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ABSTRACT
Wearable cameras and displays, such as the Google Glass, are
around the corner. This paper explores techniques that jointly
leverage camera-enabled glasses and smartphones to recognize
individuals in the visual surrounding. While face recognition
would be one approach to this problem, we believe that it may
not be always possible to see a person’s face. Our technique is
complementary to face recognition, and exploits the intuition
that colors of clothes, decorations, and even human motion
patterns, can together make up a “fingerprint”. When leveraged
systematically, it may be feasible to recognize individuals with
reasonable consistency. This paper reports on our attempts, with
early results from a prototype built on Android Galaxy phones
and PivotHead’s camera-enabled glasses. We call our system
InSight.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware; C.2.4 [Computer-Comunication Networks]: Distributed
Systems

General Terms
Design, Experimentation, Performance

Keywords
Wearable camera, visual fingerprinting, smartphones, aug-
mented reality, matching, recursion, distributed cameras

1. INTRODUCTION
Imagine a near future where humans are carrying smartphones
and wearing camera-embedded glasses, such as the Google
Glass. This paper intends to recognize a human by looking at
him or her from any angle, even when her face is not visible. For
instance, Alice may look at people around her in a social gather-
ing and see the names of each individual – like a virtual badge –
suitably overlaid on her Google Glass display. Where revealing
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names is undesirable, only a tweet message could be shared.
People at the airport could tweet “looking to share a cab ”, and
Alice could view each individual’s tweet above their heads. In
general, we intend to extend augmented reality [1, 2] to humans
and the key challenge pertains to differentiating individuals. We
explore options outside face recognition [3, 4].

Our core technique exploits the intuition that faces are not nec-
essarily the only “visual fingerprint” of an individual. Features
combined from clothing colors, body structure, and motion
patterns can potentially be fingerprints for many practical sce-
narios. There is evidence of this opportunity given that humans
can often recognize another human without looking at her face.
This paper asks: can sensor-enabled smartphones and wearable
glasses together achieve the same?

Our main idea is simple and illustrated through Figure 1. When-
ever a user Bob uses his phone (such as while checking emails),
the phone’s camera opportunistically “takes a peek” at Bob.
Through image segmentation and processing [5, 6] the phone
extracts a visual fingerprint – a feature vector that includes
clothing color and their spatial organization. The spatial organi-
zation captures the relative locations of each color in 2D space,
hence a red over blue shirt is different from blue over red. This
spatio-chromatic information – called Bob’s self-fingerprint – is
announced in the vicinity. Nearby smartphones receive a tuple:

SBob = <Bob, Bob’s self-fingerprint>.

Now consider Alice (wearing a Google Glass and carrying a
smartphone) looking at a group of people that includes Bob.
A picture from the glass is processed on Alice’s phone (or in
the cloud), and through image segmentation and analysis, the
phone computes each individual’s spatio-chromatic fingerprint,
Fi . Since Alice has separately received Bob’s self-fingerprint,
SBob , a matching algorithm computes the similarity between Fi
and SBob . If one of the fingerprints, F j matches strongly with
SBob , then Alice’s phone can recognize Bob against the group
of people. An arrow labeled “Bob” can now be overlaid on the
image segment that generated F j ; Alice can view this either on
her Google Glass display or on her smartphone screen (as shown
in Figure 2).

Realizing the above idea presents a number of challenges. Bob’s
self-fingerprint is likely to capture only some parts of his cloth-
ing, and may not be adequately discriminating (particularly
when Alice views Bob from the back, or when Bob is partially
visible in the crowd). Even if front and back fingerprints are
somehow available, and Bob is fully visible, ambiguity can arise
when people are wearing similar dresses, say in a birthday party



Figure 1: Sketch of InSight: Bob’s phone announces his own name and fingerprint to the vicinity; Alice’s phone computes fingerprints
from her glass, matches them against the ones received from the vicinity, and recognizes Bob.

