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Abstract

Two types of belief network namely, Dempster-Shafer belief net-
works and Bayeaian networks, have emerged as an appealing
alternative to rule bases in knowledge-based systems develop
ment. It is interesting to contrast some topics of knowledge
r~SentStiOrt for reasoning under uncertainty in rule-based SyS-
tems and in belief network-based systems. This paper addresses
three issues related to the conversion of rule bases into belief net-
works. We will first discuss a way for converting rule bases into
the two different types of belief network and then examine the
relationship between role chaining in rule bases and belief propa-
gation in Dempster-Shsfer belief networks. We will also show
the difficulty involved in the conversion of rule bases into
Dempster-Shafer belief networks, and point out that it is mainly
caused by the exponential growth rate of belief functions, a
phenomenon peculiar to Dempstes-Shsfer belief networks which
has severe practical consequences but has long been overlooked.

Introduction

In most existing knowledge-based systems, MYCIN-type rule
bases have been the dominating formalism for implementing
knowledge bases rnvolving uncertainties. In reeent years, how-
ever, belief networks have become an appeahng tdtemative. It is
therefore interesting to study the relationship between thcae two
formalisms of Imowledge representation. For some application
domains, it is also worthwhile to convert an existing-file base
into a belief network [8].

Depending on the defhhn of belief functions, belief networks
are categorized into two classes, namely, Demper-Shafex net-
works (or simply belief networks) and Bayesian networks (some-
times also called bdief networks, infIuence diagrams, causal pro-
babilistic networks or simply causal networks). Several systems
have been developed employing either type of belief netw~k for
various applications. For example, the MUNIN system designed
to assist physicians in the diagnosis of muscle diseases using
electromyography was built around a large Bayesian belief net-
work of some 1000 nodea [1], whereas the expest system called
Adaptive Reasoner for diagnosing problems in multi-stage air
compressors was implemented using Dempster-Shafer networks
[4].

In the next section, we will first give some bssic definitions of
belief network, and then briefly discuss two different ways for
converting rule bases into the two types of belief network. In
most rule-based systems, the inference procedure is realized
through rule chaining (forward chaining and/or backward chain-
ing). When rule bases involve uncertain knowledge, some uncer-
tainty handling scheme must be incorporated into the inference
procedure, such as MYC!IN’S certainty factor scheme. In belief
network-based systems, the inference procedure is wcomplished
through belief propagation based on local combinations and pro-
jections. In Section 3, we will examine the relationship between
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the results of these two different types of inference procedure.
Although dte conversion of rule basea into either type of belief
network is conceptutdly srraightforwartl we will show in Section
4 that the conversion into Dempster-Shsfer networks could be
computationally expensive due to the exponential growth rate of
Dempster-Shafer belief functions and discuss the implications of
this problem to the development of belief network-based systems.

Dempater-Shafer Networks vs. Bayesian Networks

A Dempster-Shafer netsvork is normally defined as an undirected
graph with associated belief fimctiorts (s- e.g. [12, 20, 21]). For
any variable or node X in such a network, the frame of discer-
nment @X) is the set of exhaustive and mutually exclusive propo-
sitions or hypotheses about X (i.e. all possible values of the vari-
able X). When X is a joint variable that consists of several indivi-
dual variables, @X) is the Cartesian poduct of the frame.t of all
conjoirdng members. Let 2ffxJ denote the power set of @X ). A
basic probability assignment (bps) function is defined over the
fxsme of X as a mapping mx: 2~b [0, 1]. For every subset of
the frame s se(x) (i.e. S E X)), mx(S)20, mx(0)=0 and
Z(mx[S)lS@(X) ) = 1. mx(S) (the bpa value or the mars of
S) is interpreted as the amount of belief committed exaetly to this
subset S of the frame @X) when a piece of evidence dmectly
supports the proposition “The value of X is (in) S” but provides
no further discriminating infonrtation about individual elements
in S. The total belief in the subset S is measured by the beliqf
fknction Belx &fined as Belx(S)= Z{mx(R )IRsS ). h immedia-
tely follows from the de6nitions that for any singleton
S c @(x), Bek (S ) = mx (S ), while for the entire thnne c3(X ),
Be~(e(X))=l and mx(~X))=l–X(mx(S )lS cC3(X)). The
latter in effect defines a measure of ignorsncq that is, the amount
of belief left in tie entire frame due to lack of further evidence.
We call a subset S of X’s frame 9(X) such that mx(S)>O a
jbcal eiemerrfof the belief function Belx. Usually, a belief func-
tion is represented by a list of focal elements along with their
associated bpa values.

