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Abstract. 

In this paper we propose a new framework for intrusion detection called Probabilistic Agent-Based Intrusion Detection (PAID), developed using agent encapsulated Bayesian networks.  It allows agents to share their beliefs, i.e., the calculated probability distribution of event occurrence. A unique feature of our model is that the agents use the soft evidential update method to process beliefs.  This provides a continuous scale for intrusion detection, supports merging of signature based and anomaly based systems, and also reduces the communication overhead in a distributed intrusion detection scenario. We have developed a FIPA compliant agent communication architecture that provides a prototype implementation.
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1. Introduction

Even in the presence of sophisticated security safeguards, it is unrealistic to assume that a computer system is fully protected.  As malicious attacks become more and more sophisticated, the need to provide effective, high-assurance intrusion detection methods increases [CERT, AFV95, LS98, Axel00].  Network-based, distributed attacks are especially difficult to detect and require coordination among different intrusion detection components or systems [SB91, Cann98, MST98, NP99].  The development of models and protocols for information sharing becomes critical for intrusion detection systems (IDS). Recent research [BFIS98, JMKM99, CHSP00, HWHM00] shows that agent-based technology seems to be a promising direction for developing collaborative intrusion detection systems.  

We propose a solution that is more economical than current agent based IDS’s. Our solution allows sharing of decisions among the agents.  (Note that occasional data sharing still might be required for final decision but at a much lower scale.) For each decision, there is a quantitative representation of the confidence in the decision. Confidence in an event is calculated as probability for that event.  This is an important factor for another intrusion detection component to achieve consistent analysis and allows integration of signature based and anomaly based intrusion detection strategies.  

Developing a cooperative architecture also requires that each IDS component is able to process information and requests that they receive from other components.  Bayesian inference based models support this requirement and have been considered for intrusion detection [BV99, DM99, VS00, BWJ01]. However, they use traditional probability update methods for Bayesian networks [Jens01, Pearl88] that are limited because they cannot handle soft evidence. 

In this paper we address the above shortcomings of current models by proposing a new intrusion detection framework and develop underlying technologies.  More specifically, we propose an agent-based, cooperative architecture, called Probabilistic Agent-Based Intrusion Detection (PAID), to analyze system information and estimate intrusion probabilities.  PAID uses a multiagent system, called Agent Encapsulated Bayesian Network (AEBN) [BMV02], in which autonomous agents share their beliefs.  From the security perspective, we classify agents into two types: system-monitoring agents and intrusion-monitoring agents.  System-monitoring agents are responsible for collecting, transforming, and distributing intrusion specific data upon request and evoke information collecting procedures. Each intrusion-monitoring agent encapsulates a Bayesian network and performs belief update as described in [VKV02] using both facts (observed values) and beliefs (generated values).  Intrusion-monitoring agents generate probability distributions (beliefs), over intrusion variables that may be shared with other agents.  Each belief is called a soft finding.  Soft findings can indicate abnormal states of a system, which affect the probability of an intrusion, even in the absence of certain hard findings.  A probabilistic representation of hard and soft findings makes our model capable of identifying variations of known intrusions.

The organization of the paper is as follows. Section 2 contains the design considerations of our model.  Section 3 gives a brief introduction to background information on Bayesian network and agent technology.  Section 4 describes the proposed framework (PAID) and its implementation. Section 5 contains a detailed description of Bayesian network models.  Finally, we conclude and recommend future research in Section 6.

2. System Design Goals

  Our model can be used either as a stand-alone system or to support an existing IDS.  The following objectives guided our system design:

1.  Continuous intrusion classification 
2.  Scalability: The architecture of distributed IDS must allow local analysis and sharing of results, minimizing the communication costs.

3.  Flexibility: A site security officer (SSO) must be able to customize IDS sensitivity and selectivity according to the requirements of the site.

4.  Automated analysis and intrusion response. 

5.  Maintainability: It should be easy to modify intrusion monitoring agents and network configurations.

6.  Reliability: IDS should perform at an acceptable level even in the presence of intrusions.

3. Background

3.1 Bayesian Networks

Bayesian networks are probabilistic models that exploit the conditional independence properties present in a task domain to reduce both the space required to store the model and the time needed to compute posterior probabilities upon receipt of evidence.  A Bayesian network is composed of a probability distribution over n random variables in the set V = {V1, …,Vn}, and a directed acyclic graph (DAG) whose nodes are in one-to-one correspondence with V1,…,Vn.  The defining property of a Bayesian network is that the conditional probability of any node given any subset of non-descendants is equal to the conditional probability of that same node given the parents alone.