  Bob  

Figure 2: An arrow labeled “Bob” overlaid on Bob in the smart-
phone’s screen.

with a dress theme. Finally, even when all is well, different light-
ing conditions, wrinkles on clothes, and human mobility can
inject errors into the system. Coping with these challenges are
indeed non-trivial, however, we believe that certain opportuni-
ties can help, as described next.

(1) Even if Bob’s self-fingerprint is not highly discriminating,
Charlie may luckily identify Bob when Bob happens to be alone
or around a few people wearing sharply contrasting clothes.
Since Charlie now sees Bob’s full clothing, he could enrich Bob’s
self-fingerprint with more information and upload it to the
cloud. The enriched self-fingerprint helps others discriminate
Bob better, which in turn enables more frequent opportunities
to enrich his fingerprint – a recursive process. We find that the
system converges in our limited set of experiments, enriching
almost everyone’s self-fingerprints.

(2) If the system still contains visual ambiguity, we observe
that short term motion can be exploited. When Bob moves at
a certain pace in a certain direction, Bob’s accelerometer and
compass could compute his motion vector and include it in his
self-fingerprint. Alice could compute a similar motion vector
from a short Google Glass video (by comparing a few consecu-
tive video frames [7]), and match against all the motion vectors
embedded in received self-fingerprints. If the best match corre-
sponds to Bob, then Alice can disambiguate Bob despite visual
similarity.

This paper is targeted to harness these opportunities. Our early
prototype, built on Android phones and PivotHead camera-

equipped glasses, implements basic self fingerprinting and
matching. Offline experiments with 15 people in a clique yield
promising results – 93% of correct recognition when viewed
from the front. When viewed from the back, the accuracy
degrades sharply. However, when different views are used to
recursively enrich fingerprints (implemented via monte carlo
simulations), the system converges to 96% accuracy even when
viewed from the back; the front-side accuracy is perfect, and
the convergence time is not long. Overall, InSight is an au-
tonomous, self-correcting scheme, much different from a crude
color matching idea proposed in our earlier work [8]. If success-
ful, InSight could perhaps trigger new thinking in human-centric
augmented reality applications [9].

2. SYSTEM SETTING
InSight assumes that Bob uses his smartphone to check emails
or browse the Internet. When the phone is held in a specific ori-
entation and the display senses finger taps – partly ensuring that
the front-facing camera is facing Bob’s upper body – the phone
takes a few opportunistic pictures1. The pictures are analyzed,
visual fingerprints extracted, and concatenated with the name
“Bob”, or any content/tweets that Bob intends to make visible.
This self-fingerprint is either announced to the vicinity via Blue-
tooth Low Energy (BLE) or transmitted to the cloud along with
the Bob’s rough location. With BLE beacons, nearby phones di-
rectly receive the fingerprint. For cloud-based access, all phones
update the cloud with their locations; the cloud matches the
fingerprints and pushes back the recognition results. While both
approaches present tradeoffs, we use the cloud based approach.
As we will see later, the cloud based approach allows a central
repository of fingerprints that can be distributedly updated by
different people over time.

A viewer Alice looks at different people, and when in need to
recognize a person, presses a button on her camera-enabled
glass. A short video – of around 3 seconds – is recorded and
transferred to her smartphone via WiFi or BLE, whichever is
available on the glass. In the default case, the phone processes
one of the frames in this video, separates different individuals
in this image, and extracts visual fingerprints corresponding to
each of them. For each computed fingerprint (sent to the cloud),
the cloud computes a “similarity” with Bob’s self-fingerprint.
When the similarity is greater than a high confidence threshold,

1We discuss privacy issues in Section 5.



the cloud identifies Bob – Alice’s phone superimposes an arrow
on her phone screen or the glass display. When the similarity
is sub-threshold, InSight explores motion patterns (speed and
walking direction) for better recognition.

