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Abstract

Two types of belief network, namely, Dempster-Shafer belief net-
works and Bayesian networks, have emerged as an appealing
alternative to rule bases in knowledge-based systems develop-
ment. It is interesting o contrast some topics of knowledge
representation for reasoning under uncertainty in rule-based sys-
tems and in belief network-based systems. This paper addresses
three issues related to the conversion of rule bases into belief net-
works. We will first discuss a way for converting rule bases into
the two different types of belief network, and then examine the
relationship between rule chaining in rule bases and belief propa-
gation in Dempster-Shafer belief networks. We will also show
the difficulty involved in the conversion of rule bases into
Dempster-Shafer belief networks, and point out that it is mainly
caused by the exponential growth rate of belief functions, a
phenomenon peculiar to Dempster-Shafer belief networks which
has severe practical consequences but has long been overlooked.

Introduction

In most existing knowledge-based systems, MYCIN-type rule
bases have been the dominating formalism for implementing
knowledge bases involving uncertainties. In recent years, how-
ever, belief networks have become an appealing alternative. It is
therefore interesting to study the relationship between these two
formalisms of knowledge representation. For some application
domains, it is also worthwhile to convert an existing rule base
into a belief network [8).

Depending on the definition of belief functions, belief networks
are categorized into two classes, namely, Dempster-Shafer net-
works (or simply belief networks) and Bayesian networks (some-
times also called belief networks, influence diagrams, causal pro-
babilistic networks or simply causal networks). Several systems
have been developed employing either type of belief network for
various applications. For example, the MUNIN system designed
to assist physicians in the diagnosis of muscle diseases using
electromyography was built around a large Bayesian belief net-
work of some 1000 nodes {1], whereas the expert system called
Adaptive Reasoner for diagnosing problems in multi-stage air
compressors was implemented using Dempster-Shafer networks

(4].

In the next section, we will first give some basic definitions of
belief network, and then briefly discuss two different ways for
converting rule bases into the two types of belief network. In
most rule-based systems, the inference procedure is realized
through rule chaining (forward chaining and/or backward chain-
ing). When rule bases involve uncertain knowledge, some uncer-
tainty handling scheme must be incorporated into the inference
procedure, such as MYCIN's certainty factor scheme. In belief
network-based systems, the inference procedure is accomplished
through belief propagation based on local combinations and pro-
jections. In Section 3, we will examine the relationship between
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the results of these two different types of inference procedure.
Although the conversion of rule bases into either type of belief
network is conceptually straightforward, we will show in Section
4 that the conversion into Dempster-Shafer networks could be
computationally expensive due to the exponential growth rate of
Dempster-Shafer belief functions and discuss the implications of
this problem to the development of belief network-based systems.

Dempster-Shafer Networks vs. Bayesian Networks

A Dempster-Shafer network is normally defined as an undirected
graph with associated belief functions (see, e.g. [12, 20, 21]). For
any variable or node X in such a network, the frame of discern-
ment 6(X) is the set of exhaustive and mutually exclusive propo-
sitions or hypotheses about X (i.e. all possible values of the vari-
able X' ). When X is a joint variable that consists of several indivi-
dual variables, (X ) is the Cartesian product of the frames of all
conjoining members. Let 28X) denote the power set of &(X). A
basic probability assignment (bpa) function is defined over the
frame of X as a mapping my:29%) [0, 1]. For every subset of
the frame § CO(X) (i.e. S € 29%)), my($)20, my (D)=0 and
I(my(SHSCOX)}=1. mx(S) (the bpa value or the mass of
§) is interpreted as the amount of belief committed exactly to this
subset § of the frame (X) when a piece of evidence directly
supports the proposition "The value of X is (in) § " but provides
no further discriminating information about individual elements
in §. The total belief in the subset S is measured by the belief
function Bely defined as Bely(S)=Z{myx(R)|RcS}. It immedi-
ately follows from the definitions that for any singleton
S € 8(X), Belx(S)=mx(S), while for the entire frame &(X),
Bely(8(X ))=1 and my(&X)=1-Z{my(S)IS cB(X)}). The
latter in effect defines a measure of ignorance, that is, the amount
of belief left in the entire frame due to lack of further evidence.
We call a subset § of X's frame 8(X) such that my(S§)>0 a
focal element of the belief function Bely . Usually, a belief func-
tion is represented by a list of focal elements along with their
associated bpa values.

