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Abstract

This paper presents a novel graph-theoretic approach, named ratio con-
tour, to extract perceptually salient boundaries from a set of noisy bound-
ary fragments detected in real images. The boundary saliency is defined
using the Gestalt laws of closure, proximity, and continuity. This pa-
per first constructs an undirected graph with two different sets of edges:
solid edges and dashed edges. The weights of solid and dashed edges
measure the local saliency in and between boundary fragments, respec-
tively. Then the most salient boundary is detected by searching for an
optimal cycle in this graph with minimum average weight. The proposed
approach guarantees the global optimality without introducing any biases
related to region area or boundary length. We collect a variety of images
for testing the proposed approach with encouraging results.

1 Introduction

Human vision and neural systems possess very strong capabilities of identifying salient
structures from various images. Implementing such capabilities on a computer is an im-
portant but extremely challenging problem for artificial intelligence, computer vision, and
machine learning. The main challenges come from two closely related aspects: (a) the def-
inition of the structural saliency, and (b) the design of efficient algorithms for finding the
salient structures. On one hand, we expect very comprehensive and advanced definitions
of the saliency so that it models accurately the human perceptual and visual process. On
the other hand, we expect simple definitions of saliency so that the global optimum can be
found in polynomial time.

Previous methods for salient-structure detection can be grouped into two classes. The first
class of methods aims to directly group or segment all the image pixels into some dis-
joint regions, which are expected to coincide with the underlying salient structures. Earlier
efforts include the region-merging/splitting methods, watershed methods, and the active-
contour-like methods. Those methods usually have difficulties in finding the globally op-
timal boundaries in terms of the selected saliency definitions. Recently we have witnessed
some advanced methods, like ratio region [5], minimum cut[17], normalized cut [14], glob-
ally optimal region/cycle [9], and ratio cut [15], which aim to produce globally optimal
boundaries. However, those pixel-grouping based methods usually have difficulties in ef-
fectively incorporating perceptual rules, such as boundary smoothness, into their saliency
definitions.



Instead of operating directly on the image pixels, another class of methods is designed
based on some pre-extracted boundary fragments (or for brevity, fragments) 1, which can
be obtained using some standard edge-detection methods like Canny detectors. As shown
in Fig. 1(a), although those fragments are disconnected and contain serious noise, they pro-
vide abundant information on boundary length, tangent directions, and curvatures, which
can greatly facilitate the incorporation of advanced perceptual rules like boundary smooth-
ness. Shashua and Ullman [13] presents a parallel network model for detecting salient
boundary based on fragment proximity, boundary length, and boundary smoothness. Re-
cent development in this class includes Alter and Basri [2], Jacobs [8], Sarkar and Boyer
[12], Guy and Medioni [7], Williams and Thornber [16, 11], and Amir and Lindenbaum
[3]. However, many of them still have difficulty in finding the closed boundaries in a sense
of global optimality with respect to the given boundary-saliency measure. Elder and Zucker
[6] use the shortest-path algorithm to connect fragments to form salient closed boundaries.
However, the results have a bias to produce boundaries with shorter length.

This paper presents a new graph based approach to extract salient closed boundaries from
a set of fragments detected from real images. This approach seeks a good balance between
the complexity of the saliency definition and the complexity of the optimization algorithm.
The boundary saliency is based on the well-known Gestalt laws of closure, proximity, and
continuity. To avoid the various biases as in Elder and Zucker [6], this paper defines the
boundary saliency as the average saliency along the whole boundary. We finally formulate
the salient-boundary detection problem into a problem for finding an optimal cycle in an
undirected graph. We show this problem is of polynomial time-complexity and give an
algorithm to solve it. The proposed algorithm is then tested on a variety of real images.

2 Problem Formulation

(b)(a) (c) (d)

Figure 1: An illustration of detecting salient boundaries from some fragments. (a) Bound-
ary fragments, (b) salient boundary by connecting some fragments with dashed curves, (c)
a solid-dashed graph, and (d) an alternate cycle in (c).

The basic primitives in the ratio-contour approach are a set of noisy (boundary) fragments
extracted by edge detection. For simplicity, here we assume each detected fragment is a
continuous open curve segment with two endpoints, as shown in Fig. 1(a). Our goal is
to identify and connect a subset of fragments to form the most salient structural bound-
ary as shown in Fig. 1(b). In this paper, we measure the boundary saliency using sim-
ple Gestalt laws of closure, proximity, and continuity. The closure means that the salient
boundary must be a closed contour. The proximity implies that we desire relatively small
gaps (dashed curves in Fig. 1(b)) in connecting the fragments. The continuity indicates that
the resulting contour should be continuous and sufficiently smooth.

