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1. Introduction and Motivation  

Bayesian Belief Networks are proving to be very useful in data mining, machine learning, 
knowledge acquisition, knowledge representation, and in causal inference.1-3  Sequential 
algorithms for the recovery of Bayesian Networks are of polynomial or exponential time 
complexity and many of them have very little impact on practical problems. With the 
advancement of VLSI technology and as parallel computers are becoming commonplace, 
it is important to explore parallel algorithms for Bayesian Network construction. While a 
fair amount of research on parallel inference in Bayesian networks exists, there is 
surprisingly little work on parallel learning of Bayesian networks.4, 5. The two papers just 
cited represent the scoring approach and the conditional independence testing approach to 
Bayesian network learning, respectively. In this paper a new sequential algorithm is 
presented to answer the question about the existence of a causal explanation for a set of 
independence statements (a dependency model), which is consistent with a set of 
background knowledge. Using this sequential algorithm as the basis, a very efficient, 
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scalable, and easy to implement parallel algorithm with very little inter-processor 
communication is designed and analyzed. A simulated implementation of this parallel 
algorithm in the C language and related experimental results are presented in another 
paper6. 

1.1  Definitions 

Let U be a Universe of events. An event ei is statistically independent of another event ej 
if P(ei | ej) = P(ei). Similarly, ej is statistically independent of ei if P(ej | ei) = P(ej). If both 
are true, then P(eiej) = P(ei)P(ej), which implies ej and ei are mutually statistically 
independent. Similarly, if P(ei,ej | S) = P(ei | S)P(ej | S) when P(S) ≠ 0, then ei and ej are 
statistically independent given S, where S is any subset of U that does not contain ei and 
ej. This is also written as I(ei, S, ej) and called an independence statement.7,8 

A dependency Model is a list M of conditional independence statements of the form 
I(A,S,B). M is graph isomorphic if all the independencies in M and no independencies 
outside M can be represented using an undirected graph G. Similarly, M is DAG 
isomorphic if it can be represented in this manner using a Directed Acyclic Graph 
(DAG). A DAG D is said to be I-map of a dependency model M if every d-separation 
condition displayed in D corresponds to a valid conditional independence relationship in 
M, i.e. if for every three disjoint sets of vertices X, Y, and Z we have <X|Z|Y>D ⇒ 
I(X,Z,Y)M.  A DAG is a minimal I-map of M if none of its arrows can be deleted without 
destroying its I-mapness. 

Given a probability distribution P on a set of variables V, a DAG D = (V,E), where E 
is an ordered pair of variables (each of which corresponds to a vertex in graphical 
representation) of V, is called a Bayesian Belief Network of P iff D is a minimal I-map of 
P. 

However, results proved by Valtorta and Cooper (among others) show that the 
synthesis, inference, and refinement of Belief networks is NP-Hard.9,10 These results 
force researchers to focus their efforts on special purpose algorithms, approximate 
algorithms, and parallel algorithms. Parallel algorithms can be very useful if they are 
generic and exact, as highly parallel computers are likely to become commonplace with 
as technology advances. 

2 Algorithm to construct Bayesian Belief Networks 

The algorithm presented below is similar to the algorithms presented by Meek,  Pearl and 
Verma, and Spirtes and Glymour.11,8,12 This algorithm has four phases. Phase 1 is similar 
to phase 1 of Pearl and Verma’s algorithm (and produces a partially directed acyclic 
graph (pdag) from a dependency model).8 Phase 2 handles background knowledge and 
phase 3 extends the result of phase 2 (pdag) into a DAG using a simple algorithm 
reported by Dor and Tarsi.13 Phase 4 is similar to that of Pearl and Verma’s.8 This 
algorithm is different from the previously reported algorithms at a gross level. It uses 
slightly different data structure to represent the graphs (undirected, partially directed, and 
fully directed graphs). This algorithm is different from Pearl and Verma’s algorithm as 
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theirs cannot handle the background knowledge, and it is different from Meek’s 
algorithm as Meek handles the background knowledge in a different way (during the 
extension of the partially directed graph computed in an earlier phase, which can cause 
some extensions not to confirm to the background knowledge)8,11 The concept of 
background knowledge is extended and more intuitive types of background knowledge 
are introduced. Our algorithm ensures that the background knowledge is handled 
correctly in all possible extensions. The modifications and new concepts introduced in 
this algorithm can handle more generic knowledge and will provide the domain expert 
with greater choice. The simplicity and parallelism of our algorithm significantly 
contribute to the value of the algorithm. 

As we mentioned in the previous paragraph, Meek introduced the concept of 
background knowledge and presented an algorithm to handle background knowledge.11 
That algorithm fails to extend the partially directed acyclic graph (pdag) to conform to 
the background knowledge in all possible extensions. 

This problem can be solved by adding S1 (step 1) of Phase II” of Meek’s algorithm to 
Phase III as S1 (step 1). This modification to Meek’s algorithm works correctly because 
Phase III is the only place where undirected edges are directed but not checked for 
consistency with Background Knowledge. 

In the next section we present a new sequential algorithm that is more generic and 
prove that background knowledge is handled correctly in all possible extensions.   