F@rre l(a) shows a Dempster-Shafer network constructed from
the widely-used fictitious example (with some changes) about
diagnosis of dyspnoea [9]. Note that belief functions for joint
variables specifi the relations between their member variables,
often in the convenient form of K-then rules. For example, heavy
smoking is known to be a risk factor for bronchitis. Thii fact can
be depicted by the belief function for the joint variable R 3 =
{Smoking, Bronchitis]. Suppose the frame for Smoking is
{long&heavy, medium, light) and the frame for Bronchitis is
simply (yes, no). Let ruiel be the statement “if the patient has a
long heavy smoking history then there is a 65% chance thaf slhe
has bronchitis”. This statement can be expressed 55

rns@del)=O.65 and m~@(R 3)) =0.35.

Unlike Dempster-Shafer networks, a Bayesirm network is usuatly
ddined as a directed acyclic graph with nodes representing vari-
ables and links the causal relations between nodes (see. e.g. [9],
[16]). In such a network belief functions associated with nodes
are simpiy prior or posterior probabilities and belief fitnctions
amociated with links are speci!ied by conditional probability
matrices. The Bayesian network shown in Figure 1(b) represents
the joint probability distribution p(AS,7’,C,Bx@) =
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Fig. 1 The belief networks for the example about dyspn- (a) Dempstez-Shaf= network, (b) Bayeaian network.

~A~/A~C)S)fiB/S)~X~,C)~D~,C@).

When a rektion between variables is given in the form of if-them
type rule, for instance, “VA =af /henB = b, (with certaintyc)”,
theBayesian school interprets such a rule as a conditional prob-
ability expression p (B=bJ IA =i )=c, while the Dentpster-
Shafer school views such a rule es an implication
(A=aJ ) ~ (ll=bJ) (with certainty c ), end crmvf(fl ~ca belief
function with two focal ekmentx - and
~(e@))=l<, whm~R)k tiejohttiwe 8@)*@)md
S=(l(A=i) V (B=bj)} =(w)_(ai)P@(B)UwN{b~}.

Therehas been much debate on the merits end drawbacks of these
two types of networks (sexAe.g. [6,8, 11, 14, 18, 19, 22]). Also,
it has been a controversy for a long time whelks we should inter-
pretinthe fustplece astatemestt made bydomaitt expertsssa
conditional probability or es an if-then rule (end thus an implica-
tion). Lawis [10] @ quoted by Goodman [7]) pointed out that
“one could not i&nti@ implication witIt condhioning in the pro-
bebtity sertse~ snd “no systematic approach exists for oombma-
tion of evidence pmbkms when individual inference ruks are
ittterpeted through conditional probabilities.” Pearl [15] also
argued that there is fundamental difference between the role of
premise in logic and that of conditional events in probability cal-
culus, md “the statement p (B IA) = p denotes totally diffemrtt
operational semantics than the production rule “VA then B (with
certainty p).” As a matter of fsc~ one can show that

p@a B)=p(B \A)+p(~),p(-IB 1A), (1)

wherep(A ~l?)>p(ll 1A) andthe strict inequality holds unless

P@)=lorp@-B)=l.