Let the parametric form of a boundary B be v(t), 0 ≤ t ≤ 1. We have v(0) = v(1) as the
boundary is closed. Considering the boundary proximity and the continuity, we define its

1Most literatures use the terminology edge instead of fragment. However, in this paper edge has
other specified meaning in a graph model.



cost, which is negatively related to the boundary saliency, as

R(B) ,
T (B)

L(B)
=

∫

B
[σ(t) + λ · κ2(t)]dt

∫

B
dt

, (1)

where σ(t) = 1 if v(t) is in the gap and σ(t) = 0, otherwise. κ(t) is the curvature at v(t).
We can see that the un-normalized cost T (B) combines the total gap-length and curvature
along the boundary B and has bias to produce a short boundary. The issue is addressed in
(1) through normalizing T (B) by the boundary length L(B). The most salient boundary
B is then the one with the minimum cost R(B). The parameter λ > 0 is set to balance the
weight between proximity and continuity.

We can formulate the above cost into an undirected graph G = (V,E) with vertices V =
{v1, v2, · · · , vn} and edges E = {e1, e2, · · · , em}. A unique vertex is constructed from
each fragment endpoint. Two different kinds of edges, solid edges and dashed edges, are
constructed between vertices. (a) If vi and vj correspond to the two endpoints of the same
fragment, we construct a solid edge between vi and vj to model this fragment. (b) Between
each possible vertex pair vi and vj , we construct a dashed edge to model the gap or a virtual
fragment (dashed curves in Fig. 1(b)). An example is shown in Fig. 1(c), which is made up
of 3 solid edges for three fragments and all 15 possible dashed edges. For clarity, sometimes
we call the boundary fragment a real fragment when both real and virtual fragments are
involved.

The constructed graph always has even number of vertices, as each real fragment has two
endpoints. More interestingly, no two solid edges are incident from the same vertex and
each vertex has exactly one incident solid edge. We name such a graph an (undirected)
solid-dashed graph. We further define an alternate cycle in a solid-dashed graph as a simple
cycle that traverses the solid edges and dashed edges alternately. Examples of a solid-
dashed graph and an alternate cycle are given in Fig. 1(c) and (d), respectively. Since
a boundary always traverses real fragments and virtual fragments alternately, it can be
described by an alternate cycle. Note that not all the cycles in a solid-dashed graph are
alternate cycles, because two adjacent dashed edges can appear sequentially in the same
cycle.

According to the cost function (1), we define a weight function w(e) and a length function
l(e) for each edge e. For convenience, we define B(e) as a function that gives the (real
or virtual) fragment corresponding to an edge e. Then the weight w(e) , T (B(e)) =
∫

B(e)
[σ(t)+λ ·κ2(t)]dt is the un-normalized cost on B(e). The edge length l(e) is defined

as the length of B(e). We can see that the most salient boundary with minimum cost (1)
corresponds to an alternate cycle C with minimum cycle ratio

CR(C) =

∑

e∈C w(e)
∑

e∈C l(e)
.

Fragments extracted from real images usually contain noise, intersections, and even some
closed curves, which cause difficulties in estimating the curve length, curvature, and there-
fore, the edge weight and length. We will describe a spline-based method to address this
problem in Section 4. In the following, we first present a polynomial-time algorithm to
identify the alternate cycle with the minimum cycle ratio CR(C).

3 Ratio-Contour Algorithm

For simplicity, we denote the alternate cycle with minimum cycle ratio as MRA (Minimum
Ratio Alternate) cycle. In this section, we introduce a graph algorithm for finding the MRA
cycle in polynomial time. This algorithm consists of three reductions. (a) Both the weight



and edge length of the solid edges can be set to zero by merging them into the weight
and length of their adjacent dashed edges, without changing the underlying MRA. (b) The
problem of finding an MRA cycle can be reduced to a problem of detecting a negative-
weight alternate (NWA) cycle in the same graph. (c) Finding NWA cycles in a solid-dashed
graph with zero solid-edge weights and zero solid-edge lengths can be reduced to finding a
minimum-weight perfect matching (MWPM) in the same graph. Finding MWPM has been
shown to be of polynomial-time complexity with various efficient algorithms available.