2.1  Bayesian network construction algorithm 

2.1.1 Data structure 

A Graph G = (V, E) where V is the set of n nodes numbered from 0 to (n-1), and E is 
the set of ordered pairs of nodes representing edges, exactly nxn. An edge (a, b) can be 
directed-outwards (aÆb), directed-inwards (ab), undirected (a—b), non-existing (ab) 
(also called 'noedge'), or unknown (a?b). An edge is said to be directed if it is directed-
outwards or directed-inwards. An edge is of known type if it is not unknown type. Two 
edges between a pair of nodes in the opposite directions (aÆb and ab, one directed-
outwards and another directed-inwards) are not equivalent to an undirected edge, but they 
constitute a directed cycle between these two nodes. Node a is adjacent to node b if and 
only if there is an edge directed-outwards (aÆb), directed-inwards (ab), or undirected 
(a—b). All adjacent nodes of node a are also called neighbors of a. A node is an Island if 
it is not adjacent to any other node. An empty graph is a graph with only non-existing 
edges. An edge is adjacent to another if they share a node. A directed cycle is a set of 
ordered directed edges which leads us to the starting node by following an adjacent edge 
in the set in arrow’s direction. A DAG is a graph with all its edges directed and with no 
directed cycles. 



4 Bhaskara Reddy Moole and Marco Valtorta 
 
2.1.2 Input 

(1) A set M of independence statements of the form I(x, A, y) defined over a set of n 
variables (dependency model). (2) A consistent set of background knowledge K = {F, R} 
where F is a graph that represents forbidden edges in the result and R is a graph that 
represents a set of required edges. Both F and R have the same set of nodes as the 
considered set of variables in the dependency model. The following tables show allowed 
types of corresponding edge in the result, for each required edge and forbidden edge. 

Table 2.1 

 

Table 2.2 

 
 

2.1.3 Output 

The result is FAIL or a DAG. If the algorithm is successful and returns a fully 
oriented graph G (also called DAG D), then the input set of independence statements (or 
underlying probability distribution or dependency model) is DAG isomorphic and has a 
causal explanation, and that result D is consistent with background knowledge (i.e. all the 
required edges of R and forbidden edges of F have only the allowed types on 
corresponding edges in D), which graphically represents the causal explanation for that 
set of independence statements or dependency model.  We note that, in general, there are 
multiple directed graphs that correspond to an input set of independence statements, and 
not all of them are causally interpretable.  The presence of background knowledge 
reduces the number of possible directed graphs and makes it more likely for the graph 
constructed by the algorithm in this paper to admit a causal interpretation.  We therefore 
use the term “causal explanation” in this paper, while admitting that in some cases the 
graph returned by the algorithm is not causal. 

An Edge of F Result is allowed to have 
undirected (ab) Noedge (ab) 
directed-outwards (a→b) directed-inwards (a←b) or noedge (ab) 
directed-inwards (a←b) directed-outwards (a→b) or noedge (ab) 
Noedge (ab) directed (a←b or a→b) 
unknown (a?b) directed (a←b or a→b) or noedge (ab) 

An Edge of R Result is allowed to have 
undirected (ab) directed (a←b or a→b) 
directed-outwards (a→b) directed-outwards (a→b) 
directed-inwards (a←b) directed-inwards (a←b) 
noedge (ab) noedge (ab) 
Unknown (a?b) directed edge or noedge 
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2.1.4  Method 

Phase 1: 
Start with an empty graph G on the set of vertices V. 
Search for an independence statement (I statement) I(x, A, y) for each pair (x, y) ∈ E = 
VxV, A ⊂ {V \ {x, y}}. If no such I statement is found, connect x and y of G with an 
undirected edge (xy). If I statement is found, mark Separator(x, y) with A. 
For every triplet (x, z, y) such that (s.t.) (x, y) are not adjacent and (x, z) and (y, z) are 
adjacent, direct edges (x→z) and (y→z) in G if z ∉ Separator(x, y). 
 
Phase 2: 
Check for the following Background Knowledge conformances and set possible edges. 
For each required undirected edge (xy) in R, if the corresponding edge (x, y) in G is a 
non-existing edge then FAIL. 
For each required non-existing edge (xy) in R, if the corresponding edge (x, y) in G is not 
a non-existing edge then FAIL. 
For each required directed-outwards edge (x→y) in R, if the corresponding edge (x, y) in 
G is a non-existing edge (xy) or directed-inwards edge (x←y) then FAIL, else set (x, y) 
in G with directed-outwards (x→y) edge. 
For each required directed-inwards edge (x←y) in R, if the corresponding edge (x, y) in 
G is a non-existing edge (xy) or directed-outwards edge (x→y) then FAIL, else set (x, y) 
in G with directed-inwards (x←y) edge. 
For each forbidden undirected edge (xy) in F, if the corresponding edge (x, y) in G is 
not a non-existing edge then FAIL. 
For each forbidden non-existing edge (xy) in F, if the corresponding edge (x, y) in G is a 
non-existing edge then FAIL. 
For each directed edge (x→y) in F, if the corresponding edge in G is of type (x→y) then 
FAIL. 
Check for directed cycles in G and FAIL if a directed cycle exists. 
 
Phase 3: 
Try to extend G into a DAG. 
While there are nodes not marked as DELETED, do 
select a vertex x not marked with DELETED, which satisfies the following four criteria: 
(a1) x is a sink (i.e. there is no outward directed edge from x in G) 
(a2) there is no edge in F that is directed-inwards w.r.t. x s.t. corresponding edge in G is 
not marked as DELETED 
(a3) If all the edges incident on x in G are directed-inwards w.r.t. x or if x is an Island, 
then mark x and all the edges incident on x as DELETED 
(a4) If there are some edges incident on x in G that are undirected, check if for every 
undirected edge (x, y), y is a neighbor of all the neighbors of x in G. If so, direct all 
undirected edges (x, y) inwards (i.e. x←y) and mark x and all the edges incident on x as 
DELETED 
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If vertex x is not found in step (a), then FAIL. Else Go To 1. 
 