We define evidence as defined as a collection of findings, a (hard) finding on variable v as a specification of the value of v, and a soft finding on variable v as a distribution on the values of v.  These definitions of finding and of evidence may be generalized [CDLS99; VKV02], for example, by allowing specifications of impossible configurations of pairs of variables.  However, applications rarely need the power of the generalized definitions, and most Bayesian network software tools support only the definition of (hard) evidence as a collection of (hard) findings given here.

The most common operation on a Bayesian network is the computation of marginal probabilities both unconditional and conditioned upon evidence. Marginal probabilities are also referred as beliefs in the literature [Pearl88]. This operation is called probability updating, belief updating, or belief assignment.

3.2 Agent Encapsulated Bayesian Networks

In this paper we develop a model that uses Agent-Encapsulated Bayesian Network (AEBN) [BMV02].  Each agent in an AEBN model uses as its model of the world a single Bayesian network (which we also call an AEBN). The agents communicate via passing messages that are distributions on variables shared between the individual networks.

The mechanism for integrating the view of the other agents on a shared variable is to replace the agent's current belief (probability distribution) in that variable with that of the communicating agent.  The update of a probability distribution represented by a Bayesian network upon receipt of a belief is called soft evidential update [VKV02].  We use the big clique algorithm for soft evidential update, implemented in the BC-Hugin system [KVV02].

The graph of agent communication (agent graph) is a directed acyclic graph. It is assumed that equilibrium is reached and a kind of global consistency is assured, because the belief in each shared variable is the same in every agent. When an agent makes a new observation it publishes it new belief.  In turn, the subscribers adjust their internal view of the world and send their published values to their subscribers.  However, it is permissible to have multiple views of a common variable.  For example, in a multiagent system for interpretation, two agents may issue a report that corresponds to the same (unknown) physical quantity.  Nothing prevents another agent from integrating the reports of these agents and effectively obtaining a new (and possibly more accurate) view of the same underlying quantity.  It is also possible for a subscriber agent to model known reporting errors or biases of the publisher.

3.3 Agent Communications Models

Agent communications can be divided into two categories, communication among agents at same host and communication among agents on different hosts. Balsubramaniyam et al. [BFIS98] examine these methods in the context of intrusion detection.  Agent communication in our implementation follows the Foundation for Intelligent Physical Agent (FIPA) specifications [FIPAOS, BPR98].

4. Probabilistic Agent-Based Intrusion Detection 

In our model, we use agent graphs to represent intrusion scenario.  The agent at each node of the graph encapsulates a Bayesian network. Each Bayesian network contains a particular intrusion scenario, error modeling and a method to incorporate multiple beliefs on input variables. Nodes of the Bayesian network represent beliefs on suspicious events, intrusions, or system and network parameter values.  Each agent is associated with a set of input variables, a set of output variables or beliefs, and a set of local variables.  A belief (node variable) can have any number of states. This calculation incorporates the uncertainties and measurement errors.

A description of this method with example of Mitnick attack [Nort99] scenario, including a discussion of how to build the Bayesian networks, is given in [GFV01].

The following types of agents are supported in PAID architecture:

1. System-monitoring agents: The system-monitoring agents process information from log files, communicate with the operating system and monitor system resources. These agents publish their output variables, which can be utilized by other agents. 

2. Intrusion-monitoring agents: Each intrusion-monitoring agent computes the probability for a specific intrusion type. These agents subscribe to variables and/or beliefs published by the system-monitoring agents and other intrusion-monitoring agents. Information about the required input variables for an agent is obtained from the corresponding Bayesian network. The probability values are computed again on modification in the values of input variables or beliefs. 

3. Registry agent: For each registered agent, our registry agent maintains information about the published variables and monitored intrusions.  The registry also maintains the location and current status of all the registered agents.  A registry is similar to the yellow pages.  Agents use the registry to find information (e.g., name and location) about agents who may supply required data.  

4.1 Agent Communication

Agents in our system communicate with each other by sending messages in Agent Communication Language [FACL02] specified by FIPA. Figure 1 shows the interactions within PAID. 


Fig. 1. Probabilistic Agent-based Intrusion Detection (PAID)

The content of the messages is in eXtensible Markup Language [XML]. The important messages exchanged among the agents are:

1. Registration of agent with registry agent 

2. Request to registry agent for finding other agents

3. Search results

4. Belief subscription requests

5. Belief update messages.

4.2 Communication Security

Our system provides reliability and communication secrecy by incorporating the following features:
1. Status maintenance of registered agents and network links: Registry agent monitor the status of the registered agents.  This monitoring is performed by periodically probing system-monitoring agents.  Responses to the probing messages carry information about the state of the system-monitoring agents. The status of a communication link between any two agents is determined by attempting to achieve a reliable UDP communication between them. 

2. Authentication:  Our model uses public key cryptography to provide authentication of messages and agents.  Each message is signed by the sending agent. In addition, we require that agents authenticate themselves to the registry by their digital certificates. 