A natural question might be: why not utilize the user’s location as
a form of identification? While this is indeed a possible approach,
we believe that such precise location in indoor spaces is unavail-
able today. Moreover, it may not be easy to extract depth infor-
mation from the video, i.e., if Alice is looking down a corridor, its
unclear what “location” she is looking at. Finally, locations need
to be combined with compasses to compute the line of sight of
the viewer; given compasses have a reasonably large error, es-
pecially indoors, pure location-based solutions may not suffice.
However, location and compasses can be used to narrow down
the search space for visual recognition. While we don’t leverage
this opportunity (to understand the limits of our techniques), we
certainly intend to optimize InSight with location, compass, and
face recognition in the future.

3. SYSTEM DESIGN
We sketch the basic design decisions underlying InSight. Several
deliberations underpinning these decisions are curtailed in the
interest of space.

3.1 Extracting Self-Fingerprints
Figure 3(a) shows an example photo taken opportunistically by
InSight2. The key task here is to extract a visual self-fingerprint
that is robust to lighting conditions, viewing angle, and view-
ing distance. Put differently, even if different people look at
the same person from different positions (Figure 3(b)), the
fingerprint from all these views should reasonably match the
self-fingerprint. As a first step, InSight automatically crops out a
rectangular region from picture – the part below the face/neck. It
then applies two well known techniques on the cropped image,
namely (1) spatiograms, and (2) wavelets.

Figure 3: (a) Upper body view when user browsing on his smart-
phone (b) View from user wearing a glass.

(1) Spatiograms: Spatiograms are essentially color his-
tograms with spatial distributions encoded in its structure. Put
differently, while basic color histograms only capture the relative
frequency of each color, spatiograms capture how these colors
are distributed in 2D space. The second order of spatiogram can
be represented as [10]:

2Recall that this occurs when the accelerometer senses that the
phone is at an appropriate angle, and the user is typing.

hI (b) =< nb ,µb ,σb >, b = 1,2,3, · · · ,B ,

where B is the number of color bins, nb is the number of pixels
whose value falls in the bth bin, and µb and σb are the mean
vector and covariance matrices of the coordinates of those pixels
respectively. Through such a representation, a white over red
stripe can be distinguished from a red over white stripe, even if
the number of red and white pixels are identical in both. Also,
to cope with various viewing distances, we normalize the spatial
information with respect to the shoulder width so that all the
spatial representation is relative to the captured body size in
each photo. Finally, to decouple lighting conditions from the
colors, we convert the pixels from RGB to HSV , and quantize
them into B = 10x4x4 bins.

(2) Wavelets: Apparels are often fashioned with patterns
that run horizontally, vertically, or along diagonals. InSight cap-
tures them by computing the energy distribution over wavelet
sub-bands [11, 12] along the vertical (Ev ), horizontal (Eh ) and
diagonal (Ed ) dimensions. As a result, different organizations
of edges exhibit distinct feature vectors in our representation
(Figure 4). We also use the ratio between Ev and Eh to improve
robustness against different viewing distances. This is because
viewing from afar usually leads to loss in resolution, which im-
plies fewer detected edges. However, since this lossy behavior
affects vertical and horizontal stripes equally, the ratio between
Ev and Eh remains almost unchanged.

Figure 4: (a) Image for self-fingerprint (b) corresponding en-
ergy over wavelet sub-band along horizontal axis.

3.2 Extracting Fingerprints from Glass View
Bob’s self-fingerprint is a combination of the spatiogram and
wavelet representations. Later, when Alice views Bob through
her glass – either from the front or from the back – InSight again
crops out a rectangular region around Bob’s upper body (below
the face/neck), and applies the same fingerprinting operations
on this image. These fingerprints – one from Bob and another
from Alice – are now ready for matching.

3.3 Fingerprint Matching
Our matching algorithm first computes the spatiogram simi-
larity between each person in Alice’s view with the given self-
fingerprint (from Bob). Denote the spatiograms to be compared

as S = {n,µ,σ} and S
′ = {n

′
,µ

′
,σ

′
}, both having B color bins. We

define the similarity measure as [13]:
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Essentially, the similarity decreases (following a Gaussian func-
tion) with increasing difference between the colors and their
spatial locations.