3.1 Setting Zero-Weight and Zero-Length to Solid Edges

As illustrated in Fig. 2(a) and (b), each solid edge e can only be adjacent to a set of dashed
edges, say {e1, e2, · · · , eK}, in a solid-dashed graph, and no two solid edges are adjacent
to each other. Therefore, we can directly merge the solid-edge weight and length to its
adjacent dashed edges by

{

w(ek)← w(ek) + w(e)
Nk

l(ek)← l(ek) + l(e)
Nk

, k = 1, 2, · · ·K,

where Nk = 2 if ek shares one vertex with e as in Fig. 2(a) and Nk = 1 if ek shares both
vertices with e as in Fig. 2(b). Then we reset the weight and length of this solid edge to
zero, i.e., w(e) = 0, l(e) = 0. This merging process is performed on all solid edges. While
solid and dashed edges are traversed alternately in an alternate cycle, it is not difficult to
achieve the following conclusion.

Lemma 3.1 The above processing of edge weights and edge-lengths does not change the
cycle ratio of any alternate cycles.

e1

ek

e1

(d)(a) (b) (c)

e
e

Figure 2: An illustration of reductions in ratio-contour algorithm. (a) Merging the weight
and length of a solid edge to its adjacent dashed edges. (b) A special case for weight
merging. (c) A perfect matching in a solid-dashed graph. (d) Derived cycle from the
perfect matching shown in (c).

3.2 Reducing to Negative-Alternate-Cycle Detection

The following lemma claims that MRA cycles are invariant to some more general linear
edge-weight transforms.

Lemma 3.2 The MRA cycle in a solid-dashed graph G = (V,E) is invariant to the fol-
lowing linear transform on the edge weight

w(e)← w(e)− b · l(e),∀e ∈ E. (2)

The proof for this lemma is similar to the one we gave for general ratio-cycle detection
problem [15]. Notice that all the edge lengths are non-negative. There always exists an
optimal b = b∗ so that after weight transform (2), the MRA cycle has the cycle ratio of
zero. In this case, the MRA cycle is the same as the cycle with total edge weight of zero.



The detection of the optimal b∗ and the MRA cycle can then be reduced into a problem
of finding the NWA cycle (negative weight alternate cycle). Basically, if we can detect an
NWA cycle after the edge weight transform (2), we know b > b∗. Otherwise, we know that
b ≤ b∗. With an NWA cycle detection algorithm, we can use binary or sequential search to
locate the optimal b∗ and the desired MRA cycle. This search process is polynomial if all
the edge weight are integers [15]. In addition, with the first reduction mentioned in Section
3.1, it is easy to see that the linear transform (2) always preserves zero weight and zero
length for all solid edges in this search process.

3.3 Reducing to Minimum Weight Perfect Matching

The problem of detecting an NWA cycle in a solid-dashed graph can be reduced to a prob-
lem of finding a minimum weight perfect matching (MWPM) in the same graph. A perfect
matching in G denotes a subgraph that contains all the vertices in G while each vertex only
has one incident edge. An example is shown in Fig. 2(c), where three thick edges together
with their vertices form a perfect matching. The MWPM is the perfect matching with min-
imum total edge weight. As all the solid edges form a trivial perfect matching with total
weight zero, the MWPM in our solid-dashed graph should have non-positive total weight.

We can construct a set of cycles from a perfect matching P by (a) removing from P all
the solid edges and their endpoints, and (b) adding to P any solid edges in the solid-dashed
graph G whose two endpoints are still in P after the removal in (a). The remaining subgraph
must consist of a set of cycles because each remaining vertex has two incident edges: one
is solid and the other one is dashed. This also confirms that all the resulting cycles are
alternate cycles. An example of this reduction is shown in Fig. 2(d), which is constructed
from (c). As all the solid edges have zero weight and zero length, it is not difficult to see
that the total weight of the perfect matching is the same as the total weight of the resulting
cycles. Therefore, the NWA detection problem is reduced into a problem of finding a
perfect matching with negative total weight. This is the same as the problem of finding the
MWPM, which is of polynomial-time complexity [1].

4 Edge-Weight and Edge-Length Functions

We need to estimate the curvature and length of both real and virtual fragments for defining
w(e) and l(e) of solid and dashed edges. To deal with the noise and aliasing in detected
fragments, we impose a pre-smoothing process on those fragments. In this paper, we ap-
proximate a fragment by a set of quadratic splines with the parametric form

(

xi(ti)
yi(ti)

)

=

(

xi

yi

)

+

(

Ai Bi

Ci Di

)(

t2i
ti

)

,

where 0 ≤ ti ≤ 1 is the parameter for the spline. We developed an iterative algorithm [10]
to estimate the optimal parameters xi, yi, Ai, Bi, Ci, and Di minimizing a comprehensive
cost function that measures smoothness, under the constraint of C0 and C1 continuities
across the fragment. An example is illustrated in Fig. 3 where solid curves in (a) and (b)
are fragments before and after smoothing. More discussion and analysis on this curve-
smoothing method can be found in our previous work [10].

