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Abstract—We present ratio contour, a novel graph-based method for extracting salient closed boundaries from noisy images. This

method operates on a set of boundary fragments that are produced by edge detection. Boundary extraction identifies a subset of these

fragments and connects them sequentially to form a closed boundary with the largest saliency. We encode the Gestalt laws of

proximity and continuity in a novel boundary-saliency measure based on the relative gap length and average curvature when

connecting fragments to form a closed boundary. This new measure attempts to remove a possible bias toward short boundaries. We

present a polynomial-time algorithm for finding the most-salient closed boundary. We also present supplementary preprocessing steps

that facilitate the application of ratio contour to real images. We compare ratio contour to two closely related methods for extracting

closed boundaries: Elder and Zucker’s method based on the shortest-path algorithm and Williams and Thornber’s method based on

spectral analysis and a strongly-connected-components algorithm. This comparison involves both theoretic analysis and experimental

evaluation on both synthesized data and real images.

Index Terms—Image segmentation, perceptual organization, boundary detection, edge detection, graph models.
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1 INTRODUCTION

IN this paper, we present and analyze a novel method for
extracting perceptually salient closed boundaries in

images. This problem can be divided into two parts:
formulating appropriate criteria for salience that reflect
human perceptual judgment and, subsequently, finding
boundaries that meet those criteria. Cognitive scientists
have articulated Gestalt laws, such as closure, proximity, and
continuity, that attempt to characterize boundary salience. In
this paper, we present one way of formalizing these laws in
terms of a precise mathematical objective function to be
optimized. We then present a novel graph-theoretic algo-
rithm, called ratio contour, for finding a global optimum to
this objective function in polynomial time. Our methods
always yield closed boundaries and our saliency measure is
largely insensitive to boundary length.

The earliest attempts at finding salient boundaries were
based on edgedetection (e.g. [45], [41], [55], [7], [43], [26], [24],
[6], [32]). However, suchmethods usually produce boundary
fragments that are not connected into closed boundaries,
especially in the presence of noise and occlusion. Further-
more, most edge detectors do not incorporate a salience
metric that reflects the Gestalt laws of proximity and
continuity. Edge-linking methods, such as [23], attempt to
address these problems by connecting boundary fragments
into closed boundaries using local-search techniques. How-
ever, these methods do not guarantee an optimal solution to
an independently specified salience measure.

A broader class of local optimization techniques have
been applied to the general problem of boundary extraction.
These include active-contour (e.g., [30], [3], [9], [63], [8], [67])
and shape-deformation (e.g., [57], [11], [28], [47], [36], [22])
methods. Both types of method usually force the boundary
to be smooth and closed by iteratively updating an initial
boundary to produce a series of boundaries that better meet
the saliency criteria. However, the result of such an iterative
method can depend on the initial boundary and there is no
guarantee that a globally optimal boundary will be found.
Other approaches for extracting boundaries include the
Ising model [46], the Cartoon model [20], the Theater-Wing
model [39], the Spectrogram model [35], and the Region-
Competition model [68], where the saliency measure is
explicitly formulated as a Bayesian variational problem.
However, it is usually difficult to find optimal solutions for
these variational problems. In fact, many of these problems
are NP-hard. Practical approaches to solving these problems
often use local-search techniques that require some form of
initialization.

To avoid dependence on initialization, graph-theoretic
approaches were introduced to guarantee production of
boundaries that globally optimize a given saliency measure.
These methods typically construct a graph where the
vertices represent pixels or small regions and the weighted
edges represent affinity between these pixels or regions. In
this context, finding a boundary is reduced to the problem of
partitioning the graph in a way that optimizes some cost
function. Different graph-theoretic methods employ differ-
ent algorithms to optimize different cost functions. These
include Minimum Cut [66], Ratio Regions [13], Normalized
Cut [54], Average Cut [49], the methods of Jermyn and
Ishikawa [29], Ratio Cut [61], and many more recent
methods (e.g., [40], [19], [51], [59], [52], [56], [5], [18]). Some
of these methods attempt to solve NP-hard problems using
approximate algorithms. Because many of those methods
construct graphs where vertices correspond to pixels or
small regions, it is difficult to incorporate many Gestalt laws,
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such as smoothness, into the formulation of the saliency
measure.

Cost functions that measure the Gestalt properties of
closure, proximity, and continuity can be more conveni-
ently formulated in terms of preextracted boundary
fragments than image pixels. These boundary fragments,
or simply fragments,1 can be obtained with an edge
detector. In this context, boundaries are extracted by
identifying and connecting a subset of these fragments
into a salient boundary. The Gestalt laws correspond to
enforcing specified properties of a boundary. Closure
requires that the boundary be a cycle. Proximity requires
the gap between two neighboring fragments to be small.
Continuity requires the resulting boundary to be smooth.
Methods have been proposed for connecting fragments in a
way that attempts to satisfy these properties (e.g., [53], [16],
[37], [2], [27], [48], [21], [64], [4], [65], [37], [25], [4], [27],
[44]). These methods typically:

1. Define a prominence2 measure for each fragment and/
or gap between two neighboring fragments. This
measure is usually based on the smoothness and
length of these fragments and/or gaps to encode the
local continuity and proximity properties.

2. Define a saliency measure for valid boundaries in
terms of fragment and gap prominence defined
above. For example, saliency of a boundary can be
defined as the sum of the prominences of its
component fragments and gaps.

3. Develop an optimization algorithm for finding the
boundary that maximizes the selected saliency
measure. Such algorithms may employ graph-
theoretic techniques in an attempt to achieve global
optimality [16], [37].

Prior methods differ in their choice of prominence and
saliency measures and approaches to optimization.

A psychological study has shown that boundary closure
plays a critical role in human perception, as shown by
Kovacs and Julesz [33, p. 7496]:

We found an unexpected advantage of circular arrangements: �c

(maximum spacing for closed contours) was extended by a factor of
1.8 relative to �o (maximum spacing for open ones).

In other words, with similar maximum gap (spacing)
between fragments, humans may perceive closed curves,
but not open ones. The maximum allowed gap in perceiving
a closed curve is 1.8 times the maximum allowed gap in
perceiving an open curve. Since closure appears to be
important in human vision, researchers deem it prudent to
incorporate closure into computer vision.

As a global property, boundary closure is usually more
difficult to enforce with prominence measures than local
properties such as proximity and continuity. In fact, many of
the above methods cannot guarantee production of closed
boundaries. One way to enforce closure is to perform
constrained optimization that only considers closed bound-
aries. In the context of graph-based optimization algorithms,
this constraint corresponds to finding cycles in a graph. For

example, Elder and Zucker [16] define boundary saliency as
the product of fragment/gap prominence along the bound-
ary and then use the shortest-path algorithm [14] to find the
optimal cycle. Similarly, Williams and Thornber [65] define
boundary saliency as the geometric mean of fragment/gap
prominence along the boundary and use spectral-analysis
techniques to enhance the fragment/gap prominence
measure with closure information.3 With this measure,
Mahamud et al. [37] attempt to enforce closure using a
strongly-connected-components algorithm [12]. Other re-
lated methods that attempt to find closed boundaries
include [27], [4], [42].

This paper presents a new graph-based method, called
ratio contour, for detecting closed salient boundaries, where
the globally most-salient boundary is found in polynomial
time. Like the methods described above, ratio contour finds
boundaries by identifying and connecting a set of preex-
tracted fragments. Further, ratio contour guarantees closure
by constrained graph-based optimization. We encode the
Gestalt laws of proximity and continuity in a novel
boundary-saliency measure based on relative gap length
and average curvature. Formulating saliency in terms of
relative gap length and average curvature removes the bias
toward short boundaries that is present in saliency
measures based on total gap length and curvature.

Our paper contains two major parts. In the first part, we
present the algorithmic details of ratio contour along with
the supplementary processing steps needed to use this
method to extract salient boundaries from images. More
specifically, we present methods for 1) preprocessing the
edge-detector output to produce a set of topologically
unconnected fragments, 2) smoothing the detected frag-
ments to remove noise, and 3) reliably estimating the
curved gap-filling segment between two detected frag-
ments. The latter two use a spline-based curve smoothing
algorithm for noise removal and robust gap filling. In the
second part, we analyze the differences between ratio
contour and the two most-related prior methods: Elder and
Zucker (EZ) [16] and Williams and Thornber (WT) [65], [37],
and compare their performance on synthesized and real
images in a unified framework.