Following this, we dynamically train a model using the wavelet
features of the same two fingerprints. The classifier in use is a
bagged decision tree (BDT). The BDT selects random samples
from the training data, builds multiple decision trees (each with
a subset of samples), and eventually chooses a weighted majority
voting result as the final output. The classification results are
accompanied by confidence scores that quantify the uncertainty.
In the end, the algorithm combines the similarity values from
spatiograms with the confidence-scores from wavelet classifiers,
and selects a candidate whose confidence exceeds a high thresh-
old. When the confidence is below this threshold, our current
system declares “unsure”, an attempt to minimize incorrect
recognition.

3.4 Refining the Self-Fingerprint
Bob’s self-fingerprint is derived from a sliver of his dress, and
may not be adequately discriminating against a background
of many individuals. Moreover, Alice may view Bob from his
back, and this “back fingerprint” may not match well with Bob’s
self-fingerprint (derived from his front view). This could be due
to differing patterns at the back of Bob’s shirt; differing wrinkles;
and/or unequal lighting conditions. We identify opportunities
to consolidate front and back fingerprints, which in turn can
improve the robustness of recognizing Bob. Our core intuition
exploits natural human mobility as described next.

Consider a social gathering where humans are naturally walking
around, to the extent that from any camera view, people in Bob’s
background changes over time. This diversity of backgrounds
is likely to become contrasting to Bob at some point. In other
words, even if Bob’s self-fingerprint is not highly discriminat-
ing, in certain favorable situations, the fingerprint may suffice
because people in Bob’s background are wearing different col-
ored clothes. At this point in time, since Charlie may be able
to recognize Bob and actually see his full attire (through her
glasses), he can enrich Bob’s fingerprint. Enriching would entail
informing the cloud that Bob’s fingerprint should be updated
with spatiogram and wavelet features derived from his trousers,
center of the shirt, etc. Later, if Julie happens to view Bob from
the back, this enriched fingerprint may now help recognize Bob
(perhaps because the trouser colors are discriminating). This
can in turn lead to further enrichment – Bob’s fingerprint can
now be updated with the visual features of his back.

Over time, one may envision everyone’s fingerprint getting en-
riched, which improves recognition, which in turn facilitates en-
richment. This recursive process may eventually converge, re-
sulting in fairly unique fingerprints for almost all. Our controlled
experiments in the next section will endorse this intuition and
indicate room for improvement.

4. EVALUATION
We implement a prototype of InSight using PivotHead camera
enabled glasses (Figure 5) and Samsung Galaxy phones running
Android. We conduct experiments with 15 users dressed in their
regular attires. We explicitly asked these participants to actively
use their smartphones. Each phone opportunistically takes
“profile” pictures of the user. In this process, InSight selects the
most suitable pictures via angle detection using accelerometer

readings, face detection, and blur estimation. The automatically
chosen pictures are then used to form the “self-fingerprint” for
the user. The PivotHead glass was worn by a single user who cap-
tured all the other users from the front and from the back. In our
preliminary experiments, the users captured in the glass view do
not overlap with each other – we controlled the experiment in
this manner for the purpose of simplicity.

Our main findings may be summarized as follows: (1) We con-
firm that color spatiograms and pattern wavelets capture com-
plementary features of a person’s dress – together, they are effec-
tive in discriminating an individual from the rest 14. (2) When
people are facing the glass, they can be accurately recognized us-
ing their self-fingerprints. (3) Through monte carlo simulations
on real fingerprints, we demonstrate how recursive fingerprint
refinement can help recognize a person, even when she is facing
away from the glass.

8MP  Camera  

1080P  HD  Video  

44.4Khz  Microphone  

Control  Button:  Burst  

Capture,  Resolutions,  Frame  

Rates  (60fps  &  30fps)  

Figure 5: PivotHead camera glasses used for InSight.