For practical applications, which type of belief network and
hence which interpmtati~ is more appropriate really depends
upon the knowledge structure of the application domain. The
Desnpster-shafer theory of belief functions allows beliefs to be
assigned to subsets as well as singletons of a kane of discern-
ment while Bayeaian belief functions allow singletons only.
Hest% one of the main advantages that many proponents have
claimed for the Detnpster-Shafer type of network is that it has
more expressive power and it can represent hierarchical evidence

conveniently. For ruk bases that deal only widt singkmns, there
is basically m advantage to convert it to a Dempater-Shafernet-
work instead of a Baydett network. However, sometimes Baye-
siart networks may be inadequate or inconvestiatt to model the
domain knowledge.

Bdlef Propagation vs. Rule Chaining

In systems baaed on Dempater-Shafer belief networks, a belief
function repreamting input evidence or hypothesis can be pr-
opagatedthroughout the network by performing a series of local
combinations and projections, provided that the belief network
poaaeaaes the qualitative Markov pmpexty (see, e.g. [12, 20]).
There are similar pmccdures for systems baaed on Bayesisn net-
works (see, e.g. [9, 16]).

Given two independent Desnpster-Shafes belief functions Bel’x
and BeI-X over the same !kame 9(X) with their qx.ctive bpa
functions m’xand m-x, which represent two independent pieces
of evidest~ Dettqx3ter’s rule combines the two pieces of evi-
dence using the d- sum operation and produces a new beliif
function denoted by Belx =Bel’x e Bel”x. For any focal element
S&of BeIx, SkG 9(X ), 19s21~Jt, the bpa function is com-
pUtd by the following OrthOgortkdproducm

mx(S~ )=tc~{rn’x(Si)”nt”x (S’j) Isi, s@(X), Sf ~j~k ) (2)

where ~ is a normalizing factor that ensures no belief is atfsibuted
to the null hypothesis,

rkl-~{m~ (SI)“tst”x(~J) lSi, SjG9(X ), Si NJ* ), (3)

In case of @ =0, Belx is not&fined and the two belief functions
are said to be not combinable+indicating that the two pieces of
evidencecompletelycontradicteachother.

In rule-baaedsystenw belief propagationis realizedthroughrule
chainin~ either forward-chainingor backward4teining. In the
XX aystesnfor oil exploration[2], expest knowkdge of explora-
tion geologists is represedadin theform of rules with associated
belief values, sitnikr to the MYCIN rukx except that belief
values are assigned to subsets of a iiame as well es singletons.
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The XX system employs Dempster’s rule to combine belief frmc-
tions detined over the same htne. However, propagating belief
functions from one frame to snother is realized through combined
forward-backward chaining, thus XX essentially is still a rrde-
baaed system

In the XX rule base most rules are in ?he following form except
for control action roles

If cond.1 & cond_2 & ...& cmtd_m BF then
(concl_l b~d (concl_2b~d ... (conc_n bf” ).

Both conditions and conclusions (hypotheses) are represented as
(variable value) pairs. A variable corresponds to an attribute of an
object in MYCIN [3]. however, its value can be any subset of the
frame of fhis variable. Each bfi is a belief value, i.e. basic proba-
bility aasignmm assigned to the respective conclusion by

&
domain experts, and . ~; s 1. Note that at run timq each CXXKIL

tion represents a piece of evidence with an associated belief
value, obtained either from user supplied evidence or as the
results of tiring some other rules. BF is a function that computes
the overall belief value for the condition part of the rule. In case
of multiple conditions, rhe value of BF will be the minimum of
the belief values of all individual conditions. Note that BF
ccmesponds precisely to TALLY in a MYCIN role, md a bfvalue
correspondsto a Certainty Factor CF in MYCIN [3].