Figure 1(a) shows a Dempster-Shafer network constructed from
the widely-used fictitious example (with some changes) about
diagnosis of dyspnoea {9]. Note that belief functions for joint
variables specify the relations between their member variables,
often in the convenient form of if-then rules. For example, heavy
smoking is known to be a risk factor for bronchitis. This fact can
be depicted by the belief function for the joint variable R3 =
{Smoking, Bronchitis). Suppose the frame for Smoking is
{long&heavy, medium, light} and the frame for Bronchitis is
simply (yes, no}. Let rulel be the statement "if the patient has a
long heavy smoking history then there is a 65% chance that sihe
has bronchitis". This statement can be expressed as
mg3(rulel)=0.65 and mg3(6(R 3))=0.35.

Unlike Dempster-Shafer networks, a Bayesian network is usually
defined as a directed acyclic graph with nodes representing vari-
ables and links the causal relations between nodes (see, e.g. [9],
[16]). In such a network, belief functions associated with nodes
are simply prior or posterior probabilities and belief functions
associated with links are specified by conditional probability
matrices. The Bayesian network shown in Figure 1(b) represents
the joint probability distribution p(ASTC.BX.D)
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Fig. 1 The belicf networks for the example about dyspnoca: (a) Dempster-Shafer network, (b) Bayesian neswork.

P(A)P(T/A)p(C/S)p(B/S)p(X/T,C)p(D/T.C.B).

When a relation between variables is given in the form of if-then
type rule, for instance, "if A =a; then B =b; (with certainty c)",
the Bayesian school interprets such a rule as a conditional proba-
bility expression p(B=b; | A=a;)=c, while the Dempster-
Shafer school views such a rule as an implication
(A=a;) => (B=b;) (with certainty c), and converts it to a belief
function with two focal elements: mg(S)=c and
mg (O(R))=1-c, where B(R ) is the joint frame B(A )xO(B ) and
S ={—~(A=ai) v (B=b;)} = (B(A }-{a: })xB(B ) &A )x{b; }.
There has been much debate on the merits and drawbacks of these
two types of networks (see, e.g. (6, 8, 11, 14, 18, 19, 22]). Also,
it has been a controversy for a long time whether we should inter-
pret in the first place a statement made by domain experts as a
conditional probability or as an if-then rule (and thus an implica-
tion). Lewis [10] (as quoted by Goodman [7]) pointed out that
“one could not identify implication with conditioning in the pro-
bability sense," and "no systematic approach exists for combina-
tion of evidence problems when individual inference rules are
interpreted through conditional probabilities.” Pearl {15] also
argued that there is fundamental difference between the role of
premise in logic and that of conditional events in probability cal-
culus, and "the statement p(B |A)=p denotes totally different
operational semantics than the production rule "if A then B (with
certainty p )." As a matter of fact, one can show that

pA =>B)=pBlA)+p(-A) p(-B1A), H
where p (A => B)2p (B |A) and the strict inequality holds unless
pA)=lorp(A=B)=1

For practical applications, which type of belief network, and
hence which interpretation, is more appropriate really depends
upon the knowledge structure of the application domain. The
Dempster-Shafer theory of belief functions allows beliefs to be
assigned to subsets as well as singletons of a frame of discern-
ment while Bayesian belief functions allow singletons only.
Hence, one of the main advantages that many proponents have
claimed for the Dempster-Shafer type of network is that it has
more expressive power and it can represent hierarchical evidence
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conveniently. For rule bases that deal only with singletons, there
is basically no advantage to convert it to 2 Dempster-Shafer net-
work instead of a Bayesian network. However, sometimes Baye-
sian networks may be inadequate or inconvenient to model the
domain knowledge.

Belief Propagation vs. Rule Chaining

In systems based on Dempster-Shafer belief networks, a belief
function representing input evidence or hypothesis can be pro-
pagated throughout the network by performing a series of local
combinations and projections, provided that the belief network
possesses the qualitative Markov property (see, e.g. [12, 20]).
There are similar procedures for systems based on Bayesian net-
works (see, e.g. [9, 16]).

