wan and Munindar P. Singh. Enabling persistent web services with commit-
ments. In Information Technology and Management (ITM)(In Press), 2005.

13. Xiaoqin Zhang, Victor Lesser, and Sherief Abdallah. Efficient Management of
Multi-Linked Negotiation Based on a Formalized Model. Autonomous Agents and
Multi-Agent Systems, 2004.

14. XiaoQin Zhang, Victor Lesser, and Rodion Podorozhny. Multi-Dimensional, Multi-
Step Negotiation for Task Allocation in a Cooperative System. Autonomous Agents
and MultiAgent Systems, 2003.

12