Suppose that three variables A, B, and C are involved in a set of
if-then type ruks with frames of MA). (al, a=a~),
@B)= (bl,b2), and 6(C)= (C1,C%CS), respectively. Let
R = (A, B, C ) be the jointvariable. Then, any rtde involving
these three vatiables can be defined as a focal element of the
belief function Beb. Let us tmnsi&r the simple rule RI using the
XX ruk format as shown below:

Rl: If (A=ulandB=b2) fiFthen ((C=c3)withbf =bfl).

Suppose now we have obtained two pieces of evidence,
represented as belief fimctions defined on the fhrnes ~A ) and
9(B), respectively

e]: mA((ul))=BFI, u3A(8(A))=I-BFI,
e2: ms((b2))=BFz ma(@B))=l-BF2.

In the XX system, by simply taking the minimum of belief values
in the conditions as the value of BF and then multiplying it with
the belief vsdue in the conclusion C = c3, firing this rule amounts

to propagating beliefs (evidence el, e2) from their home frames
*A) and ~B ) via the composite frame @R ) to the target frame
9(C):

mc( (C3) )=rnin(BF1, BF~xbfl (4)

Computing Equation (4) needa only one comparison and one mul-
tiplication. This is a rough approximation of belief propagation
within Dunpster-Shafer’s framework. In an exact implementa-
tion of the theory of belief fkrtctions and belief propagation baaed
cm projections, this simple process requires a series of projections
and combinations in order to update the belief value of
mc ( [c31 ). M Bels+~ denote the projection of a belief function
over the ffsme 8(,S ) onto the frame @T), where projections
could be a vacuous extension or a mstrgintdization or both
depending on whether or not S is a subset or superset of T [12,
20]. Them the new belief value of mc ( (CS) ) is obtained by tak-
ing

Be~ + Bels ~ BeL 4 @ BelB~ (5a)

Be~ e Belt ~ Belir+c. (5b)

As the results of this propagation procedure, we have the result-
ing belief in the hypothesis C = C3, i.e. mc ( (C3) ) computed by:

W( (c3) )= BFlxBFzxbf 1. (6)

Note that belief values of all other focal elements are also updated
in this process whether &sired or not- It can be shown that the
relation in Equation (6) can be generalized in two ways: more
than two premises can be preasmt in each rule, and roles may form
a simple chain. Moreover, similar simple equations for the com-
putation of masses in serks-pamdlel belief networks are known to
hold [15, Ch. 9]. As an obvious consequence, the more condi-
tions we have in the premise of a rtdg the grtxtter the difference is
between Equation (4) and Equation (6). Moreover, the longer the
path betweest two nodes in a belief network or the longer the
corresponding chain of rules, the greater the difference is between
these two approaches. This implies that given a knowledge base,
either in the form of a rule base or m the form of a belief netwti
tbe restdting belief distriition obtained through belief propaga-
don baaed on projections tends to be more conservative than
those obtained by rule chaining as in XX or MYCIN. Also, the
amounts of computation needed differ drastically. However,
Equation (4) is of ad hoc nature while Equation (6) represents a
more coherent treatment of umxmaintiea with a sound theoretical
basis.

Now, suppose XX or MYCIN is modified to take the product of
BF1 and BF2 insteadof MIN in Equation (4), then Equation (4)
wiU be seemingly equivalent to Equation (6). A very natural
question is: Is it always possible to get the same results by replac-
ing the complex belief propagation prtwedure with the simple rule
chaining procedure? It is simple to answer the question in the
negative+ when we are wncemed with exact computation of
masses or belieftx since the computation of masses or beliefs
usrng Dernpster’s rule is intractable [13, 17], while the computa-
tion of certainty factors using roles is simple, it is not possible to
obtain the same results by substituting a Dempster-Shafer belief
network with a MYCIN-style rule base of approximately the
same sixe. It can sdso be shown that no matter whether we take
the minimum or the produc~ different results are schieved even
when we are not concerned with rhe exact value of the belief (or
mass) in a proposition, but only with the relative ranking of a pro-
position relative to another. We will only sketch the proof of this
result (concerning rankings) here.