Given two independent Dempster-Shafer belief functions Bely
and Bel'y over the same frame &(X) with their respective bpa
functions m’y and m'y, which represent two independent pieces
of evidence, Dempster's rule combines the two pieces of evi-
dence using the direct sum operation and produces a new belief
function denoted by Bely =Bel’y @ Bel'y. For any focal element
St of Bely, S; c8(X), 15k<2'%)! the bpa function is com-
puted by the following orthogonal products:

my (S =X {m'x (5;)m x (S;) 18, S;,C0(X ), S:S;=Se} (2)

where x is a normalizing factor that ensures no belief is attributed
to the null hypothesis,

K'l=l—'2{m'x (S,)-m"x(S;) |S5.S)G8(X )- S f’S]:@’, (3)
In case of x~' =0, Bely is not defined and the two belief functions
are said to be not combinable, indicating that the two pieces of
evidence completely contradict each other.

In rule-based systems, belief propagation is realized through rule
chaining, either forward-chaining or backward-chaining. In the
XX system for oil exploration {2}, expert knowledge of explora-
tion geologists is represented in the form of rules with associated
belief values, similar to the MYCIN rules except that belief
values are assigned to subsets of a frame as well as singletons.



The XX system employs Dempster's rule to combine belief func-
tions defined over the same frame. However, propagating belief
functions from one frame to another is realized through combined
forward-backward chaining, thus XX essentially is still a rule-
based system.

In the XX rule base, most rules are in the following form except
for control action rules:
if cond_1 & cond_2 & ... & cond_m BF then
(concl_1 bf 1) (concl_2 bf 2) ... (concl_n bfa).

Both conditions and conclusions (hypotheses) are represented as
(variable value) pairs. A variable corresponds to an attribute of an
object in MYCIN [3]. however, its value can be any subset of the
frame of this variable. Each bf; is a belief value, i.e. basic proba-
bility assignment, assigned to the respective conclusion by

domain experts, and zbf i S 1. Note that at run time, each condi-

tion represents a piece of evidence with an associated belief
value, obtained either from user supplied evidence or as the
results of firing some other rules. BF is a function that computes
the overall belief value for the condition part of the rule. In case
of multiple conditions, the value of BF will be the minimum of
the belief values of all individual conditions. Note that BF
corresponds precisely to TALLY in a MYCIN rule, and a bf value
corresponds to a Certainty Factor CF in MYCIN [3].

Suppose that three variables A, B, and C are involved in a set of
if-then type rules with frames of ©(A)={a,,a2as},
&B)={b1,b;), and O(C)={c1,ca2c3), respectively. Let
R={(A,B,C} be the joint variable. Then, any rule involving
these three variables can be defined as a focal element of the
belief function Bela. Let us consider the simple rule R1 using the
XX rule format as shown below:

Rl: if (A=aiand B=b,) BF then ((C =ci) withbf =bf1).

Suppose now we have obtained two pieces of evidence,
represented as belief functions defined on the frames @(A) and
6(B ), respectively:

el: ms({a1})=BF1, ma(OA))=1-BF,,
e2: mp({b2})=BF; ms(&B))=!-BF,.

In the XX system, by simply taking the minimum of belief values
in the conditions as the value of BF and then multiplying it with
the belief value in the conclusion C =cs, firing this rule amounts
to propagating beliefs (evidence e!, €2) from their home frames
6(A ) and 6(B ) via the composite frame (R ) to the target frame
&(C):

mc({c3} )=min(BFy, BF 1) xbf, )
Computing Equation (4) needs only one comparison and one mul-
tiplication. This is a rough approximation of belief propagation
within Dempster-Shafer's framework. In an exact implementa-
tion of the theory of belief functions and belief propagation based
on projections, this simple process requires a series of projections
and combinations in order to update the belief value of
mc( {ca) ). Let Bels_,r denote the projection of a belief function
over the frame 6(S) onto the frame O(T), where projections
could be a vacuous extension or a marginalization or both
depending on whether or not S is a subset or superset of T [12,
20]. Then, the new belief value of mc¢ ({c3} ) is obtained by tak-
Ing

Belz < Belg @ Belu_zx @ Bels_z

Belc < Bele @ Belg_ic.