The remainder of this paper is organized as follows:
Section 2 formulates the saliency measure used by ratio
contour and converts the problem of finding the most-
salient boundary with this measure into the problem of
finding an optimal cycle in a graph. Section 3 presents a
polynomial-time algorithm for finding the desired optimal
cycles. Section 4 discusses the preprocessing steps 1) through
3) described above to derive the fragment/gap prominence
measure, in terms of graph edge weights, from noisy edge-
detector output. Section 5 illustrates the boundaries
detected by ratio contour on real images. Section 6 analyzes
the similarities and differences between ratio contour and
the methods of EZ and WT. Section 7 compares the
performance of ratio contour with that of EZ and WT with
experiments on real and synthetic images. Section 8
concludes with a summary of our method.

2 PROBLEM FORMULATION

We refer to the process of identifying a subset of fragments
produced by preprocessing and connecting the fragments in
that subset to form a closed boundary as boundary extraction.

WANG ET AL.: SALIENT CLOSED BOUNDARY EXTRACTION WITH RATIO CONTOUR 547

1. Prior literature often uses the term “edge” instead of “fragment.” We
do not use this terminology to avoid confusion with the notion of edge in its
graph-theoretic sense.

2. Note that we have prominence measures for both fragments and gaps.
Prior literature often uses the term “affinity” between a pair of fragments to
refer to what we call gap prominence. We refrain from using the term
affinity as it is not appropriate for individual fragments and we wish to use
unified terminology for both fragments and gaps.

3. In [37], such enhanced fragment/gap prominence is referred to as
“edge saliency” and “link saliency.”



As shown in Fig. 1a, the input to boundary extraction
consists of a set of noncrossing fragments, each of which is a
continuous open curve segment with two endpoints. We
further assume that a boundary produced by boundary
extraction always consists of indivisible fragments, i.e., a
boundary cannot contain only part of a fragment. The goal
of boundary extraction is to find the closed boundary with
maximum perceptual saliency, as shown in Fig. 1b. To form
a closed boundary from disconnected fragments, we
construct another set of fragments to fill the gaps between
the initial fragments. To distinguish these two kinds of
fragments, we refer to the initial fragments, the solid curves
in Fig. 1b, as real fragments and the gap-filling fragments,
the dashed curves in Fig. 1b, as virtual fragments.

Virtual fragments are derived from adjacent real frag-
ments by a process of gap completion. Any gap-completion
method can be used (e.g., [38], [58], [64], [51]). For the
experiments in this paper, we use the particular gap-
completion method that we present in Section 4. We
associate a prominence or fragment cost with each fragment
to describe how likely or unlikely that fragment is to be
included in the most-salient boundary. Such fragment
prominence or cost usually incorporates only local informa-
tion derived from a given fragment. Many formulations of
fragment prominence or cost have been proposed (e.g., [16],
[64], [60]). Such formulations often attempt to codify the
Gestalt laws of proximity and continuity: 1) real fragments
are more prominent than virtual fragments, 2) short virtual
fragments are more prominent than long virtual fragments,
and 3) smooth fragments are more prominent than
nonsmooth fragments.

A closed boundary can then be constructed by connect-
ing a subset of real and virtual fragments, sequentially and
alternately, as shown in Fig. 1b. We are only interested in
nondegenerate boundaries where no fragment is traversed
more than once when forming a closed boundary. For the
remainder of the paper, we use the term “boundary,”
without the qualifier “degenerate,” to refer to nondegene-
rate boundaries. Note that the nondegeneracy of a
boundary does not require it to be non-self-crossing4 in
our problem formulation because a virtual fragment may
cross another real or virtual fragment along an extracted
boundary. An example of this is shown in Fig. 1c, where the
boundary is nondegenerate but self crossing. The ratio-
contour method presented in this paper extracts only
nondegenerate boundaries, which, however, may be self-
crossing. Associated with each closed boundary, we can
define a boundary saliency Sð�Þ or a boundary cost �ð�Þ as a

function of the prominence or cost of the fragments that
form that boundary. Finally, we develop an optimization
algorithm to search for a closed boundary that maximizes
this boundary saliency or, alternatively, minimizes the
boundary cost. In essence, various boundary-extraction
methods differ mainly in their definition of boundary
saliency/cost and/or their optimization algorithm.

We encode the Gestalt laws of proximity and continuity
into the following boundary-cost definition:

�rcðBÞ ¼
4 WðBÞ

LðBÞ ¼
R
B½�ðtÞ þ � � �2ðtÞ�dtR

B dt
; ð1Þ

where vðtÞ, 0 � t � LðBÞ, is the arc-length parameterized
form of the boundary B, �ðtÞ ¼ 1 if the point vðtÞ is in a
virtual fragment, �ðtÞ ¼ 0 if it is in a real fragment, and �ðtÞ
is the curvature of the boundary at vðtÞ. The most-salient
boundary B is then the one with the minimum cost �rcðBÞ.
The cost �rcðBÞ normalizes WðBÞ, a weighted sum of the
total gap-length and curvature along the boundary B, by
LðBÞ, the length of the boundary B, in an attempt to remove
a possible bias toward short boundaries in WðBÞ. The
parameter � > 0 controls the relative contribution of
proximity and continuity to this cost.

While �rc avoids a bias toward short boundaries, it does
not eliminate all biases dependent on boundary length. The
choice of most-salient boundary using �rc can depend on
image scale, given a fixed �. An example is shown in Fig. 2,
which contains two circular boundaries, A and B. Along A,
the virtual fragments count for half of the boundary length,
while, along B, the virtual fragments count for one-third of
the boundary length. Consider the case where the radius of
these two circular boundaries are rA ¼ 4 and rB ¼ 2 and
� ¼ 2. It is easy to see that

�rcðAÞ ¼
1

2
þ �

r2A
¼ 1

2
þ 1

8
< �rcðBÞ ¼

1

3
þ �

r2B
¼ 1

3
þ 1

2
;
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Fig. 1. Extracting a salient boundary from a set of fragments. (a) Real fragments. (b) A nondegenerate non-self-crossing closed boundary derived by
connecting a subset of real and virtual fragments. (c) A nondegenerate self-crossing closed boundary. (d) The solid-dashed graph G constructed
from (a) together with a simple alternate cycle (shown in thick lines) corresponding to the boundary shown in (b). (e) A simple alternate cycle (shown
in thick lines) corresponding to the boundary shown in (c).

4. Prior literature often refers to non-self-crossing boundaries as
“simple” boundaries. We do not use this terminology to avoid confusion
with the notion of simple cycles in a graph.

Fig. 2. The most-salient boundary that optimizes �rc can depend on

image scale and the parameter �.



i.e., A is more salient than B. If we enlarge the image by a

factor of 2, we have rA ¼ 8 and rB ¼ 4. With the same � ¼ 2,

we have

�rcðAÞ ¼
1

2
þ �

r2A
¼ 1

2
þ 1

32
> �rcðBÞ ¼

1

3
þ �

r2B
¼ 1

3
þ 1

8
;

i.e., B is more salient than A.
The parameter � > 0 specifies the relative contribution of

proximity and continuity to saliency. With smaller �,
proximity dominates. With larger �, continuity or smooth-
ness dominates. Therefore, different values for � may lead
to different most-salient boundaries. To see this, consider
again the two circular boundaries shown in Fig. 2 with the
radii rA ¼ 4 and rB ¼ 2. We have previously shown that
with � ¼ 2, A is more salient than B. However, with � ¼ 0:5,
we have

�rcðAÞ ¼
1

2
þ �

r2A
¼ 1

2
þ 1

32
> �rcðBÞ ¼

1

3
þ �

r2B
¼ 1

3
þ 1

8
;

i.e., B is more salient than A. Finding an optimal � for an
input image is one of our ongoing research topics. In this
paper, we choose a fixed � for all experiments.