4.1 Combining Colors and Patterns
To assess the discriminative abilities of color and pattern fea-
tures, we first evaluate them separately when 15 people are
facing the glass – we extract their features from the glass view.
Figure 6(a) shows the confusion matrix represented using a heat
map. Element i j of the matrix reflects the similarity score when
InSight compares the spatiogram corresponding to person i in
the glass-view with that of self-fingerprint of person j . A lighter
color indicates higher similarity, and vice versa. If diagonal
elements are much lighter than the rest, then spatiograms alone
may be considered discriminative. With Figure 6(a), this is true
for 80% of the cases.

Figure 6(b) reflects the confidence scores in the confusion ma-
trix, when wavelets are used to extract features from clothing pat-
terns – the recognition accuracy is 73%. While this is not high,
we find that spatiograms and wavelets exhibit complementary
behavior (compare failure cases in Figure 6(a) and Figure 6(b)).
When color spatiograms fail to differentiate two people, pattern
wavelets are able to distinguish them. Therefore, we combine
these two approaches by computing the product of their similar-
ity and confidence scores. Figure 6(c) presents the result of this
hybrid approach. The accuracy improves distinctly; 14 out of 15
people are recognized without ambiguity. The rest of the evalua-
tion employs this hybrid approach.

4.2 Performance with Self-Fingerprints
Since self-fingerprints capture the front view of a person from
a close range, its important to characterize whether they are
effective when others view the person from a distance, and
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Figure 6: All users facing the glass: (a) Similarity scores from spatiograms; (b) Confidence scores from classification using wavelet
features; (c) The effect of combining color with patterns.

sometimes from the back. To address this question, we evaluate
the discriminative power of InSight by varying the number of
users facing towards and away from the glass. We conduct ex-
periments with all possible user combinations, ranging from only
1 user to all 15 users.

Figure 7 evaluates scenarios when all users are facing the glass.
For scenarios with n users (on the x axis), the graph shows the
average percentage of users correctly recognized, falsely recog-
nized, and unrecognized. The average is computed over all the
possible combinations, e.g., 105 combinations in case of 2 users
in the view. Evidently, the accuracy drops slightly (from 100% to
93%) from the 1-user to the 15-user scenario. None of the users
are recognized incorrectly as someone else. This suggests that
when Bob is facing Alice, self-fingerprints may be adequate for
reliable human recognition.
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Figure 7: Matching self-fingerprint with front view

Now consider the case where users are facing away from the
glass, but their self-fingerprints used to recognize them. Figure 8
shows the results. In most cases, InSight is unable to recognize
individuals, particularly when there are many users. This is not
too surprising since the glass only captures users’ back views
and needs to compare them with the self-fingerprints taken
from the front. However, a positive outcome is that very few
users are incorrectly recognized. Moreover, when there are only
few people around, some of them can be recognized from their
back view. Next, we describe how these few instances can be
leveraged to bootstrap “fingerprint refinement”, such that even
back-views can discriminate people in a crowded situation.

4.3 Performance with Refined Fingerprints
Consider those few lucky instances when Alice recognizes Bob
even though Bob has his back facing Alice (note, these instances
are more probable when few people are around). Knowing that
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Figure 8: Matching self-fingerprint with back view

this is Bob’s back view, InSight can refine Bob’s fingerprint (i.e.,
the cloud updates Bob’s self-fingerprint to also contain features
from the back-side of his dress). This refinement is feasible only
because InSight is rarely wrong in recognizing people (when
unsure, InSight refrains from making a recognition). Thus, if
Bob is recognized once, Bob can be recognized quite accurately
thereafter even in a crowded place. This is regardless of whether
his front or back is facing the glass.