Phase 4: 
Check the faithfulness of  DAG D = G. 
Test that every I statement of M is in D (using d-separation condition). 
In a total ordering of the nodes of D which agrees with the directionality of edges of D, 
suppose that parents(a) are the direct parent nodes of a in D and  predecessors(a) is the set 
of all the nodes preceding a without including parents(a) in this ordering. For every node 
a, test if I(a, parents(a), predecessors(a)) is in M. 
If both tests are successful return D. Else return FAIL. 

2.1.5 Complexity analysis 

Phase 1 can be completed in O(|M| + |V|2).8 Phase 2 requires O(|V|3).11 Phase 3 can be 
completed in O(|V|2). Phase 4 can be completed in O(|M|*|V|2 + |M|*|V|).8 

2.1.6  Proof of correctness of sequential algorithm 

For Phase 1 steps 1 and 2 refer to Pearl and Verma.8 

Phase 2, Steps 1, 2, 3 and 4: For an undirected edge in R, the only type not allowed is 
a non-existing edge. Therefore, the algorithm fails if there is a non-existing edge in G. 
For a non-existing edge in R, the only type allowed is a non-existing edge. If that is not 
the case, the algorithm fails. If an edge is directed in R and it is undirected in G, it is set 
to have the same direction in G as in R, failing otherwise. These steps ensure that 
algorithm works correctly for all the edges in R. 

Phase 2, Steps 5, 6 and 7: For an undirected edge in F, the only type allowed is a non-
existing edge. Therefore, the algorithm fails if the corresponding edge in G is not a non-
existing edge. For a non-existing edge in F, a non-existing edge is forbidden in the result. 
Therefore the algorithm fails if it is the case. Then all the directed edges of F are 
compared with the corresponding edges in G to see if their direction is indicated 
incorrectly (by the dependency model – by following the steps in phase 1). If G has a 
forbidden directed edge then algorithm fails, thus ensuring correctness. In Phase 3, the 
remaining edges in G that need to be directed are checked for forbidden direction in each 
possible extension and directed only if it is not forbidden. If every possible extension 
results in a forbidden edge, the algorithm fails. These steps ensure that the algorithm 
works for all the edges in F. 

For correctness of phase 3, Dor and Tarsi state their argument in a way similar to the 
following: (1) A DAG should have a sink. (2) Removing a sink and all the incident edges 
on it should result in a DAG. (3) Step (a4) prevents new vee-structures being 
introduced.13 Therefore, Phase 3 extends partially directed acyclic graph (pdag) into a 
fully directed acyclic graph (DAG) without introducing new vee-structures, if the pdag is 
extendible. 

Phase 4, steps 2 and steps 3 are to ensure that the result is faithful to the dependency 
model. For proof of correctness of these two steps refer to Pearl and Verma.8 
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2.2 Intuition behind background knowledge 

We have introduced four basic types for background knowledge that directly correspond 
to the types of knowledge of a domain expert. An unknown piece of knowledge means 
that dependency model indications are the only source in the causal explanation. A 
directed edge indicates that the domain expert knows the cause and effect relationship. 
An undirected edge means that the domain expert knows about existence of the local 
relationship (existence of dependency) but not the causal relationship. A non-existing 
edge indicates that the domain expert knows the non-existence of the relationship. These 
pieces of knowledge can be either in the form of required or forbidden relationships. 

When we try to find a complete causal explanation from both the dependency model 
and the background knowledge, and they conflict with each other, we have three 
possibilities: (1) constructing a complete causal explanation FAILS; (2) the dependency 
model overrides the background knowledge; (3) the background knowledge overrides the 
dependency model. 

Our algorithm shown above is for case 1. This algorithm can be used for other two 
cases by few simple modifications. If we want to override background knowledge with 
dependency model, wherever the algorithm FAILS we ignore background knowledge. 
For case 3 we will use the edge type indicated by the domain expert and continue with 
the rest of the algorithm in the normal way. 

3 Parallel Construction of Bayesian Belief Networks 

3.1  Parallel computer model and algorithmic notation 

This section describes the Parallel Computer Model used to develop the Bayesian Belief 
Network Construction Algorithm, which is based on the sequential algorithm described 
earlier. The Parallel Computer Model for which this algorithm is developed is the well 
known Parallel Random Access Memory (PRAM) model. 

A PRAM consists of p general-purpose processors, P0, P1, P2,  …  Pp-1, all of which 
are connected to a large shared, random access memory SM. The Processors have a 
private, or local, memory for their own computation, but all communication among them 
takes place via shared memory. 

While this looks unrealistic, it is simple and easy to simulate on real systems and 
algorithms developed for this model can easily be analyzed for target computers with 
straightforward conversions. 

The Bulk Synchronous Parallel (BSP) model  concentrates on the synchronization of 
the processors at regular intervals, making it suitable to implement/translate sequential 
programs. Its main aim is to provide a bridge between software and hardware, and to 
avoid the burden on the programmer of managing memory, assigning communication, 
and performing low-level synchronization.14 Our algorithm does not require 
synchronization at regular intervals and its requirement for inter-processor 
communication is very modest. The properties of our algorithm are maintained in the 
BSP model. By designing the algorithm for the PRAM model and implementing it a BSP 



8 Bhaskara Reddy Moole and Marco Valtorta 
 
computer does not destroy any of its properties. The LogP parallel computer model  
reflects communication costs better the PRAM and BSP models, and it may be a more 
realistic model of today’s parallel computers.15 However, our algorithm requires very 
little inter-processor communication, and hence the impact of selecting PRAM is 
negligible. The implementation of our algorithm on a LogP computer does not destroy 
any of its properties. It is also easy to convert the sequential algorithm to work efficiently 
on BSP and LogP models due to its inherent parallelism. A detailed discussion of parallel 
computer models and parallel algorithm design can be found elsewhere and is beyond the 
scope of this paper.16,17,18 