We now formulate the problem of boundary extraction
into an optimization problem in an undirected graph
G ¼ ðV ;EÞ. We construct a unique vertex for each fragment
endpoint. Two kinds of edges, solid and dashed, are then
constructed between vertices to represent real and virtual
fragments, respectively. An example of such a graph is
shown in Fig. 1d. This graph is constructed from the real
fragments in Fig. 1a and consists of seven solid edges and
25 dashed edges. To illustrate this construction clearly, the
graph in Fig. 1d is embedded so that each vertex uA has the
same spatial coordinate as its corresponding fragment
endpoint A in Fig. 1a. G must have an even number of
vertices since each real fragment has two endpoints.
Furthermore, no two solid edges can be incident on the
same vertex. We call such a graph an (undirected) solid-
dashed (SD) graph. In this graph, an alternate cycle is defined
as a cycle that alternately traverses solid and dashed edges
and a simple cycle as a cycle that does not traverse a vertex
more than once. For the remainder of the paper, we use the
term “cycle,” without the qualifier “nonsimple,” to refer to
simple cycles. Examples of an SD graph and alternate cycles
are illustrated in Figs. 1d and 1e. It is easy to see that
nondegenerate closed boundaries correspond exactly to
simple alternate cycles in G. Thus, we can constrain our
optimization of saliency to consider only nondegenerate
closed boundaries by using graph algorithms that find
simple alternate cycles.

To formulate the boundary cost (1) in terms of G, we
associate a weight wðeÞ and a length lðeÞ with each edge e in
G. For convenience, we define BðeÞ as the original (real or
virtual) fragment corresponding to an edge e. Based on this,
we define

wðeÞ ¼4 W ðBðeÞÞ ¼
Z
BðeÞ
½�ðtÞ þ � � �2ðtÞ�dt; ð2Þ

which is the unnormalized cost of BðeÞ, and

lðeÞ ¼4 LðBðeÞÞ ¼
Z
BðeÞ

dt; ð3Þ

which is the curve length of BðeÞ. The most-salient closed

boundary B with minimum cost �rcðBÞ corresponds to an

alternate cycle C that minimizes the cycle ratio

�rcðCÞ ¼
P

e2C wðeÞP
e2C lðeÞ : ð4Þ

In the next section, we present a polynomial-time algorithm

for finding such an optimal alternate cycle.

3 THE RATIO-CONTOUR ALGORITHM

For simplicity, we denote an alternate cycle with minimum

cycle ratio as a Minimum Ratio Alternate (MRA) cycle. In this

section, we introduce a polynomial-time algorithm for

finding an MRA cycle in an SD graph G. This algorithm

consists of three reductions: 1) Reduce the problem of

finding an MRA cycle in a general SD graph G to the

problem of finding an MRA cycle in a special SD graph with

the same structure as G, except that all the solid edges have

zero weight and length. This reduction is achieved by

merging the weight and length of solid edges into the

weight and length of their adjacent dashed edges, without

changing the structure of the graph. 2) Reduce the problem

of finding an MRA cycle in an SD graph G to the problem of

finding a Negative total Weight Alternate (NWA) cycle in the

same graph G. 3) Reduce the problem of finding an NWA

cycle in an SD graph G with zero solid-edge weights and

lengths to the problem of finding a Minimum-Weight Perfect

Matching (MWPM) in the same graph G. One can find an

MWPM in polynomial-time [15]. This allows us to find an

MRA cycle in polynomial time as well.

3.1 Reduction 1: Setting the Weight and Length
of Solid Edges to Zero

From (2) and (3), the weight and length of any edge in

the constructed SD graph G are usually nonzero. In this

section, we show how to transform the edge weights and

lengths in G so that all solid edges have zero weight and

length without changing the MRA cycle. As illustrated in

Fig. 3, no two solid edges can be adjacent. Therefore, each

solid edge e ¼ ðu; vÞ can only be adjacent to a set of

dashed edges, say fe1; e2; . . . ; eKg, in G. We can decom-

pose the weight wðeÞ and length lðeÞ of the solid edge e

arbitrarily into sums of two nonnegative terms: wðeÞ ¼
wuðeÞ þ wvðeÞ and lðeÞ ¼ luðeÞ þ lvðeÞ. We can then reas-

sign the weight and length of the solid edge to its

adjacent dashed edges by the following transformation:
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Fig. 3. Reassigning the weight and length of a solid edge to its adjacent
dashed edges. (a) The cases where solid and dashed edges share only
one vertex. (b) A case where solid and dashed edges share two vertices.



wðekÞ  wðekÞþ
wuðeÞ if ek only shares vertex u with e

wvðeÞ if ek only shares vertex v with e

wðeÞ if ek shares both vertices u and v with e

8><
>:
lðekÞ  lðekÞþ

luðeÞ if ek only shares vertex u with e

lvðeÞ if ek only shares vertex v with e

lðeÞ if ek shares both vertices u and v with e

8><
>:

for k ¼ 1; 2; . . . ; K sequentially. We can then reset the
weight and length of the solid edge e to zero. For example,
we can set wuðeÞ ¼ wvðeÞ ¼ 1

2wðeÞ and luðeÞ ¼ lvðeÞ ¼ 1
2 lðeÞ to

divide the weight and length of the solid edge e into two
equal components and then reassign these components to
the adjacent dashed edges. This reassignment process is
performed iteratively over all solid edges. Since solid and
dashed edges are traversed alternately in an alternate cycle,
this process will not change the total weight and length of
any alternate cycle in G. Therefore, this process does not
change the MRA cycle in G.

3.2 Reduction 2: Detecting Negative-Weight
Alternate Cycles

In this section, we reduce the problem of finding an MRA
cycle in an SD graph G to the problem of finding an
alternate cycle with negative total edge weight in the same
graph G by searching for an appropriate transformation of
the edge weights in G that preserves the MRA cycle but
where the MRA cycle has a cycle ratio of zero. The cost of
finding the appropriate parameter b� for this transformation
is incorporated into the complexity analysis of the algo-
rithm. This reduction is possible because an MRA cycle in G
is invariant to the following linear transformation of the
edge weights:

w0ðeÞ ¼ wðeÞ � b � lðeÞ; 8e 2 E: ð5Þ

This holds because, for any two alternate cycles C1 and C2

in G, �rcðC1Þ � �rcðC2Þ implies

�0rcðC1Þ ¼
P

e2C1
w0ðeÞP

e2C1
lðeÞ ¼

P
e2C1
½wðeÞ � b � lðeÞ�P

e2C1
lðeÞ

¼ �rcðC1Þ � b � �rcðC2Þ � b ¼
P

e2C2
w0ðeÞP

e2C2
lðeÞ

¼ �0rcðC2Þ;

where �0rcð�Þ denotes the cycle ratio after the edge-weight
transformation.

Since edge lengths are nonnegative, there exists an
optimal b ¼ b� so that, after the above edge-weight transfor-
mation, the resulting MRA cycles have a cycle ratio of zero.
In this case, MRA cycles are the same as the cycles with zero
total edge weight. Now, suppose that we have an NWA
cycle-detection algorithm that can determine whether there
is an NWA cycle inG and, if there is, can extract such a cycle,
both in polynomial time. Then, we can use this NWA cycle-
detection algorithm repeatedly to determine b� using the
following sequential-search algorithm, as shown in Fig. 4.

This sequential-search algorithm is adapted from Ahuja
et al. [1, pp. 496-497], where it is used for finding a
minimum ratio cycle in a directed graph. The correctness of
this algorithm comes from the fact that an alternate cycle C
always has zero total weight when all the edge weights are

transformed by w0ðeÞ ¼ wðeÞ � �rcðCÞ � lðeÞ, after Step 3. To
avoid confusion, we specify that the cycle ratio �rcðCÞ is
always calculated using the original edge weights in G
without applying the edge-weight transformation (5).
Furthermore, we know that, with the current edge-weight
transformation w0ðeÞ ¼ wðeÞ � �rcðCÞ � lðeÞ, there is no alter-
nate cycle with negative total weight after termination. This
implies that after termination b� ¼ �rcðCÞ and the current C
is a desired MRA cycle.