To validate the fingerprint refinement approach, we conduct the
following monte carlo simulation. We randomly choose 4 people
with their backs facing the glass. We compare each of their back
views with their self-fingerprints. When there is a strong match,
the corresponding <ID, back view> is added to the InSight sys-
tem. This step is repeated 200 times, and over time more such
back views get added to the system. Once the same ID gathers 5
or more back views, we pick the most dominant one as that ID’s
back fingerprint. Gradually, the accuracy of recognizing a per-
son with a back view improves since it would be compared to
back fingerprints when available. Even when Bob’s back finger-
print is not in the system, back fingerprints of others help narrow
down the search space considerably, enhancing the chances of
recognizing Bob using his front-side fingerprint. We perform 500
runs of this simulation and show the average results in Figure 9.
The system converges, and increasing number of users get recog-
nized correctly over time, even when all of them have their back
facing the glass. Some errors indeed occur, but they do not prop-
agate in the system due to the overwhelming number of correct
recognitions.

5. DISCUSSION
Many more challenges need to be addressed, several opportuni-
ties need to be exploited. We discuss a few here.
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Figure 9: Matching back view after refining fingerprints.

(1) Incremental Deployment. Non-participants of this sys-
tem – those not running InSight – are likely to be mis-recognized
(even though ideally they should be labeled “unknown”). While
this is indeed a problem, work arounds may be feasible. If Alice
views Charlie but finds that none of the announced fingerprints
match with him, then Alice can suspect that Charlie is not a
part of the system. Over time, this suspicion could grow as
more people are unable to recognize Charlie, eventually tagging
Charlie as “unknown”. Of course, if Charlie is wearing a dress
similar to Bob, then the situation is harder. InSight has to wait
for adequate opportunities to find Charlie separate from Bob, so
that the suspicion value rises above a threshold – a key challenge
for our ongoing work.

(2) Privacy of Opportunistic Pictures. Taking opportunistic
pictures, while creating the self-fingerprint, may raise privacy
issues. Although the camera takes pictures only at specific orien-
tations, we believe that a concerned user can choose to manually
create the self-fingerprint. For instance, if InSight is used occa-
sionally – only at certain conferences or events, or when the user
needs to broadcast a message – it may not be burdensome to
take a self-picture only at those times. However, regular use may
call for additional privacy precautions; one simple way could be
to show the automatically-taken picture to the user before using
it for fingerprinting.

(3) Overlapping Users in View. When one views a crowded
gathering, it may not be easy to crop out each individual from
the image. People may be overlapping in their views, and only
a small part of their dresses may be visible. InSight will need to
evaluate the impact of such complicated views of individuals,
especially in crowded settings.

(4) Application scenarios. InSight enables use-cases in which
a user Bob intends to convey some information to anyone who
visually looks at him. One may view this as a form data broad-
cast using a visual “source address”; the recipients are all users
whose line of sight intersects with the transmitter. Specific in-
stances in which such visual broadcasts are applicable include
virtual badges in a conference, students tweeting about their ar-
eas of interest in a job fair, etc. Also, several use-cases do not
require revealing the user’s identity – a person at a basketball sta-
dium can simply tweet “selling an extra ticket for tonight’s game”.
One may even view InSight as a way of social messaging, similar
to how people where T-shirts with interesting captions on them.

6. CONCLUSION
This paper pursues a hypothesis that colors and patterns on
clothes may pose as a human fingerprint, adequate to discrim-

inate one individual from another in low/moderate density
situations. If successful, such a fingerprint could be effectively
used towards human recognition or content announcement in
the visual vicinity, and more broadly towards enabling human-
centric augmented reality. Pivoted on this vision, we develop
a proof of concept – InSight – using which users create a visual
fingerprint of an individual and compare it with that individual’s
self-created fingerprint. Preliminary evaluation with 15 people
wearing natural clothes, suggest promise – we find that clothes
indeed exhibit good entropy, and can be automatically finger-
printed/matched with reasonable accuracy. Our ongoing work
is focussed on coping with the issue of incremental deployment,
as well as exploring motion patterns when visual fingerprints are
not unique. We believe there is promise, and are committed to
building a fuller, real-time, system.
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