(Sa)
(5b)

As the results of this propagation procedure, we have the result-
ing belief in the hypothesis C =c3, i.e. mc({c3} ) computed by:

365

mc({c3) )=BF xBF;xbf 1. 6)
Note that belief values of all other focal elements are also updated
in this process whether desired or not. It can be shown that the
relation in Equation (6) can be generalized in two ways: more
than two premises can be present in each rule, and rules may form
a simple chain. Moreover, similar simple equations for the com-
putation of masses in series-parallel belief networks are known to
hold [15, Ch. 9]. As an obvious consequence, the more condi-
tions we have in the premise of a rule, the greater the difference is
between Equation (4) and Equation (6). Moreover, the longer the
path between two nodes in a belief network or the longer the
corresponding chain of rules, the greater the difference is between
these two approaches. This implies that given a knowledge base,
either in the form of a rule base or in the form of a belief network,
the resulting belief distribution obtained through belief propaga-
tlon based on projections tends 1o be more conservative than
those obtained by rule chaining as in XX or MYCIN. Also, the
amounts of computation needed differ drastically. However,
Equation (4) is of ad hoc nature while Equation (6) represents a
more coherent treatment of uncertainties with a sound theoretical
basis.

Now, suppose XX or MYCIN is modified to take the product of
BF, and BF, instead of MIN in Equation (4), then Equation (4)
will be seemingly equivalent to Equation (6). A very natural
question is: Is it always possible to get the same results by replac-
ing the complex belief propagation procedure with the simple rule
chaining procedure? It is simple to answer the question in the
negative, when we are concemed with exact computation of
masses or beliefs: since the computation of masses or beliefs
using Dempster’s rule is intractable [13, 17], while the computa-
tion of certainty factors using rules is simple, it is not possible to
obtain the same results by substituting a Dempster-Shafer belief
network with a MYCIN-style rule base of approximately the
same size. It can also be shown that no matter whether we take
the minimum or the product, different results are achieved even
when we are not concerned with the exact value of the belief (or
mass) in a proposition, but only with the relative ranking of a pro-
position relative to another. We will only sketch the proof of this
result (concerning rankings) here.

We propose two formalizations of the notion of “relative rank-
ing." In the first case, we are concerned with whether the belief
(or mass) in a proposition is greater than or equal to a threshold
(e.g., 0.5). In the second case, the question of interest is whether
the belief (or mass) in a proposition is greater than or equal to the
belief in a second proposition. (This is a special case of the situa-
tion in which we seek the proposition with the highest associated
belief.)

Observe that the first case is a special case of the second, by the
following construction: let T and P be the threshold and proposi-
tion of interest, respectively. Create an instance of the second
case by adding a disjoint node with belief T to the belief network
of interest. The second question has answer yes for the instance
so constructed if and only if the first question has answer yes,
since the threshold is now just the belief value of the (dummy)
disjoint node.

By the observation in the previous paragraph, we need only show
that Dempster’s rule and MIN give different results (sometimes)
for the first case. Rather than provide an example, we use a com-
putational complexity argument and obtain a rather more general
result for free: not only the use of MIN leads to different results
than the use of Dempster’s rule, but the use of any polynomial
function of several beliefs to compute the belief in their combina-
tion is disallowed.

Orponen (13] and Provan [17] have independently shown that
Dempster’s rule is #P-Complete. It is easy to verify that



Orponen’s Theorem 3.1 can be strengthened without any change
in its proof as follows: Dempster’s rule is #P-Complete when the
possible values of the mass in a proposition are
/27,227 328, - -, (28~1)2", 1. Note that there are 2* such
values.

If MIN (or any other polynomial-time function used to combine
masses) were equivalent to Dempster’s rule as far as rankings are
concerned, we could solve Orponen’s problem in polynomial
time by applying binary search, where each “comparison”
requires the solution of two ranking problems. (The outcome of
each "comparison” is whether the actual value of the mass is less
than or equal to or greater than some appropriate threshold.) This
contradicts the intractability of Orponen’s problem.

A similar argument also applies to Bayesian networks, because
Cooper [5] proved that probabilistic inference using Bayesian
networks is NP-complete, even when only rankings are desired.

Converting Rule Bases to Dempster-Shafer Belief Networks

We have designed and implemented in AKCL a belief network-
based expert system shell BELFUN [24], and the procedure for
converting a rule base to a Dempster-Shafer belief network is a
part of the system. Currently, a project is under way to extend the
system with a graphical user interface in OSF/Motif. The system
can be run in three stages or modes. In the first stage, the
knowledge engineer can build a new rule base or modify an exist-
ing one, and upon completion, invoke the conversion procedure
to make a belief network. In the second stage, the knowledge
engineer can construct a new belief network or modify an exist-
ing one, which could be the result of the first stage. When con-
structing a new belief network, it's quite natural that the
knowledge engineer may as well prefer to specify relations
between variables in the form of if-then type rule. The system
employes the conversion procedure to represent such rules as
belief functions. In this stage, s/he will also specify action rules
for control purpose and prepare questions that the system will ask
the user at run time (the third stage).