It can be shown that this search process terminates in a
(pseudo)polynomial number of iterations if the edgeweights
and lengths are all integers. Let wmax ¼ maxe2E wðeÞ and
lmax ¼ maxe2E lðeÞ. The cycle ratio of any alternate cycle C
has the form

�rcðCÞ ¼
P

e2C wðeÞP
e2C lðeÞ :

When all edge weights and lengths are integral, the
numerator,

P
e2C wðeÞ, can take on at most wmaxjEj different

values. Similarly, the denominator,
P

e2C lðeÞ, can take on at
most lmaxjEj different values. Therefore, the cycle ratio
�rcðCÞ of any alternate cycle C in G can take on at most
wmaxlmaxjEj2 different values. Notice that, in the above
sequential-search algorithm, the estimated b ¼ �rcðCÞ will
strictly decrease after each iteration. Therefore, this algo-
rithm terminates in at most wmaxlmaxjEj2 iterations.

Now, let us consider the combination of the first
reduction described in Section 3.1 and this second reduc-
tion. After the first reduction, the SD graph G has a special
property: All solid edges have zero weight and length. The
edge-weight transformation (5) preserves this property.
Therefore, we need only develop an NWA cycle-detection
algorithm for SD graphs where all the solid edges have zero
weight and length.

3.3 Reduction 3: Finding Minimum Weight Perfect
Matchings

The problem of detecting an NWA cycle in an SD graph
where all the solid edges have zero weight and length can
be reduced to the problem of finding an MWPM in the same
graph. A perfect matching in G denotes a subgraph of G
that contains all the vertices in G, but where each vertex
only has one incident edge. Fig. 5a shows an example of
perfect matching where the seven thick edges, together with
their vertices, form a perfect matching. The MWPM is the
perfect matching with minimum total edge weight. In an SD
graph, all the solid edges form a trivial perfect matching,
which, in our case, has zero total weight given the first
reduction from Section 3.1. Therefore, the MWPM in our SD
graph will have nonpositive total weight.

We can derive a set of cycles from an MWPM P with the
following two-step algorithm:
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Fig. 4. Sequential-search algorithm.



1. Remove from P all the solid edges and their incident
vertices. We denote the resulting graph as P 0.

2. Add the edge e to P 0 if (a) e is a solid edge in G and
(b) e is not in the MWPM P . We denote the resulting
graph as P 00.

The graph P 00 produced by the above algorithm consists of a
set of disjoint alternate cycles because each vertex in P 00 has
two incident edges: one solid and one dashed. Two
examples of this reduction are shown in Fig. 5. Since all
the solid edges have zero weight and length and we only
remove and add solid edges in the above algorithm, the
total weight of the MWPM P is the same as the total weight
of the derived alternate-cycle set P 00. When P 00 contains a
single alternate cycle, as shown in Figs. 5a and 5b, the NWA
cycle-detection problem is reduced to the problem of
finding an MWPM and checking whether it has negative
total weight.

However, P 00 may contain multiple alternate cycles, as
shown in Figs. 5c and 5d. It is easy to see that at least one of
these alternate cycles must have nonpositive total weight,
for otherwise, the sum of the total weights of all of the
alternate cycles would be positive. This is sufficient for our
reduction. We can show an even stronger property;
however, each alternate cycle in P 00 must have nonpositive
total weight. This can be shown by contradiction. Assume
one cycle, Cþ, in the cycle set P 00, has a positive total weight.
Then, we can construct a new perfect matching Q from the
MWPM P by: 1) removing from P all the dashed edges in
Cþ and 2) adding into P all solid edges in Cþ. The
construction of Q from P is illustrated in Figs. 5c, 5d, and
5e. As all the solid edges have zero weight and length, Q
must have less total edge weight than P . This contradicts
the assumption that P is an MWPM. Therefore, even when
P 00 contains multiple alternate cycles, the problem of
finding an NWA cycle in G can still be reduced to the
problem of finding an MWPM in G simply by choosing
from P 00 the cycle with minimum cycle ratio �rcðCÞ (based
on the original edge weights) for the sequential-search
algorithm from Section 3.2. This cycle brings b closer to the
desired b� than any other cycle in P 00. Although the earlier
analysis provides an upper-bound of wmaxlmaxjEj2 on the
number of iterations required in the sequential-search
algorithm from Section 3.2, none of the experiments
reported in the paper requires more than eight iterations
using this NWA cycle-detection algorithm.

4 FRAGMENT CONSTRUCTION AND EDGE-WEIGHT

FUNCTION

This section discusses the supplementary processing steps
needed to use the above ratio-contour algorithm to extract
salient boundaries from real images: the construction of the
real and virtual fragments and the calculation of edge

weights and lengths. Specifically, we discuss the following
issues: 1) preprocessing the edge-detector output to
produce a set of topologically unconnected fragments,
2) smoothing the detected fragments to remove noise, and
3) reliably estimating the curved gap-filling segment
between two detected fragments. The latter two use a
spline-based curve-smoothing algorithm for noise removal
and robust gap filling.

4.1 Preprocessing the Edge-Detector Output

We must construct fragments from the traces produced by
an edge detector that meet the requirements of Section 2
and Fig. 1a. However, edge detectors may produce traces
that contain intersections, as illustrated in Fig. 6a, attach-
ments, as illustrated in Fig. 6c, and closed curves, as
illustrated in Fig. 6e.

Intersections arise when more than two apparent frag-
ments are incident on the same point, as shown in Fig. 6a.
When using a Canny edge detector [7], it is trivial to
identify the intersection points since all the traced pixels are
ordered after nonmaximum suppression. Thus, we can
identify intersection points as traced pixels with more than
two neighbors. The traces are split at these intersection
points to derive multiple real fragments. For example, the
traces shown in Fig. 6a yield multiple fragments that
correspond to the solid and dashed edges in Fig. 6b. In this
example, the intersection point is split into three endpoints
that correspond to three vertices u1, u2, and u3 that are
connected by dashed edges with zero weight and length.

Attachments arise when a long trace must be divided into
more than one fragment so that the desired boundary can
be constructed from indivisible fragments, as shown in
Fig. 6c. In this example, we wish to divide the long trace
Bðe1Þ [Bðe2Þ into the fragments Bðe1Þ and Bðe2Þ to allow
the extracted boundary to connect Bðe1Þ to Bðe3Þ and
exclude Bðe2Þ. We accomplish this by dividing all traces at
points of high curvature. For example, the traces in Fig. 6c
yield the fragments that correspond to the solid and dashed
edges in Fig. 6d. In this example, after splitting the long
trace into two fragments at the point of high curvature, the
two coincident endpoints of these fragments correspond to
two vertices u1 and u2 that are connected by a dashed edge
with zero weight and length. Closed curves, as shown in
Fig. 6e, can be treated as a special case of attachments. We
simply divide the trace at the highest point of curvature, as
shown in Fig. 6f.

In dealing with both attachments and closed curves, we
need to identify the points of high curvature along the trace.
However, traces derived directly from edge detection may
contain noise that prevents accurate estimation of the
curvature (see Fig. 7a). In the next section, we present a
spline-based curve-smoothing technique for noise removal.
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Fig. 5. Reduction 3 in the ratio-contour algorithm. (a) An MWPM (thick lines) in the G from Fig. 1. (b) One cycle (thick lines) derived from the MWPM
in (a). (c) Another MWPM P inG. (d) Two cycles P 00 derived from the MWPM P in (c). (e) The new perfect matchingQ constructed from P in (c) when
the upper-left cycle Cþ in P 00 in (d) has positive total edge weight. This will contradict the assumption in (c) that P is an MWPM.