With the parametric form of quadratic splines, the total length and the curvature along a real
fragment can be computed by summing over each spline its length and its total curvature
as

li =

∫ 1

0

√

(2Ait + Bi)2 + (2Cit + Di)2dt,

∫ 1

0

κ2
i (t)dt =

∫ 1

0

4(AiDi −BiCi)
2

[(2Ait + Bi)2 + (2Cit + Di)2]3
dt,



where li is the length and κi(t) is the curvature function of the ith spline.

However, estimating these quantities for a virtual fragment is not trivial, as no information
is given on how the virtual fragment should look like. We take the following approach to
compute the dashed-edge weight. First, a pair of endpoints involved in forming a particular
dashed edge is connected with a straight line. Then a new curve segment is constructed
by connecting this straight line and adjacent fragments. The smoothing process described
above is applied to this new curve segment. In this smoothed curve segment, the virtual
fragment is then the part corresponding to the straight line before the smoothing. The
dashed curve in Fig. 3(b) shows a resulting virtual fragment used for estimating curvature,
length, and finally edge weight.

(a) (d)(c)(b)

Figure 3: An illustration of the edge weight estimation process. (a) Two noisy fragments.
(b) Smoothed real fragments and an estimated virtual fragment. (c) Fragments obtained
by Canny detector. (d) Smoothed fragments after breaking undesired connections, corre-
sponding to the portion of the box in (c). Crossings specify the endpoints and breaking
points.

In real implementation, another issue is that the detected fragments using edge detectors
may not be disjoint open curves as assumed in Section 2. It is common that some frag-
ments are connected in the form of intersections, attachments, and even undesired closure,
as shown in Fig. 4. Therefore, we need to break those connections to construct the graph
model. First, we identify the intersection points and split them to get multiple open frag-
ments. An example is shown in Fig. 4(a) and (d), where an intersection point is broken into
three endpoints. In the constructed graph, they (u1, u2, and u3) are connected by dashed
edges with zero weight and zero length. Attachment specifies the case where two fragments
are undesirably connected into a single fragment as shown in Fig. 4(b). This greatly hurts
the reliability of salient boundary detection as those attached fragments may exclude many
desired dashed edges from the graph. We alleviate this problem by splitting all the frag-
ments at their high-curvature points, as illustrated in Figs. 4(b) and (e). Similarly, we can
break closed fragments into open fragments at high-curvature points, as shown in Fig. 4(c)
and (f). Note that the identification of high-curvature points requires the smoothing of the
noisy fragments. We apply the same smoothing technique described above to each frag-
ment for this purpose. Figures 3(c) and (d) show an example of dealing with the above
special cases.

5 Experiments and Discussion

In this section, we test the proposed ratio-contour algorithm to extract the salient boundaries
from real images. For initial fragment detection, we use the standard Canny edge detector
in the Matlab software with its default threshold settings. We also adopt the Blossom4
implementation [4] of the minimum-weight perfect matching.

One problem in the implementation is the construction of dashed edges, which may be of
a very large number (O(n2)) if we connect every two possible vertices. In this paper, we
constrain the proximity to reduce the number of dashed edges. In the implementation, for
each vertex, we only keep certain number of incident dashed edges with smallest length.
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Figure 4: An illustration of fragment identification and graph construction in some special
cases. (a), (b), and (c) show the detected fragments with intersections, attachments, and
closures. (d), (e), and (f) are the constructed graphs from (a), (b), and (c), respectively.

This number is uniformly set to 20 in all experiments. Meanwhile, we set the parameter
λ = 50 in the edge-weight definition. Figure 5 shows salient boundaries detected from
seven real images, together with the initial fragments from Canny detector. It can be seen
that the proposed method integrates well the Gestalt laws of proximity, continuity, and
closure.

(a)

(b)

(c)

(d)

(e)

(f)
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Figure 5: Salient boundaries detected from some real images using the proposed ratio-
contour algorithm. Each subfigure from (a) to (g) contains three images, left: original
images, middle: Canny detection results, and right: the detected most salient boundaries.

6 Conclusions

We have presented a novel graph-theoretic approach, named ratio contour, for extracting
perceptually salient boundaries from a set of noisy boundary fragments detected in real
images. The approach guarantees the global optimality without introducing any biases re-



lated to region area or boundary length, and exhibits promising performance in extracting
salient objects from real cluttered images. One potential extension of this research is to ex-
tract multiple salient objects that are overlapped or share part of boundaries by performing
ratio-contour algorithm iteratively. We are currently investigating this extension and plan
on reporting the result in the future.
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