In principle, the conversion of an XX-type rule base to a belief
function network is quite straightforward. However, since we
have to combine all rules involving the same set of variables into
a single belief function using Dempster’s rule of combination
which is exponential with respect to the size of the joint frame,
the conversion could be computationally very expensive if there
are large joint frames.

Moreover, even if the joint frames for the rule base are all of
moderate sizes, the conversion can still be very expensive if there
are large clusterings of rules. This is due to the fact that in general
Dempster’s rule of combination generates new focal elements at
an exponential rate with respect to the number of rules (belief
functions) to be combined {23]. Suppose k£ rules (belief func-
tions) involving m variables are defined over their common frame
O(R), the new belief function may have up to nxnx - - xm
focal elements, or n* focal elements if all »;'s are equal to .
Even if k is still in a moderate range, nyxnax - - - Xn; could have
quickly approached 2!'8®)!, This growth rate decreases when one
or more of the belief functions being combined have already been
close to 2'8®)!, Note that each focal element can be a large sub-
set of m-tuples from the joint frame &R ). For example, in the
partition “slope depositional settings” of the XX rule base, rules
from rule736 through rule742 form a group of seven involving 5
variables. The combined belief function has as many as
3x26=192 focal elements. Each of the focal elements has 91 to
104 frame elements (5-tuples). The largest set of rules in this par-
tition has nine rules: rule703 and rule768 through rule775. Even
though the size of their joint frame is only 20 (=1x1>5x4), the
resulting belief function obtained by converting and combining
this set of rules could have up to 2x3%x42=729 focal elements.
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The actual number of focal elements is 640, each having 2 to 18
frame elements. It took about 30 minutes CPU time on a SUN 3
workstation to convert this partition into a belief network, and
about 6 minutes for converting and combining the seven rules
rule736 through rule742 alone (with one additional rule which is
made up to complete the frames for the two variables and thus not
combined with the other rules). Yet, this is still far from the worst
cases in the XX rule base. Some joint variables have more than
10 rules defined on each of them and some rules have as many as
8 conclusions (i.e. the belief function for such a rule alone has 8
focal elements).

Unformnately, empirical evidence suggests that rule bases for
some types of applications like classification tend to render very
dense belief networks with high degrees of node linkage for joint
variable nodes and especially with large clusterings of belief
functions. In Figure 2, we show the belief network obtained from
the partition "slope depositional settings” of the XX rule base.
Note that at each joint variable node of networks, instead of
showing the name of the joint variable, we list the set of rules that
are defined on it. When the set has more than 2 rules, it is indi-
cated by the range of rules in bold face. The joint variable nodes
with the three largest set of rules are highlighted. This partition
has 88 rules involving 18 individual variables. These variables
are also used in two other partitions with 72 and 79 rules concem-
ing "shelf depositional settings” and "basin depositional settings".
The largest partition "carbonate facies” has 416 rules. Belief net-
works constructed from most of the 18 partitions in the XX rule
base have very simple topological structures similar to the one
shown in Figure 2.

MUNIN (1] and the belief network in (4] (called knowledge
graph by Collins) also bear a similar topological structure but
with multiple stages (Figure 2 can be viewed as a single stage
belief network). And so does the MYCIN rule base if it is recon-
structed as a belief network. If the XX rule base were not parti-
tioned, the belief network constructed from it would be much
more complex than MUNIN.

Concluding Remarks

The conversion of rule bases into belief networks involves com-
bining sets of rules into a single belief function. However,
Dempster-Shafer belief functions allow beliefs assigned to sub-
sets as well as singletons of the frames. The problem of exponen-
tial growth rate of Dempster-Shafer belief functions is exactly the
cost for this expressive power. Note that when two Bayesian
belief functions are combined, the resulting belief function does
not increase in size due to this combination because only single-
tons are involved. Therefore, for any practical application, a
trade-off between expressive power (and other factors) and com-
putational complexity must be considered when deciding whether
we should build a rule-based system or a belief network-based
system, or whether we should convert an existing rule base to a
belief network, and whether we should employ a Bayesian net-
work or a Dempster-Shafer network. In order to choose the most
appropriate representation, it is very important to first investigate
thoroughly the knowledge structure of the application domain
under consideration. Dempster-Shafer networks would be an
appropriate choice only if the knowledge structure of the applica-
tion is a sparse belief network,
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