4.2 Smoothing the Detected Fragments

To accurately estimate the curvature along a trace, we need
to remove noise and aliasing. To accomplish this, we
employ a spline-based smoothing technique that represents
a trace by a set of quadratic splines. Note that each trace is
originally represented by a set of connected pixel points
extracted by an edge detector. We refer to these pixel points
as control points and associate a quadratic spline to each
control point that interpolates that control point and its
neighbor. The spline for the ith control point has the
following parametric form:

xiðtÞ
yiðtÞ

� �
¼ �xxi

�yyi

� �
þ Ai Bi

Ci Di

� �
t2

t

� �
;

where piðtÞ ¼ ðxiðtÞ; yiðtÞÞT is the spatial coordinate of the ith
spline parameterized with t 2 ½�1; 1�, �ppi ¼ ð�xxi; �yyiÞT is the
spatial coordinate of the control point and Ai, Bi, Ci, and Di

are the coefficients of the quadratic. We smooth these splines
by visiting each in turn and adjusting its attributes (�xxi, �yyi,Ai,
Bi, Ci, andDi) to improve a continuity measure. The process
repeats iteratively until themeasure reaches a given tolerance
level. Thus, among all the representations whose continuity
measure is under the tolerance level, the process returns the
first one to be reached from the original representation by the
iterative optimization process [34]. While we cannot prove
that such a smoothed fragment remains aligned with the
original unsmoothed fragment, in practice, we have never
observed a case of significant misalignment. Furthermore,
with the parametric form of the quadratic splines associated
with each trace, the total length of the ith spline and the
curvature along that spline can be computed by

li ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2AitþBiÞ2 þ ð2CitþDiÞ2

q
dt;

�iðtÞ ¼
2ðBiCi �AiDiÞ

ðð2AitþBiÞ2 þ ð2CitþDiÞ2Þ3=2
:

This can be used to calculate the edge weights and lengths
in the constructed SD graph.

To derive the optimal attributes for these quadratic
splines, we form a prior energy term that penalizes
deviation away from C1 continuities. We use the following
energy function:

Ep ¼
XN�1
i¼1

�
kpið0Þ � piþ1ð�1Þk2 þ kpið1Þ � piþ1ð0Þk2 þ k _ppið0Þ

� _ppiþ1ð�1Þk2 þ k _ppið1Þ � _ppiþ1ð0Þk2
�
;

where k � k2 is the L2 norm and _ppðtÞ is the tangent vector at t.
The smoothing process iteratively visits each spline sequen-
tially toupdate its attributes [34]. This canbeperformedusing
a block Gauss-Seidel method. Throughout the experiments
presented in this paper, we iterate the Gauss-Seidel process
50 times to smooth each trace.An example of trace smoothing
using this method is shown in Fig. 7.

4.3 Gap Filling

The final supplementary processing step is to derive virtual
fragments from the real fragments. One approach is to
estimate a virtual fragment that interpolates each pair of
real-fragment endpoints in a way that satisfies specified
continuity and perceptual criteria. This approach is often
called curve completion [21], [50], [31]. For example, Figs. 8a
and 8b show a closed boundary and the same boundary
with three gaps, respectively. In the ideal case, we wish
curve completion to derive three virtual fragments to fill
these gaps, as shown in Fig. 8c, and produce a boundary
that resembles the original one in Fig. 8a.

However, curve completion does not work properly with
noisy or aliased real fragments. For example, noise at the
fragment endpoints shown in Fig. 8d may result in virtual
fragments that deviate significantly from the original curve,
as shown in Fig. 8e, because the noisy tangent values at
fragment endpoints dominate this curve-completion pro-
cess. Real fragments derived by preprocessing edge-
detector traces with the methods from Sections 4.1 and 4.2
still may suffer from such endpoint noise and aliasing.
Therefore, curve completion must use more information
than is available at fragment endpoints.

In this paper, we estimate a virtual fragment from the
general shape of its adjacent real fragments because fragment
shape information is less susceptible to noise and aliasing.
Thisway, the estimationof virtual fragments and the removal
of the real-fragment endpoint noise and aliasing are
combined into a single task. Specifically, each real fragment
is divided into two real subfragments at its midpoint. Each
real subfragment is then combined into its adjacent virtual
fragment to form a combined fragment. As illustrated in Fig. 8f,
the closed boundary consists of three combined fragments
AB
�!

, BC
�!

, and CA
�!

, where AB
�!

represents the curve segment
traversing fromA toB in the clockwise direction. We can see
that each combined fragment ismadeupof a virtual fragment
and two of their adjacent real subfragments. Instead of
estimating the virtual fragments from the endpoints, we
estimate the whole combined fragment that fits the included
real subfragmentswhile filling thegap smoothly.Wenot only
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Fig. 6. Constructing fragments from traces. (a) and (b), (c) and (d), and (e) and (f) illustrate how to construct fragments from traces with intersections,
attachments, and closed curves, respectively.

Fig. 7. Trace smoothing. (a) A noisy trace. (b) The same trace after
smoothing.



allow the resulting combined fragment to deviate from the

original real fragments, but also allow different combined

fragments that are derived from the same real fragment to

deviate differently from that real fragment.
We use a two-step algorithm to obtain the desired

combined fragment. In the first step, we estimate all the

virtual fragmentsbyconnecting the correspondingendpoints

with straight lines, as shown in Fig. 8f. Combining the

obtained virtual fragments and real fragments, we construct

an initial representation of the combined fragments by

dividing real fragments at their midpoints, as also shown in

Fig. 8f. In the second step, we further smooth each combined

fragment using the spline-based algorithm from Section 4.2.

As illustrated in Fig. 8g, this process can alleviate endpoint

noise during curve completion. In this smoothingprocess,we

need to keep adjacent combined fragments smoothly con-

nected to achieve boundary smoothness. For example, after

smoothing, the combined fragment AB
�!

should still be

smoothly connected to the combined fragment BC
�!

at

point B. This problem can be addressed by fixing the

coordinates and tangents of the connection points (points A,

B, andC in Fig. 8f). This guarantees a smooth transition from

AB
�!

to BC
�!

when forming a boundary. The coordinates and

tangents of those connection points are calculated from the

real fragments after the preprocessing step from Section 4.1.
Finally, we need to derive the edge weights and lengths

from these smoothed combined fragments. The main chal-
lenge comes from the fact that real fragments may be
smoothed in different ways when combined with different
adjacent virtual fragments to yield different combined
fragments.

The first reduction from Section 3.1 addresses this
challenge. The weights and lengths of all solid edges can
be set to zero after reassigning those weights and lengths to
their adjacent dashed edges. Therefore, we can calculate the
edge weights and lengths from the corresponding combined
fragment, but only associate those weights and lengths with
the relevant dashed edges (or virtual fragments). Assume e
is a dashed edge whose corresponding virtual fragmentBðeÞ
is contained in the smoothed combined fragment BcðeÞ. In
the constructed SD graph G, we can take the weight and
length of this dashed edge e to be

wðeÞ ¼
Z
BcðeÞ
½�ðtÞ þ � � �2ðtÞ�dt; lðeÞ ¼

Z
BcðeÞ

dt

and set the weight and length of all solid edges to be zero.
Therefore, in our implementation of the ratio-contour
method, the first reduction from Section 3.1 is implicitly
achieved during fragment construction.

5 EXPERIMENTS

We tested the ratio-contour method by extracting salient
boundaries from real images in Figs. 9, 10, and 11. For

fragment construction, we use the standard Canny edge
detector in the Matlab (R13 with SP1) with its default
threshold and smoothing settings. Our implementation of
ratio contour uses the Blossom4 implementation [10] of
MWPM. Note that the number of dashed edges (or virtual
fragments) may be very large, i.e., OðjV j2Þ, if we fill all the
possible gaps. Thus, to reduce the number of dashed edges,
we only fill gaps whose endpoints are sufficiently close.
More specifically, we fill at most a bounded number of
shortest gaps incident on each real fragment endpoint. We

use a bound of 20 in all experiments reported in this paper.
Additionally, we set � ¼ 50 when computing edge weights.
Finally, we discard all real fragments whose length is less
than five pixels because it is difficult to derive accurate
tangent and curvature information from very short noisy
fragments. Fig. 9 illustrates the operation of the entire ratio-
contour implementation on a sample image. We further
tested ratio contour on 10 natural images and 10 medical
images. The results are shown in the left four columns of

Figs. 10 and 11, respectively. Note that all of the extracted
boundaries are closed and nondegenerate.