 
The period of time from 1975 to 1990 witnessed a rapid advancement of parallel 
architectures. The relative lull of 1990s was followed by massive parallelization (cluster 
computing, Symmetric Multi Processing (SMP), Grid computing). Most practical 
algorithms, and especially the ones that are implemented in any programming language, 
require polynomial time or less. Even then the parallelization trend continued its 
momentum. This is simply because the existing programs stretch the one resource that 
humans do not have control on, viz. time. Any savings achieved in this aspect are worth 
considering. Our algorithm achieves ideal Speedup and ideal Efficiency (as defined 
below) when parallelized converting a polynomial task to a worst case linear task, 
making the parallel version very attractive for constructing the causal explanations. We 
also note that our algorithm completes most operations in constant time, as shown in the 
complexity analysis provided later in the paper. 
 
The following two definitions will also be used in the later parts of the presentation. 
Speedup: Let the sequential time complexity of problem P be T*(n) for an input of size n. 
Let Tp(n) be the time required to solve P using a parallel algorithm with p processors. 
Then speedup achieved by the parallel algorithm is defined as: 
Sp(n) = T*(n)/Tp(n) 
Efficiency: Efficiency of the parallel algorithm is defined as: 
Ep(n) = T1(n)/(pTp(n)) 
 
The algorithmic notation used below is same as the one described by JaJa and is easy to 
understand.18  Where it is appropriate, pure English description is used to simplify the 
algorithm. 

3.2  Parallel algorithm 

In the following, we assume that n, n2 and n3 are divisible by p. Nodes are numbered from 
0 to (n-1). Processors are numbered from 0 to (p-1). 

3.2.1 Input 

(1) The processor number pk is available to each processor. (2) The total number of 
processors p is also available to each processor. (3) An empty DAG D = (V, E) is 
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available in shared memory SM. (4) The number of nodes in the DAG, n, is available to 
each processor. (5) The set of background knowledge K = {F, R} where F is the Graph 
that contains forbidden edges and R is the Graph that contains required edges. (6) A 
function get_I_StatementSeparatingAandB( node a, node b ) which returns an 
Independence Statement that has the form I(a,S,b) or NULL if no such statement is 
found. This function may be implemented in different ways depending on the actual input 
that is available. As we know, a set of I statements in the Dependency Model M will 
grow exponentially as the number of variables grows. It may be impractical to assume 
that M is available through explicit enumeration of I-statements. There are possibilities of 
representing a basis L where logical closure of L is M (i.e. CL(L) = M). Implementing 
this function in a most efficient manner is out of the scope of this project. Another 
possibility is to implement the above function to return the answer by searching through 
the probability distribution for I-statements with the requested qualification. This 
assumption simplifies the development of the algorithm greatly. A call to this function 
will be counted as m operations for the complexity analysis.  

3.2.2 Output 

A Directed Acyclic Graph (DAG) D = (V, E) where V is the set of n nodes, and E is the 
set of ordered pairs of nodes representing edges, exactly nxn. If the algorithm is 
successful and returns a fully oriented DAG D, then the considered set of independence 
statements (or probability distribution) is DAG isomorphic and has a causal explanation, 
and D graphically represents that consistent set of independence statements and 
background knowledge. D will be available in SM at the end of successful execution. 

We also assume there exist the following constant time O(1) functions to perform 
various operations. 

3.2.3 Auxiliary Functions 

connectEdge(node a, node b) makes (a—b) in a dag 
deleteEdge(node a, node b) makes (ab) in a dag 
directEdge(node a, node b) makes (aÆb) in a dag 
isEdgeDeleted(node a, node b) answers yes if (a, b) is marked deleted 
EdgeDirection(node a, node b) answers: directed, undirected, noedge 
directedOutwards(node a, node b) answers yes if (aÆb) 
directedInwards(node a, node b) answers yes if (ab) 
isUndirectedEdge(node a, node b) answers yes if (a—b) 
markEdge(a, b, S) mark each edge with a statement I(a,S,b) 
deleteNode(node a) deletes node a and all the edges incident to it 
isNodeDeleted(node a) answers yes if node a was already deleted 
isNonEmptyDag(DAG d) answers yes if some nodes are not deleted 
isDescendant(node a, node b) is node b a descendant of  node a? 
isHeadToHead(node a, node b, node c) does this triplet form head-to-head node at c? 
isLabeled(label l, node a, node b) is edge between a and b labeled with l? 
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isAdjacent(node a, node b) is a adjacent to b? 
areAdjacentEdges(node a, node b, node c, node d) are (a, b) and (c, d) adjacent? 
LabelEdge(label l, node a, node b) label this edge between a and b with l 
LabelNode(node a) label a as reachable (with constant label R) 
getAll_I_Statements() returns all the I statements in M. 
NodeHasNoForbiddenEdges(node a) answers yes if a has no inward directed edge in F 
isNotConsistentWithBackgroundKnowledge(node a, node b)  
 answers yes if edge is consistent with K 
findDirectionFromBackgroundKnowledge(node a, node b) 
 find correct direction for the edge 
 
and other O(n) sequential function(s): 
doesBelongToSet(node a, S) answers yes if a belongs to separating set S 
 (This will also be written as a ∈ S or the negation of it as a ∉ S) 
orientEdgesTowards(node a) makes (ax) where x isAdjacent to a 