3. Encryption and Decryption: Encrypted messages are sent among agents using secret key encryption method. 

4.3 Performance Analysis 

The factors affecting scalability are:

1. Data transfer: PAID requires mainly the communication of beliefs. Thus, it has low bandwidth requirements.

2. Performance of the belief update: Pearl [Pearl88] has shown that belief update can be performed in linear time in trees and (more generally) singly connected networks.  Unfortunately, belief update in general Bayesian networks is NP-hard [Cooper90].  This negative result holds even for some notions of approximation and for many restrictions on the structure of the Bayesian network.  Despite these negative theoretical results, update in most Bayesian network using the junction tree algorithm [LS88] is very fast, because most practical Bayesian networks compile into a junction tree where the largest clique is small [Neap90]. 

3. Agent registry: PAID can provide scalability by supporting multiple registries.  Each subnet may have its own agent-registry. The agent-registries can forward requests and replies to neighboring registries based on the IP address of the receiving agent.  Therefore, dynamic routing algorithms for IP networks [OSPF97, Perl92] are also applicable for this purpose.  

5. Intrusion Detection with Agent Encapsulated Bayesian Networks

The calculation of a belief depends on factors such as:

1. Accuracy of measurement

2. Conflicts among beliefs reported by various agents.

In this section, we briefly describe how Bayesian networks model errors and resolve conflicts. 

5.1 Modeling errors in measurement 

In our model, if an agent is not able to accurately determine the state of a published variable, the agent publishes a probability distribution (belief) over the possible states of the variable.  The publishing agent determines this distribution by incorporating the measurement errors. Errors in the measurement of a variable state are modeled within an agent with help of Bayesian network shown in Figure 2. This is achieved by representing the state of variable with a belief or soft finding. The parent node S represents the actual value of interest.  The prior distribution of the actual values is P(S). The measured value is represented by variable Sobs.  The measurement error is modeled by the conditional probability P(Sobs|S).  In the absence of error, this is a diagonal matrix.  The magnitude of non-diagonal entries is directly proportional to the measurement errors. In the special case of a 2x2 matrix, the two diagonal entries quantify the specificity and sensitivity of the measurement, and the other entries quantify the false positive and false negative ratios.  When the actual value is propagated to parent node S, we get a probability distribution over different states of the variable. The agent can publish this distribution as its belief on the state of the measured variable.


Fig. 2. Incorporating error in measurement of variable
5.2 Conflict resolution

Conflicts among beliefs on a state of variable due to information provided by multiple agents on the same underlying quantity can be resolved using soft evidential update.

 Let A1 and A2 be two agents that measure a variable v. The values measured by them are B1 and B2 respectively. The belief computed after incorporating the views of both agents is B. We design a Bayesian network as shown in Figure 3. The computed posterior probability of v effectively fuses the information provided by the two agents in the context specified by variable CR. 

This approach requires estimating the prior probabilities of B and CR. In most practical uses of the Bayesian network, the value of CR is known, so the assessment of the prior probability of CR does not need to be accurate. The prior probability of B needs to be more accurate, and it is normally possible to estimate B by using counts of the values of B in past cases. A similar technique (based on counts) can be used for the conditional probability tables P(B1|v,CR) and P(B2|v,CR).  See [Jens01, CDLS99] for a discussion of the technique in general and [VS00] for an application of the technique in an intrusion detection scenario. 

In special cases B1 and B2 are statements that v is in a particular value. In general,  they are probability distributions representing each agent’s belief that the variable v has a particular value. The unique feature of AEBN approach is to allow such general situations, whereas other approaches require the beliefs of the two agents to be hard findings. The process of updating v in the presence of the probability distributions on B1 and B2 is called soft evidential update. We implemented a program (called BC Hugin) for soft evidential update that is described in [KVV02].


Fig. 3. Conflict Resolution

6. Conclusion

In this paper, we demonstrated the feasibility of probabilistic intrusion detection technique using soft evidential updates. We developed and implemented an intrusion detection architecture called Probabilistic Agent-Based Intrusion Detection (PAID). The advantages of PAID are:

1.  It needs low volume of data that must be sent over network in a distributed intrusion detection scenario.

2.  It provides a continuous scale to represent the probabilities of events.  This feature allows easy exploration of the trade-off between sensitivity and selectivity that affects the rate of false positive and false negative decisions.

3.  PAID can support both misuse-detection based and anomaly-based intrusion detection.

4.  The distributed nature of PAID and the fact that each agent is an autonomous entity increases the efficiency of the processing and there is no single point of failure.  

A proof-of-concept prototype of our model has been developed using Java, C, JADE and the soft evidential update program BC-Hugin. We are planning to further improve and fine-tune our current model to address agent trust management and dynamic agent-activation protocols.
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