We can apply ratio contour iteratively to extract multiple
salient boundaries. For simplicity, we assume that no
two salient boundaries share fragments. Under this as-
sumption, we can use ratio contour to extract the most-
salient boundary, remove from G the solid edges in the
extracted boundary together with all adjacent dashed
edges, and iterate this process to repeatedly extract
subsequent salient boundaries. This process is illustrated
in Fig. 12 and applied to real images in Fig. 13.

6 RELATED WORK

We now compare ratio contour (RC) to the two most-related
prior methods, namely, those of Elder and Zucker (EZ) [16]
and Williams and Thornber (WT) [65], [37]. Among all prior
work on boundary extraction, these two prior methods are
most closely related to RC because all three extract closed
boundaries. Note that, while [65] compares WT with
five other methods, none of these other methods are

guaranteed to produce closed boundaries. Thus, we do not
compare RCwith these five other methods. Further note that
our comparison study differs from that in [65] in that our
study evaluates whether the various methods can guarantee
closure. We first give a brief introduction to EZ and WT.
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Fig. 8. Curve completion and combined fragments. (a) A smooth closed boundary. (b) The boundary in (a) with three gaps. (c) Curve completion with
endpoint interpolation. (d) Endpoints with noise. (e) Curve completion using noisy endpoints. (f) Estimating initial virtual fragments by connecting
corresponding noisy endpoints with straight lines. (g) Smoothing all three combined fragments.



6.1 Elder & Zucker’s Method (EZ) [16]

EZ formulates boundary extraction in a directed graph
ĜG ¼ ðV̂V ; ÊEÞ, where real fragments are degenerately repre-
sented as straight line segments that correspond to pairs of
vertices i and �ii, one for each direction of the fragment.
Virtual fragments are represented by pairs of directed edges
between the vertices corresponding to directed real frag-
ments. Fig. 14 illustrates the construction of this directed
graph. Associated with each (directed) edge ði; jÞ is a weight
pij 2 ð0; 1Þ that represents the fragment prominence of the
directed virtual fragment corresponding to that edge. EZ
constructs these weights to encode the properties of
proximity and continuity, as well as the neighboring-area’s
intensity distribution. Note that pij usually differs from pji
while pij ¼ p�jj�ii. Also note that the number of vertices in ĜG is
the same as the number of vertices in G, the undirected
graph used by RC, when both are constructed from the
same set of real fragments.

EZ models a closed boundary as a directed cycle ĈC in ĜG.

The saliency of such a boundary is defined as:

SezðĈCÞ ¼
Y
ði;jÞ2ĈC

pij: ð6Þ

EZ finds the cycle ĈC� that maximizes this boundary-

saliency measure by minimizing the boundary cost

�ezðĈCÞ ¼ �
X
ði;jÞ2ĈC

log pij:

If we redefine the edge weights in ĜG as ŵwij ¼ � log pij, ĈC
� is

then a (directed) cycle with minimum total weight. Such a

cycle can be found in polynomial time with a shortest-path

algorithm.

6.2 Williams & Thornber’s Method (WT) [65], [37]

WT formulates boundary extraction in the same (directed)
graph ĜGwhere each directed real fragment has infinitesimal
length and is represented as a point and a direction. The
fragment prominence pij in WT is estimated using
stochastic-completion fields [64], which model the proxi-
mity and continuity between two real fragments. Real-
fragment prominence is initially ignored. WT uses spectral
analysis to enhance local fragment prominence to encode
global boundary closure. This is done by updating the
affinity matrix P ¼ ½pij�jV j�jV j to C ¼ ½cij�jV j�jV j (0 � cij � 1)
using an eigenvalue decomposition. To extract closed
boundaries, WT uses a strongly-connected-components
algorithm for finding a directed cycle ĈC � ĜG that traverses
the edges with large fragment prominence cij [37]. WT [65],

[37] shows that, in certain cases, this process extracts the
boundary that maximizes the boundary saliency

SwtðĈCÞ ¼
Y
ði;jÞ2ĈC

pij

0
@

1
A

1
jĈCj

: ð7Þ

6.3 Analysis

We analyze the similarities and differences between EZ,
WT, and RC along four axes:

1. the structure of the graphs constructed,
2. the search spaces,
3. the boundary saliency measure, and
4. the optimality of the boundaries produced, for each

method’s respective search space and boundary
saliency measure.

From this analysis, we produce a unified framework that
enables comparison of the three methods using the same
fragment prominence measure. This focuses the compar-
ison on the different boundary saliency measures, search
spaces, and optimization algorithms.

6.3.1 The Structure of the Graphs Constructed

EZ and WT use the same graph ĜG. There is a one-to-one
correspondence between ĜG and the graphs G used by RC.
Real fragments are represented by solid edges in G and
pairs of directed vertices in ĜG. Virtual fragments are
represented by dashed edges in G and directed edges in
ĜG. Both graphs describe precisely the real and virtual
fragments together with their connection relations.

6.3.2 The Search Spaces

All three methods search a different space. RC searches the
space B of boundaries that correspond to all the alternate
(simple) cycles C � G. These are precisely the nondegene-
rate closed boundaries. EZ and WT search the space B̂B of
boundaries that correspond to all the directed cycles ĈC � ĜG.
Because ĈC alternately traverses edges and vertices in ĜG, the
resulting boundary also alternately traverses real and virtual
fragments, as in RC. However, a directed simple cycle ĈC � ĜG
may traverse both the edge ði; jÞ and the edge ð�jj; �iiÞ that
represent the same virtual fragment. Therefore, B̂B contains
degenerate closed boundaries, such as the one shown in
Fig. 15c, that correspond to cycles such as the one shown in
Fig. 15a. InG, such a degenerate boundary is represented by
a nonsimple alternate cycle (i.e., one that traverses a vertex
more than once) and is excluded from the search space B.
Therefore, B � B̂B and B̂B n B constitute the set of all
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Fig. 9. The operation of the entire ratio-contour implementation on a sample image. (a) A sample image. (b) Output of edge detection. (c) The result
after tracing and dividing intersection points in (b). Intersections and endpoints are indicated with crosses. (d) The result after pruning fragments with
less than five pixels from (c). (e) Real fragments after all supplementary preprocessing. (f) An enlarged view of the area enclosed by the box in (e)
that illustrates the smoothing of a combined fragment. The light and dark curves depict the combined fragment before and after smoothing. (g) The
extracted salient boundary (the thick black curve) using ratio contour.



degenerate closed boundaries. While, in principle, EZ can
produce degenerate boundaries because it searches B̂B, it
rarely produces degenerate boundaries, in practice, because,
as analyzed later, EZ has a bias toward boundaries with
fewer fragments.

WT employs the following local-search technique for
finding strongly connected components in an attempt to
produce nondegenerate closed boundaries: The technique
selects an initial vertex k, expands the boundary by
selecting the unvisited adjacent vertex j with maximum
ckj, and repeats this process on j until arriving back at k.
This produces a cycle ĈCk. This same process is used to
produce a cycle ĈC�kk starting from �kk. A cycle ĈC0�kk ¼ f�iiji 2 ĈC�kkg
is then constructed from ĈC�kk. Note that ĈCk, ĈC�kk, and ĈC0�kk all
correspond to closed boundaries because they are necessa-
rily cycles. However, they may be degenerate. WT attempts
to produce nondegenerate boundaries by taking ĈCk \ ĈC0�kk to
derive a boundary. However, ĈCk \ ĈC0�kk might not be a cycle
and, thus, might not correspond to a closed boundary. For
example, consider the vertices k and �kk and the cycle ĈCk in
Fig. 15a. Since ĈCk contains both k and �kk, ĈCk and ĈC�kk can be
the same cycle. In this case, the subgraph ĈCk \ ĈC0�kk
corresponds to an open curve segment, as shown in
Fig. 15d. Such situations arise in the experiments presented
in the next section.

6.3.3 The Boundary Saliency Measure
All three methods adopt a different boundary saliency
measure. As seen by (6), EZ formulates boundary saliency
as the product of fragment prominence. As seen by (7), WT
formulates boundary saliency as the geometric mean of
fragment prominence. As pointed out in [65], EZ’s
boundary saliency decreases more quickly than WTs as
the number of fragments along the boundary increases.
Therefore, EZ favors boundary with fewer fragments that,
in many cases, results in short boundaries.