3.2.4 Method 

begin 
1. for i := 0 to n2/p do 

j :=  i + pk * (n2/p) 
a := int (j/n) 
b := j%n 
S := get_I_StatementSeparatingAandB( a, b ) 
if ( S ≠ NULL) then 
begin 

markEdge( a, b, S ) 
global write( D(a, b) = S) 

end 
else 
begin 

connectEdge( a, b ) 
global write( (a, b) ) 

end 
2. global read (D) 
3. for i := 0 to n3/p do 

j := i + pk * (n3/p) 
a := int (j/n2) 
b := int (j/n)%n 
c := int (j%n) 
if ( (! isAdjacent( a, b ) ) and 
     (   isAdjacent( a, c ) ) and 
     (   isAdjacent( b, c ) ) and 
     (   c ∉ S( a, b ) ) ) 
then 
begin 
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directEdge( a, c ) 
directEdge( b, c ) 
global write ( ( a, c ), ( b, c ) ) 

end 
4. for i := 0 to n2/p do 

j :=  i + pk * (n2/p) 
a := int (j/n) 
b := j%n 
if ( isNotConsistentWithBackgroundKnowledge( a, b ) ) then 
begin 

return FAIL 
end 
findDirectionFromBackgroundKnowledge( a, b ) 
global write ( a, b ) 

5. Construct Transitive Closure of this partially directed graph D 
6. If there is a directed cycle in D, then return FAIL. 
7. u := n 
8. for i := 0 to n/p do 

sink[i] := 2 
9. for i := 0 to n/p do 

SM(sink[i]) := 0 
10. while ( u != 0 ) do 

for i := 0 to n2/p do 
j :=  i + pk * (n2/p) 
a := int (j/n) 
b := j%n 
 
if ( isNodeDeleted( a ) ) then 
begin 

sink[a] := 0 
continue 

end 
if ( isNodeDeleted( b ) ) then 
begin 

sink[b] := 0 
continue 

end 
if ( directedOutwards( a, b ) ) then 
begin 

sink[a] := 0 
AdjacencySet[b][a] := 1 

end 
else if ( directedInwards( a, b ) ) then 
begin 

sink[b] := 0 
AdjacencySet[a][b] := 1 

end 
else if ( isUndirectedEdge( a, b ) ) then 
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begin 
sink[a] := 1 
sink[b] := 1 
AdjacencySet[a][b] := 1 
AdjacencySet[b][a] := 1 
allAdjacencySet[a][b] := 1 
allAdjacencySet[b][a] := 1 

end 
 
flag := 1 
for i := 0 to n3/p do 

j := i + pk * (n3/p) 
a := int (j/n2) 
b := int (j/n)%n 
c := int (j%n) 
if ( sink[a] = 0 ) then 
begin 

continue 
end 
else if ( sink[a] = 2 ) then 
begin 

flag = 1 
break 

end 
else if ( AdjacencySet[a][b] = 0 
         or AdjacencySet[a][c] = 0 ) then 
begin 

continue 
end 
else if ( ! isAdjacent( b, c ) )  then 
begin 

flag = 0 
break 

end 
 
if ( flag = 1) then 
begin 

global write ( SM(sink[a]) = 1 ) 
end 

for  i := 0 to n/p do 
global read (a := SM(sink[i])) 
if ( a = 1 && NodeHasNoForbiddenEdges( a ) ) then 
begin 

global write (SM(sink) := a) 
end 
global read ( j := SM(sink)) 
orientEdgesTowards ( j ) 
deleteNode ( j ) 
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u := u-1 
11. M := getAll_I_Statements() 
12. m := number of I statements in M 
13. Construct Closure of D for descendants 
14. for i := 0 to m/p do 

Use d-separation condition on D and answer whether M[i] is implied by D. If 
M[i] is not implied by D, return FAIL. 

15. Generate an ordering of nodes D using breadth first traversal or depth first traversal. 
16. for i := 0 to n/p do 

Use d-separation condition and test if each node is shielded from all its 
predecessors given its parents. If not return FAIL. 

17. DAG D in SM is the result. 
end 
 

Appendix B contains the complexity analysis of the above parallel algorithm, which 
proves claims of ideal speedup and ideal efficiency. Appendix C contains the proof of 
correctness of the parallel algorithm. 

4 Conclusions and Future Work 

This paper presented a simple intuitive sequential algorithm to recover Bayesian 
networks, which overcomes some of the problems identified in earlier algorithms when 
handling the background knowledge. The concept of background knowledge is addressed 
in a more general way than in earlier algorithms. 

There is surprisingly little published research on parallel construction (learning) of 
Bayesian networks.  A very comprehensive and recent treatise on Bayesian network 
learning only lists two references.19,4,5 (We are also aware of work by Xiang and Chu.20 
They concentrate on learning Markov networks but are unaware of the other referenced 
work on the topic and state that “to the best of [their] knowledge, [their paper] is the first 
investigation on parallel learning of belief networks.”) Any additional work on this topic, 
such as the parallel algorithm presented in this paper, should be considered a substantial 
contribution to the state of the art. 

Similarly, there has not been a lot of research on learning Bayesian networks in the 
presence of background knowledge since the work of Meek.12 Experience with 
applications of Bayesian networks indicates that situations in which learning happens in 
the presence of background knowledge (represented as forbidden and required edges) is 
common and is not well supported by existing learning algorithms. This paper contributes 
new results in this area also, by improving Meek’s sequential algorithm. 

The unique feature of our work is that it presents a parallel algorithm for learning 
Bayesian networks in the presence of background knowledge.  The parallel algorithm for 
Bayesian network learning that we present in this paper is correct, efficient and scalable.  
The efficiency and scalability of the algorithm are based on a (possibly surprising) 
decomposition of work over each edge of the graph, whose proof of correctness is not 
trivial and based on number-theoretic properties. 