We propose two formalization of the notion of “relative rank-
ing.” In the first case, we are concerned with whether the belief
(or mass) in a proposition is greater than or equal to a threshold
(e.g., 0.5). In the second case, the question of interest is whether
tlw belief (or mass) in a preposition is greatsx than or equal to the
belief in a second proposition. (This is a special case of the situa-
tion in which we seek the proposition with the highest associated
belie f.)

Observe that the first case is a special case of the second, by the
following constructiorx let T and P be the threshold and proposi-
tion of interesL respectively. Create an instance of the second
case by adding a disjoint node with belief T to the Ixlief network
of interest. The second question has answer yes for the instance
so constructed if a23d only if the tit question has answer yes,
since the threshold is now just the belief value of the (dummy)
disjoint no&.

By the observation in the previous paragraph, we need only show
that Dempster’s rule and MIN give different results (sometimes)
for the first case. Rather than Fovide an example, we use a com-
putational complexity argument and obtain a mtbcr more gcmeral
result for free not only the use of MIN leads to different results
than the use of Dempster’s role, but the use of any polynomial
function of several beliefs to compute the belief in their combm-
tion is dkdlowed.

Orptmen [13] and Provan [17] have independently shown that—
Dempster’s rule is #P-Complete. It is easy to ver@ that
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Orponen’s Theorem 3.1 can be strengthened without any change
in its prvof as followx Dempster’s rule is #P-Complete when the
possible values of the mass in a proposition are
112n, 2/211,312R, “ . s , (2”-llCY, 1. Note that there am 2“ such
values.

If MIN (or any other polynomial-time function used to combine
masses] were equivalent to Dempster’s rule as far as rankings are
mncernx we could solve Orponen’s problem in polynomial
time by applying binary seatt% where each “comparison”
requires the solution of two ranking problems. (The outcome of
each “comparison” is whether the actual value of the mass is less
than or equal to or greater than some appropriate threshold.) This
contradicts the intractability of Orpomm’s problem,

A similar argument also applies to Bayesian networks, because
Cooper [5] proved that pmbabiiitic inference using Bayesian
networks is NP-complete, even when ordy rankings are desired.

Converthtg Rule Baaes to Dempster-Shafer Belief Networks

We have &signed and implemented in AXCL a belief network-
bssed expert system shell BELFUN [24], and the procedure for
converting a rule base to a Dempster-Shsfer belief network is a
partof the system. Currently,a project is underway to extend the
system with a graphical user interface in OSF/Motif. The system
csttberun ittthree stages or modes. Inthefirst stage, the
knowledge engineer can build a new rule base or modify an exist-
ing one, and upon completion invoke the conversion procedure
to make a belief network. In fhe second stage, the knowledge
engineer can construct a new belief network or modify an exist-
ing one, which could be the result of the first stage. When con-
structing a new belief network, it’s quite natural that the
knowledge engineer may as well prefer to specify relations
between variables in the form of if-then type rule. The system
employes the conversion procedure to represent such rtdes as
belief functions. In this stag%slhe will also specify action rules
for control purpose and preparequestions that the system will ssk
the user at run time (the third stage).

In principle, the conversion of an XX-type rule base to a belief
function network is quite straightforward. However, since we
have to combine all rules involving the same set of variables into
a single belief function using Dempster’s rule of combination
which is exponential with respect to the size of the joint frame,
the conversion could be computatiottally very expensive if there
are large joint frames.