To compare the boundary saliency measures of WT and
RC, we can redefine the edge weight ŵwij ¼ � log pij in ĜG to
represent fragment cost. Then, the cycle ĈC� that maximizes
the boundary saliency (7) is the same as the one that
minimizes the boundary cost

�wtðĈCÞ ¼
P
ði;jÞ2ĈC ŵwij

jĈCj
:

This has the same form as the RC boundary cost (4) when

limited to the case where solid edges in G have zero weight

and length and dashed edges have unit length. While WT

and RC employ similar boundary saliency measures in this

limited case, they can still produce different results, even in

this limited case, because they search different spaces.
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Fig. 10. Boundary extraction on 10 natural images. Column 1: original image. Column 2: output of Canny edge detection. Column 3: real fragments
constructed by supplementary preprocessing. Column 4: the most-salient boundary extracted by RC on column 3. Column 5: real fragments
constructed by the unified framework. Columns 6 through 9: the most-salient boundaries detected by EZ, WT, (P-)RC, and C-RC on column 5.
Columns 2 through 4 correspond to experiments discussed in Section 5. Columns 5 through 9 correspond to experiments discussed in Section 7.
Image size is indicated under the images in column 1 and processing time in CPU seconds is indicated under the images in the remaining columns.
See Section 7.5 for details on the measurement of processing time. Note that some closed boundaries have been cropped by the image perimeter
when producing this figure.



6.3.4 The Optimality of the Boundaries Produced

Elder and Zucker [16] show that EZ is guaranteed to find
a boundary that optimizes the boundary saliency measure
�ez within the search space B̂B of closed boundaries
whether degenerate or nondegenerate. This paper shows
that RC is guaranteed to find a closed boundary that
optimizes the boundary saliency measure �rc within the
search space B of nondegenerate closed boundaries. We
know of no proof that WT is guaranteed to find a
boundary that optimizes the boundary saliency measure
�wt within either B̂B or B.

6.3.5 Unified Framework
The three methods use different kinds of real fragments.
In EZ, real fragments are line segments. In WT, real
fragments are line segments with infinitesimal length. In
RC, real fragments are quadratic splines. To facilitate
experimental comparison, we apply all three methods to
the kind of real fragments used by WT, namely, line
segments with infinitesimal length. The three methods use
different approaches to gap filling for constructing virtual
fragments. To facilitate experimental comparison, we
apply all three methods to virtual fragments constructed

using the stochastic-completion field method [64] of WT
with the parameters � ¼ 0:15, T ¼ 0:004, and � ¼ 5:0, as
suggested in [64], [37].

The three methods use different fragment prominence
measures. In EZ and WT, edge weights pij represent
fragment prominence, while, in RC, edge weights wð�Þ
represent fragment cost. Furthermore, EZ and WT only
associate prominence with virtual fragments, not real
fragments, while RC associates costs with both. Finally, in
WT, the number of virtual fragments along the boundary,
i.e., jĈCj, is used tomeasure the boundary length,while, in RC,
boundary length is taken to be the total fragment length.

To facilitate experimental comparison, we apply all
three methods to the same prominence measure con-
structed as follows: First, we take the weights pij used by
EZ and WT to be related to the weights wð�Þ used by RC
by the relation wði2; j1Þ ¼ � log pij, given that the undir-
ected dashed edge ði2; j1Þ in G and the directed edge ði; jÞ
in ĜG correspond to the same virtual fragment, as shown
in Fig. 14. Second, we take the length of all dashed edges
in G to be one and the weight and length of all solid
edges in G to be zero. While this fragment prominence
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Fig. 11. Boundary extraction on 10 medical images. The columns depict the same information as in Fig. 10.



measure is a special case of the ones used in EZ and RC,
it is compatible with all three algorithms.

7 COMPARISON STUDY

Unless otherwise noted, all the experiments reported in this
section use the unified framework of Section 6.3.

7.1 An Illustrative Example

We construct a simple synthetic example to show that WT
can produce open curve segments. The real fragments in
this examples are shown in Fig. 16a. Sixteen real fragments
were constructed by sampling two circles of radius 100 and
seven addition real fragments were constructed by sam-
pling a straight line segment placed between these
two circles. The exact information needed to reconstruct
this example is given in Table 1. Figs. 16b, 16c, and 16d
show the most-salient boundaries extracted using EZ, WT,
and RC, respectively. This confirms that WT can produce
open curve segments, as discussed in Section 6.3.

7.2 Synthetic Data

As in [65], we constructed a set of synthetic data to
quantitatively evaluate the performance of EZ, WT, and
RC. In this data, the input real fragments contain
two superimposed patterns: a foreground pattern and a
background pattern. The foreground pattern is selected from
the nine objects shown in Fig. 17, where the object boundary
is uniformly sampled to construct the real fragments for the
foreground pattern. The first five fruit patterns shown in
Fig. 17 were used in [65]. As in [65], the real fragments for the
background pattern is derived from nine texture images:
bark, fabric, sand, terrain, wood, brick, leaves, stone, and
water, by uniformly sampling their edge-detector outputs.
In this experiment, we sample each foreground-object
boundary with seven different sampling rates to construct
a set of synthetic data with varied signal to noise ratio (SNR).
Here, we define the SNR as the ratio between the number of
real fragments from the foreground pattern and the number
of real fragments from the background pattern. This way, we

have a total of 9� 9� 7 ¼ 567 synthetic data samples for our
experiments by superimposing a foreground pattern with a
background pattern.

We applied both EZ, WT, and RC to extract the most-
salient boundaries from all these 567 data samples. The
accuracy is then evaluated by comparing the extracted
salient boundaries and the underlying foreground object
boundaries. We evaluate the accuracy using twomeasures: a
region-based measure and a fragment-based measure. The
region-based accuracy measure is defined as the relative
region coincidence,

jR1 \R2j
jR1 [R2j

;

where R1 is the region of the foreground object, R2 is the
region enclosed by the detected salient boundary, and jRj
denotes the area ofR. The fragment-based accuracy measure
is defined as the percentage of real fragments for the
foreground pattern that are included in the detected salient
boundary. Figs. 18a and18c showtheperformance of EZ,WT,
andRC on all 567 synthetic data samples using the above two
measures.Note that the accuracy at each SNR is calculated by
taking the average accuracy on 9� 9 ¼ 81 data samples with
this SNR. In this experiment, WT produces open curve
segments in 170 data samples out of the 567 data samples and
its performance is degraded greatly by these 170 samples.
Figs. 18band18dshowtheperformanceofEZ,WT,andRCon
the remaining 397 data samples where all three methods
produce closed boundaries. We see that WT has no better
performance than RC, even if we only count these 397 data
samples. Four examples of these experiments are shown in
Fig. 19, where WT produces open curve segments in the
second and third images.
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Fig. 12. Extracting multiple salient boundaries. (a) The original SD graph
from Fig. 1e. (b) The new SD graph after extracting the most-salient
boundary corresponding to the cycle (thick lines) shown in (a). Note that
from (a) to (b), we remove not only all solid and dashed edges in the
cycle corresponding to the most-salient boundary, but also all the
dashed edges adjacent to the removed solid edges. A second iteration
of ratio contour on this new SD graph yields the second most-salient
boundary, shown in thick lines in (b).

Fig. 14. The directed graph ĜG used in EZ and WT. (a) Initial real/virtual fragments and the SD graph G, (b) directed real/virtual fragments, and (c) the
resulting directed graph ĜG analogous to (a). This figure is adapted from Fig. 3 from [65].

Fig. 13. Extracting multiple salient boundaries from seven real images

with iterative ratio contour. Each row depicts an original image, the

edge-detector output, and the sequence of boundaries extracted for that

image. The images in the last two rows come from [37].