The first author of this paper has implemented this algorithm on a virtual parallel 
computer, with results that confirm the theoretical analysis.6  Further discussion of the 
implementation is outside the scope of this paper.  We expect to continue the theoretical 
side of our work by taking advantage of recent results in the enumeration of PDAGs 
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(more commonly called essential graphs in the recent literature).  This has the potential of 
restricting the search of Bayesian network structures to the space of PDAGs directly, 
rather than the larger space of DAGs.  The exploitation of these results in the context of 
parallel algorithms in the presence of background knowledge remains a largely 
unexplored area for future work. 
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Appendix A: List of Symbols and Abbreviations 

 
→ directed-outwards edge 
← directed-inwards edge 
∀ for all values of 
⊂ is a subset of 
⊄ is not a subset of 
∈ belonging to or member of 
∉ does not belong to or not a member of 
? unknown type edge 
∆ difference quantity 
≤ less than or equal to 
≠ is not equal to 
⇐ implied by 
⇔ implied by and implies 
⇒ implies 
s.t. such that 
w.r.t. with respect to 
wkt we know that 

 

Appendix B: Complexity Analysis of Parallel Algorithm 

 
We analyze each step of the algorithm separately and then conclude on the overall 
complexity of the algorithm. 
Step 1 of the algorithm can be completed in O(m + n2/p) time, O(n2) operations and 
O(n2) communications, where m is the number of operations performed by 
get_I_StatementSeparatingAandB(a,b). The time complexity approaches O(m) as the 
number of processors approaches n2. 
Therefore, Sp(n) = O(m + n2) / O(m + n2/p) 
If m is a constant, Sp(n) = O(n2) / O(n2/p) and Sp(n) ≈ p as p approaches n2. 
Similarly, the efficiency of the algorithm in step 1 is Ep(n) = (m + n2) / p*(m + n2/p) 
If m is a constant, Ep(n) = (n2) / (p*n2/p) ≈ 1 
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Since a speedup of p and an efficiency of 1 indicate optimality, this part of the algorithm 
achieves ideal performance for p=n2. 
If m is constant, the time complexity approaches O(1) as p approaches n2, and cannot be 
improved further. 
Step 2 of the algorithm needs O(n2) communications. 
Step 3 of the algorithm can be completed in O(n3/p) time, O(n3) operations and O(n3) 
communications. The time complexity approaches O(1) as p approaches n3 and cannot be 
improved by adding more processors. Therefore, Sp(n) ≈ p, and Ep(n) ≈ 1 for this step. 
This part of the algorithm achieves ideal performance for p=n3. 
Step 4 requires O(1) (constant time) with n2 processors. 
Step 5 requires O(log n) time using O(n3 log n) operations on CRCW PRAM, or in 
O(log2 n) time using O(M(n)*log n) operations on CREW PRAM, where M(n) is the best 
known sequential bound for multiplying two nxn matrices, according to Jaja [pages 249-
250].18 

Step 6 requires O(1) time with n processors to find a directed cycle in the graph resulting 
from step 5. 
Step 7 is a constant time O(1) operation. 
Step 8 is the initialization of the local sink array and can be done in constant time with n 
processors. 
Step 9 is the initialization of the global sink array and can be done in constant time with 
n processors. 
Step 10 While loop (outer loop) runs in O(n). The complexity analysis for the first for 
loop is exactly the same as for step 1. That is, as p approaches n2, the time complexity 
approaches O(1). The complexity analysis for the second for loop is exactly the same as 
step 2. Therefore, as p approaches n3, the time complexity approaches O(1). Hence, this 
step has a time complexity of O(n). 
Step 11 is a constant time O(1) operation. 
Step 12 is constant time O(1) operation. 
Step 13 requires O(log n) time using O(n3 log n) operations on CRCW PRAM, or in 
O(log2 n) time using O(M(n)*log n) operations on CREW PRAM, where M(n) is the best 
known sequential bound for multiplying two nxn matrices, according to Jaja [pages 249-
250].18 

Step 14 can be completed in O(m/p) time with O(p) communications. However, noting 
that m grows exponentially as n grows if using the explicit enumeration method, it is not 
practical to analyze this step thoroughly without knowing the representation method used 
for the set of independence statements (the independence model). 
Step 15 Can be completed in linear time. 
Step 16 requires O(n) with n processors. 
Step 17 returns result and requires constant time. 
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Conclusions on Complexity Analysis: This algorithm, with at most n3 number of 
processors, can verify whether a given set of independence statements has a causal 
explanation in time O(n), if m is a constant or m<n, or in time O(m) if m > n. 
 

Appendix C: Proof of Correctness of Parallel Algorithm 

The formal proof of correctness is established using several lemmas and theorems. 
Informally, all the edges can be computed (learned) independently, i.e., without 
communicating with other processors. As we may note, a DAG can be described fully by 
just using the edges, so does the process of computing a DAG. Therefore, every step of 
the algorithm uses all the available processors to do the computation simultaneously and 
thus achieving an ideal speedup and ideal efficiency. The following proof of correctness 
heavily uses number theory. Knuth provides a very useful discussion of related topics.21 
The proof uses several properties of the quantity represented on the right-hand side of the 
following two assignments: 
Equation I:   j := i + pk * (n2/p), ∀i  0 ≤ i ≤ ((n2/p)–1), ∀pk  0 ≤ pk ≤ (p-1), 1 ≤ p ≤ n2 

Equation II:  j := i + pk * (n3/p), ∀i  0 ≤ i ≤ ((n3/p)–1), ∀pk  0 ≤ pk ≤ (p-1), 1 ≤ p ≤ n3 
 