Moreover, even if the joint fiatnes for the rule base are all of
moderate sizes, the conversion cart still be very expensive if there
are large clusterings of rules. This is due to the fact that in general
Dempster’s rule of combination generates new focal elements at
an exponential rate with respect to the number of ndea (belief
functions) to be combmed [23]. Suppse k rules (belief ftmc-
tions) involving m variables are defined over their common frame
@R), the new belief function may have up to nlxn~. . . wq
focal elements, or nk focal elements if all ~‘s are equal to n.
Even if k is still in a moderate range, nlxnfi. . . xtu could have
quickly approached 21@@J1.This growth rate decreases when one
or more of the belief functions being combmed have already been
close to 2 la )!. Note that each focal element can be a large sub-
set of m -tuples horn the joint frame ~R ). For example, in the
partition “slope &positional settings” of the XX rule base, rtdea
from rufe736 through rule742 form a group of seven involving 5
variables. The combined belief function has as many as
3x26= 192 focal elements. Each of the focal elements has 91 to
104 frame elements (5-tuples). The largest set of rules in this par-
tition has nine rules rule703 and rule768 through rule775. Even
though the size of their joint frame is only 20 (=lxltix4), the
resulting belief function obtained by converting and combining
this sex of roles could have up to 2X3’%42= 729 focal elements.

The actual number of focal elements is 640, esch having 2 to 18
frame elements. It took about 30 mirtutea CPU time on a SUN 3
workstation to convert this partition into a belief netwo~ and
about 6 minutes for converting and combining the seven rules
ruie736 through ruZe742 alone (with one additional rule which is
made up to ccmtplete the thttws for the two variables and thus not
combmed with tie other rules). Ye~ this is still far from the wotst
cases in the XX rule base. Some joint variables have more than
10 rules defined on each of them and some rules have as many as
8 conclusions (i.e. the belief function for such a rule alone has 8
focal elements).

Unforhmately, empirical evidence suggests that rule bases for
some types of applications like classification tend to render very
dense belief networks with high degrees of node linkage for joint
variable nodes and especially with large clusterings of belief
functions. Jrt Figure 2, we show the belief network obtained hem
the partition “slope &positional settings” of the XX rule base.
Note that at each joint variable node of networks, instead of
showing the name of the joint variable, we list the set of rules that
are &bed on it, When the set has more than 2 rules, it is indl-
cated by the range of rules m bold face. The joint variable nodes
with the three largeat set of rides are highlighted. This partition
has 88 rules involving 18 individual variables. These variables
are also used in two other partitions with 72 and 79 rules concern-
ing “shelf &positional setl.ings” and “basin &positional settings”.
The largest partition “carlxmate facies” has 416 rules. Belief net-
works constructed from most of the 18 partitions in the XX rule
base have very simple topological structures similar to the one
shown in F@re 2.

MUNIN [1] and the belief network in [4] (called knowledge
graph by Collins) also bear a similar topological structure but
with multiple stages (Figure 2 can be viewed as a single stage
belief network). And so does the MYCIN rule base if it is rein-
structed as a belief network. If the XX rule base were not parti-
tion~ the belief network constructed from it would be much
more complex than MUNTN.

Concluding Remarks

The conversion of rule bases into belief networks involves com-
bining sets of rules into a single belief fimction. However,
Dempster-Shafer belief functions allow beliefs assigned to sub-
sets as well as singletons of the frames. The problem of expotten-
tisl growth rate of Detnpstcr-Shafer belief functions is exactly the
cost for this expressive power. Note that when two Bayesian
belief functions are combind rhe resulting belief function does
not increase in sk due to this combination because ordy single-
tons are involved. Therefore, for any practical applicati~ a
trade-off between expressive power (and other factors) and com-
putational complexity must be considered whcst tkxidmg whether
we should build a rule-based system or a belief network-based
sys~ or whether we should cmtvett an existing rtde base to a
belief network and whether we should employ a Bayesian net-
work or a Dempster-Shafer network. In order to choose the most
tqqxopsiate represemtatiom it ia very important to iirat investigate
thoroughly the knowledge stmcture of the application domain
under consideration. Dempster-Shafer networks would be an
a~priate choice only if the knowledge smucture of the applica-
tion is a sparse belief netwo*.
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