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Abstract 
This paper describes our work on an integrated system that can assist analysts in exploring hypotheses 
using Bayesian analysis of evidence from a variety of sources.  The hypothesis exploration is aided by 
an ontology that represents domain knowledge, events, and causality for Bayesian reasoning, as well 
as models of information sources for evidential reasoning.  We are validating the approach via a tool, 
Magellan, that uses Bayesian models for an analyst’s prior and tacit knowledge about how evidence 
can be used to evaluate hypotheses. 

1. Introduction
Much of the extensive work on ontologies to date has focused on modeling and representing the 
world of objects.  The ontologies needed for our research supporting the management of 
hypotheses and evidence for analysts, however, must additionally model events and causality.  
Less work has been done on this aspect of ontologies.  In this paper we show how concepts from 
a causal ontology can be used directly as variables in Bayesian networks and how the attributes 
of the causal concepts can be used in matching evidence to the variables.  Moreover, subclass 
relationships in the ontology enable the extension of Bayesian reasoning over types. 

2. Bayesian Reasoning for Evidence Management 
There are numerous real-world situations about which an analyst might wish to hypothesize and 
investigate, but it would be impractical to encode all of them explicitly in a support system for 
analysts.  Instead, our approach is to represent fragments of situations and provide a mechanism 
for combining them into a wide variety of more complete ones [1,4].  The combination occurs 
dynamically as evidence about a situation becomes available or as an analyst revises or enters 
new hypotheses.  A fragment is represented as a Bayesian network with nodes for hypotheses, 
events, and evidence, and links for relating them.  Our ability to combine the fragments into 
more complete situation models is dependent on having a consistent terminology in which the 
fragments are described.  The focus of our work has been on (1) defining and representing the 
terminology, including terms of a domain and terms for evidence in that domain, (2) capturing 
new fragments from a variety of sources, and (3) incorporating the terminology and BN 
fragments into an integrated end-to-end tool, Magellan.

2.1. Capturing the Terminology and Prior Knowledge for a New Domain 
Intelligence analysts are concerned primarily with hypotheses that involve cause-and-effect.  
These are best supported by an ontology emphasizing events and their causal relationships, along 
with a hypothetical world of possible events, actions, and causes.  However, causal relationships 
must be interpreted in the context of real-world objects and their properties, which can be 
represented in a conventional ontology such as those that are part of SUMO.  The evidence for 
reasoning about hypotheses can come from a variety of sources, and the acquisition of evidence 
and events from these sources must also be represented, constituting a third kind of ontological 
representation describing the information sources.  Figure 1 depicts the three ontological models 
we use for modeling situations, relating situations to background knowledge about objects in the 
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world, acquiring evidence, and assessing the likelihood of the situations using Bayesian 
reasoning.  Our tool, Magellan, uses Protégé for capturing the ontologies, RDF for representing 
the terminology, XMLBIF for representing the causal relationships, and RDF and RDQL for 
requesting evidence from information sources.  

Figure 1. An ontology for intelligence analysts has three related parts, corresponding to the world of causality 
and hypothetical events needed for Bayesian reasoning, the real world of things needed to model situations, 

and the world of information and information sources needed for evidence management 

Causality is a special relationship among events for which certain properties hold 
probabilistically.  For example, causality is logically irreflexive and asymmetric, but 
probabilistically transitive.  Causal models are very useful, because they allow prediction of the 
effect of interventions [3,5].

New variables are added to the causal and event portion of an analyst’s ontology using Protégé, 
so that all of the nodes in a Bayesian network fragment are represented in a standard and 
consistent terminology. We extend SUMO with this terminology, so that we can take advantage 
of SUMO’s existing description of general knowledge of the world.  Each variable has a set of 
identifying attributes, which are used to combine fragments (fragments can be combined only if 
their attributes unify) [4]. 

Probabilities are assigned to events in the fragment by performing experiments, estimating 
beliefs, or counting outcomes.  Once assigned, they are updated by conditioning on evidence 
using Bayes rule and the laws of probability.  The fragments are stored in a repository, where 
they can be matched with evidence and combined with other fragments to produce models of 
situations that are as complete, accurate, and specific as possible. 

We also represent in the information source ontology the level of credibility of items of 
evidence, and provide a Bayesian interpretation of credibility.  We define evidence to be a 
collection of findings, each of which describes the state of a Bayesian network variable, and 
distinguish three kinds [7]: 

1. A hard finding specifies that the variable has a particular value. 
2. A soft finding is a distribution on the states of a variable, usually corresponding to an 

“objective” statistical distribution that is not expected to change within a scenario. 
3. A virtual finding is a likelihood ratio corresponding to the credibility associated to an 

evidence source, such as a witness.  Unlike soft findings, virtual findings allow for an update 
of the posterior probability of the evidence variable. 

Our modified version of ACH1 [6] is used by an analyst to enter the appropriate hypotheses and 
any initial evidence that might be available.  The terminology available to the analyst is provided 
via drop-down menus as shown in Figure 2, where the menu entries are the ontology terms from 
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Protégé.  The resultant ACH [2] matrix is converted automatically into a bipartite Bayesian 
network, with initial probabilities assigned based on the relevance factors assigned to cells of the 
matrix.  The network is saved into the repository of fragments. 

Figure 2.  The extended ACH interface is integrated with the ontology of events through pull-down menus 
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Figure 3.  Fragments (templates) are merged based on instantiating evidence 

3. Architecture for Bayesian Reasoning 
Figure 4 shows an architecture for Bayesian reasoning, which would be used as follows.  Based 
on initial triggering messages, or based on a hypothesized situation that an analyst would like to 
investigate, an appropriate scenario represented as a Bayesian model is chosen by the analyst and 
a corresponding form is shown listing initial evidence and the domain variables for the scenario.  
The evidence values for the variables can be supplied automatically from the triggering messages 
or can be entered by the analyst.  The Bayesian reasoning component, using a value-of-
information calculation, then determines which pieces of evidence would be most useful in 
confirming or denying the analyst’s hypothesis.  A request for this evidence is sent to the analyst, 
who returns the result to the Bayesian reasoner for incorporation into the scenario, and the 
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likelihood of the analyst’s hypothesis is reassessed.  The process is repeated until the analyst 
decides to stop or there is no more evidence available that changes the plausible outcomes.  
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Figure 4. Magellan architecture for Bayesian Reasoning used to explore an analyst’s hypotheses 

4. Conclusion
As we continue to increase the functionality of our Bayesian reasoning system, we will improve 
our representation of events and causality, and increase the capabilities for the application of 
prior and tacit knowledge to the exploration of analysts’ hypotheses.
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