Lemma C.1: Equation I will produce j values s.t. 0 ≤ j ≤ (n2 - 1). 
Proof: From theories of integer addition, we know that (wkt) any two varying integer 
terms result in their lowest sum when both terms are at their lowest values and in their 
highest sum when both are at their highest values. The lowest value for both i and pk is 0; 
hence the lowest value of j is 0. The highest value for j is obtained by substituting the 
highest values of the individual terms: 
j = ((n2/p)-1) + (p-1) * (n2/p) = (n2/p) – 1 + p*(n2/p) – (n2/p) = n2 – 1 
Therefore j, 0 ≤ j ≤ (n2-1). ⁪ 
 
Lemma 3.2: Equation I produces unique integer values for j. 
Proof: Let Ck = pk * (n2/p). If we let pk to be constant at any particular value then Ck is 
constant. Since the value of i varies from 0 to ((n2/p)-1) and each value for i is a unique 
integer, we obtain a set of unique integers varying from 0+Ck to n2/p+Ck. Similarly, for 
any value of i, Ck varies from 0 to (p-1)*(n2/p) with unique integer values. 
Uniqueness of the sum of these two terms can be proved by contradiction. Suppose we 
have two sums (i1 + Ck1) and (i2 + Ck2) which are not unique. If these two integer terms 
are not unique, then 
i1 + Ck1 = i2 + Ck2 

i1 – i2 = Ck2 – Ck1 
∆i = ∆ck 
where    ∆i is the difference between any two i, 
and   ∆ck is the difference between any two Ck 
 



18 Bhaskara Reddy Moole and Marco Valtorta 
 
 Since i varies from 0, 1, 2, ... ((n2/p)-1), the highest difference between any two i can be 
|((n2/p)-1) –0| = (n2/p) - 1. 
Since Ck varies from 0, n2/p, 2*n2/p, 3*n2/p, ... (p-1)*n2/p, the lowest possible difference 
is |n2/p – 0| = (n2/p). This implies that ∆i < ∆ck always. This is contradictory to the above 
assumption, which says these two terms can be equivalent. 
Therefore, the sum of these two terms must always be unique. 
Moreover, i can have (n2/p) values and pk can have p values, therefore the total number of 
sums is (n2/p)*p = n2. ⁪ 
 
Theorem C.1: Equation I produces unique consecutive integer values for j from 0, 1, ... 
(n2-1). 
Proof: From Lemma C.1, j, 0 ≤ j ≤ (n2-1) and from Lemma C.2 j has n2 unique values. It 
follows that j has all consecutive integer values from 0 to (n2-1), as there are exactly n2 
integers in that inclusive range. ⁪ 
 
Lemma C.3: In step 1 of the algorithm,  the value of a varies from 0 to (n-1). 
Proof:  
0 ≤ j ≤ (n2-1) 
0/n ≤ j/n ≤ (n2-1)/n 
int(0/n) ≤ int(j/n) ≤ int((n2-1)/n) 
0 ≤ a ≤ (n - 1) 
Moreover, as j has all the integer values from 0 to (n2-1) it follows that a has all the 
integer values from 0 to (n-1). ⁪ 
 
Lemma C.4: In step 1, the value of b varies from 0 to (n-1). 
Proof:  
0 ≤ j ≤ (n2-1) 
0 ≤ j%n    for all positive j (from above) 
0 ≤ b 
 
For any positive integer x, the highest possible result of the mod operation in x % n is (n-
1) 
((n2-1) % n) has a highest value of (n-1) 
b ≤ (n-1) 
0 ≤ b ≤ (n - 1) 
Moreover, as j has all the consecutive integer values from 0 to (n2-1) it follows that b has 
all the consecutive integer values from 0 to (n-1). ⁪ 
 
Theorem C.2: The values of the ordered pair (a, b) are always unique. 
Proof: From Lemma C.3 and C.4 wkt 0 ≤ a ≤ (n - 1) and 0 ≤ b ≤ (n - 1) i.e. a has n values 
and b has n values. There are nC1* nC1 = n2 possible ways to chose unique ordered pairs 
of a and b.  The number of values for j is exactly n2. One pair of values is chosen for each 
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j value. Therefore, for each value of j the ordered pair chosen is different from all others. 
That is, by the time the loop is completed all the unique ordered pairs of (a, b) values are 
computed. 
Since we are using a and b as the nodes in the graph all the edges in the graph are 
computed. ⁪ 
 
Theorem C.3: Step 1 of the algorithm constructs an undirected graph. 
Proof: From theorem C.2 wkt the algorithm iterates over the edges working on each edge 
exactly once. Since work on one edge does not affect the work on another, the order in 
which these edges are visited does not matter. Therefore, each edge can be handled by 
any processor in any order and construct the edges. In the for loop of step 1 the indexes 
of each pair of nodes are generated first, then get_I_StatementSeparatingAandB( a, b ) is 
used to find the separating set for this pair. If this separating set is found then the 
connectEdge( a, b ) function is called to construct the edge. At the same time we mark 
this pair with the separating set that will be useful in the next for loop of this step. By the 
time the loop is completed, the undirected graph is constructed. ⁪ 
 
Lemma C.5: Equation II will produce j values s.t. 0 ≤ j ≤ (n3-1). 
Proof: From theories of integer addition, wkt any two varying integer terms result in their 
lowest sum when both terms are at their lowest values and in their highest sum when both 
are at their highest values. The lowest value for both i and pk is 0, hence the lowest value 
of j is 0. The highest value for j is obtained by substituting the highest values of the 
individual terms: 
j = ((n3/p)-1) + (p-1) * (n3/p) = (n3/p) – 1 + p*(n3/p) – (n3/p) = (n3 – 1) 
Therefore j, 0 ≤ j ≤ (n3-1) ⁪ 
 