7.3 Real Images

We evaluated the three methods on the real images shown
in the first column of Figs. 10 and 11 using the unified
framework of Section 6.3. Note that column 4 of these
figures illustrates the output of RC using the full supple-
mentary preprocessing method from Section 4, while
column 8 illustrates the output of RC using the unified
framework. Our unified framework constructed real frag-
ments with infinitesimal length, shown in column 5, by
sampling the traces produced by the Canny edge detector in
column 2 at an interval of 8 pixels. We further smooth the
traces with the technique from Section 4.2 before sampling
to help achieve more reliable estimates of fragment
direction when constructing the real fragments in
column 5. Columns 6, 7, and 8 show the results of applying
EZ, WT, and RC, respectively, on the real fragments from
column 5. Note that EZ sometimes fails to extract the
desired boundary, as witnessed by the fourth image in
Fig. 10 and the third, fourth, eighth, and 10th images in
Fig. 11, and instead yields a boundary with fewer
fragments. Also note that WT sometimes extracts open
curve segments, as witnessed by the second and ninth
images in Fig. 10. Finally, note that RC with supplementary
preprocessing (column 4) sometimes yields different results
than RC with the unified framework (column 8). One
advantage of the fragment cost used in (1) is that it has only
one free parameter �, while the fragment prominence based
on stochastic-completion fields has three free parameters �,
T , and � . Another advantage of the boundary cost (1) is that
it is based on boundary length, which includes the lengths
of both real and virtual fragments, rather than the number
of virtual fragments in the boundary.

7.4 Should P Be Updated to C for RC?

As discussed in Section 6.2, WT attempts to limit the search
to closed boundaries by first updating the local affinity
matrix P (which measures prominence) to yield an
enhanced matrix C that incorporates global closure in-
formation and then using a strongly-connected-components
algorithm on C instead of P. As shown in [37], running the
strongly-connected-components algorithm on C produces
significantly better results than running it on P. A natural
question to ask is whether RC also produces better results
using C instead of P in the unified framework. To
investigate this question, we conducted a series of experi-
ments where we compare RC withC to RC with P. We refer
to the former as C-RC and to the latter as (P-)RC. In our
unified framework, one can run RC with C by taking the
edge weights to be wði2; j1Þ ¼ � log cij.

We evaluate the performance of C-RC on the synthetic
data from Section 7.2. The accuracy curves are also shown in
Fig. 18, using both region-based and fragment-based
measures. The results show that C-RC does not improve
the performance of P-RC. We also compare P-RC with C-RC
on the 20 real images in Figs. 10 and 11. The results of P-RC
and C-RC are in columns 8 and 9, respectively. Note that
there is no significant difference between P-RC and C-RC on
these images, thus, our question is answered in the negative.
While the strongly-connected-components algorithm of WT
yields better results with C than with P, the method of RC
does not yield better results with C than with P. The reason
for this is that the update from P to C is redundant in RC
because the purpose of this update is to encode closure in
fragment prominence, but RC already limits the search space
to include only closed boundaries. In fact, RC appears to
return slightly better results withP than withC (see Fig. 18).
This may be because the update fromP toC encodes closure
information for degenerate as well as nondegenerate
boundaries (see Fig. 15). Therefore, using C for RC instead
of P may misrepresent fragment prominence.

7.5 Algorithm Speed

7.5.1 Complexity Analysis

For EZ, the dominant step is the detection of cycles with

minimum total weight. This is done withOðjV jÞ applications
of Dijkstra’s shortest-path algorithm which has complexity

OðjV j log jV jÞwhen jEj ¼ OðjV jÞ. Thus, the complexity of EZ
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Fig. 15. Open curve segments produced by WT. (a) A directed cycle that traverses both k and �kk in ĜG, where vertices are always paired to represent

the two possible directions of real fragments. (b) The same cycle represented by directed fragments. (c) The degenerate boundary corresponding to

the cycle in (a) and (b). (d) An open curve segment produced by the strongly-connected-components algorithm of WT.

Fig. 16. A demonstration that WT can produce open curve segments. (a) The real fragments. (b)-(d) The boundaries extracted using EZ, WT, and
RC, respectively.

TABLE 1
The Data Used to Illustrate that WT
Can Produce Open Curve Segments



is OðjV j2 log jV jÞ. For WT, the dominant step is to compute

the principle eigenvector of P, a reversal matrix whose size

is jV̂V j � jV̂V j. If jÊEj ¼ OðjV̂V jÞ, then P is sparse and has OðjV̂V jÞ
nonzero entries. Note that jV j ¼ jV̂V j. The principle eigen-

vector of an arbitrary dense matrix of size jV j � jV j can be

computed in OðjV j2Þ time. We do not know if the fact that P

is sparse or is a reversal matrix can reduce this time

complexity. For RC, the dominant step is the third reduction

from Section 3, namely, MWPM. Gabow [17] shows that the

time-complexity for finding an MWPM in an integer-

weighted graph G ¼ ðV ;EÞ is OðjV j
3
4jEj logwmaxÞ, where

wmax is the maximum edge weight in the graph. In practice,

since each vertex is only connected to a bounded number of

vertices, jEj ¼ OðjV jÞ. Thus, the complexity of RC is OðjV j
7
4Þ.

7.5.2 Running Times

Figs. 10 and 11 indicate the running times, in CPU seconds,
of various steps of the different methods. Column 2
indicates the time to perform edge detection. Column 3
indicates the time to perform supplementary preprocessing
to construct the graph G. Column 4 indicates the running
time of RC after constructing G. Column 5 indicates the
time to construct ĜG. Columns 6 through 9 indicate the
running times of EZ, WT, P-RC, and C-RC after construct-
ing ĜG. All experiments were conducted on a Dell Precision
Workstation equipped with a 3.06GHz Intel Xeon Processor
with a 512K L2 Cache.

8 CONCLUSION

We have presented ratio contour, a novel method for
extracting salient closed boundaries from noisy images.
Starting with a set of boundary fragments that are detected
in images using an edge detector, ratio contour is able to
identify a subset of those fragments and connect them
sequentially into a closed boundarywith the largest saliency.

Boundary saliency encodes the Gestalt laws of closure,
proximity, and continuity. Our paper makes several con-
tributions. First, it formulates a new boundary-saliency
measure in terms of a ratio that is normalized relative to
boundary length. This effectively avoids the possible bias
toward short boundaries. Second, it presents a novel
polynomial-time algorithm for finding the most-salient
closed boundary with the saliency measure. Third, our
method finds only closed nondegenerate boundaries by
precisely constraining the search space to include only such
desired boundaries. Fourth, it presents a novel collection of
preprocessing methods to reduce the effects of noise on
boundary detection. Finally, it constructs a unified frame-
work for comparing ratio contour with two closely related
previous methods, EZ and WT, and conducts such a
comparison.
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Fig. 17. The nine foreground patterns used for constructing synthetic data. From the left to the right are the patterns of a lemon, a pear, a peach, an

onion, an apple, a knife, a spoon, a handsaw, and an oil can, respectively.

Fig. 18. Accuracy in extracting the foreground patterns out of background patterns. (a) Region-based accuracy computed on all 567 data samples.

(b) Region-based accuracy computed on the 397 data samples where WT produces closed boundaries. (c) Fragment-based accuracy computed on

all 567 data samples. (d) Fragment-based accuracy computed on the 397 data samples where WT produces closed boundaries. The curve for C-RC

and the notation P-RC will be explained in Section 7.4.

Fig. 19. Extracting salient boundaries on four synthetic data samples.
From the leftmost column to the rightmost column are the real fragments
and the boundaries extracted using EZ, WT, (P-)RC, and C-RC,
respectively. The meaning of (P-)RC and C-RC will be explained in
Section 7.4. From the top row to the bottom row are the superimposed
patterns of onion and terrain, spoon and stone, knife and leaves, and
peach and fabric, respectively.



Our comparison yields the following findings:

1. EZ shows a bias toward boundaries with fewer
fragments, whileWT and RCdo not show such a bias.

2. WT may produce open curve segments, while RC is
guaranteed to produce closed boundaries.

3. The space searched by EZ and WT includes
degenerate boundaries, while the space searched
by RC does not.

4. Adding the fragment-prominence update method
used by WT to RC does not appreciably improve
performance.

5. Experimental evaluation on natural and medical
images shows that RC produces results that are as
good as or better than EZ and WT.

We hope that the techniques underlying ratio contour will

lead to future advances in boundary extraction.
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