Lemma C.6: Equation II produces unique integer values for j. 
Proof: Let Ck = pk * n3/p. If we let pk to be constant at any particular value, then Ck is 
constant. Since the value of i varies from 0 to ((n3/p)-1) and each value for i is a unique 
integer, we obtain a set of unique integers varying from 0+Ck to n3/p+Ck. Similarly, for 
any value of i, Ck varies from 0 to (p-1)*(n3/p) with unique integer values. 
Uniqueness of the sum of these two terms can be proved by contradiction. Suppose we 
have two sums (i1 + Ck1) and (i2 + Ck2) which are not unique. If these two integer terms 
are not unique, then  
i1 + Ck1 = i2 + Ck2 

i1 – i2 = Ck2 – Ck1 
∆i = ∆ck 
where ∆i is the difference between any two i, and ∆ck is the difference between any two 
Ck. 
Since i varies from 0, 1, 2, ... ((n3/p)-1), the highest difference between any two i can be | 
(n3/p)-1 –0 | = ((n3/p)-1). 
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Since Ck varies from 0, n3/p, 2*n3/p, 3*n3/p, ... (p-1)*n3/p, the lowest possible difference 
is |(n3/p) – 0| = (n3/p). This implies that ∆i < ∆ck. This is contradictory to the above 
assumption, which says these two terms can be equivalent. 
Therefore, the sum of these two terms must always be unique. 
Moreover, i can have (n3/p) values and j can have p values; therefore, the total number of 
sums is (n3/p)*p = n3. ⁪ 
 
Theorem C.4: Equation II produces unique consecutive integer values for j from 0, 1, ... 
(n3-1). 
Proof: From Lemma C.5, 0 ≤ j ≤ (n3-1), and from Lemma C.6 j has n3 unique values. It 
follows that j has all consecutive integer values from 0 to (n3-1), as there are exactly n3 
integers in that inclusive range. ⁪ 
 
Lemma C.7: In step 3 of the algorithm, the value of a varies from 0 to (n-1). 
Proof:  
0 ≤ j ≤ (n3-1) 
0/n2 ≤ j/n2 ≤ (n3-1)/n2 
int(0/n2) ≤ int(j/n2) ≤ int((n3-1)/n2) 
0 ≤ a ≤ (n - 1) 
Moreover, as j has all the integer values from 0 to (n3-1), it follows that a has all the 
integer values from 0 to n-1. ⁪ 
 
Lemma C.8: In step 3, the value of b varies from 0 to (n-1). 
Proof:  
0 ≤ j ≤ (n3-1) 
0/n ≤ j/n ≤ ((n3-1)/n) 
int(0/n) ≤ int(j/n) ≤ int((n3-1)/n) 
0 ≤ int(j/n) ≤ (n2-1) 
 
The lowest value for int(j/n) is 0, and (int(j/n)%n) = 0%n = 0. Since for any integer x, 
x%n has highest possible value (n-1), the highest possible value for (int(j/n)%n) is (n-1). 
Therefore, 
0 ≤ int(j/n)%n ≤ (n-1) 
0 ≤ b ≤ (n-1) 
Moreover, as j has all the consecutive integer values from 0 to (n3-1), it follows that b has 
all the consecutive integer values from 0 to (n-1). ⁪ 
 
Lemma C.9: In step 3, the value of c varies from 0 to (n-1). 
Proof:  
0 ≤ j ≤ (n3-1) 
0 ≤ j%n    for all positive j (from above) 
0 ≤ c 
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For any positive integer x, the highest possible result of the mod operation x % n is (n-1) 
((n3-1) % n) has a highest value of (n-1) 
c ≤ (n-1) 
0 ≤ c ≤ (n - 1) 
Moreover, as j has all the consecutive integer values from 0 to (n3-1) it follows that c has 
all the consecutive integer values from 0 to (n-1). ⁪ 
 
Theorem C.5: Values of the ordered triplet (a, b, c) are always unique. 
Proof: From Lemmas C.7, C.8 and C.4 wkt 0 ≤ a ≤ (n - 1), 0 ≤ b ≤ (n - 1) and 
0 ≤ c ≤ (n - 1) i.e. a has n values, b has n values, and c has n values. There are 
nC1* nC1* nC1 = n3 possible ways to choose unique ordered triplets a, b, and c. There are 
exactly n3 values for j. One triplet is chosen for each j value. Therefore, for each value of 
j the ordered triplet chosen is unique from others. That is, by the time the loop is 
completed all the unique ordered triplets of (a, b, c) values are computed. 
Since we are using a, b, and c as the nodes in the graph all the edges in combination with 
each node in the graph are computed. ⁪ 
 
Theorem C.6: Step 3 of the algorithm orients all the edges directly implied by 
independency relationships. 
Proof: According to Pearl and Verma, if a and b are not adjacent and there exists a node 
c s.t. c is adjacent to both a and b and c does not belong to the separating set S(a, b), then 
orient edges (aÆc) and (cb) unless there already exists an edge in the opposite 
direction.8 This implies that an edge (aÆc) cannot be directed without knowing whether 
(cÆa) exists. As we have defined our data structure to preserve the directionality of an 
edge by allowing the existence of edges in both directions at the same time, it is possible 
to direct them independently without destroying any information. When the independent 
processors work on each edge and direct it in its computed direction, we may end up with 
edges between a pair of nodes directed both ways, as it was not prevented. After step 3 is 
completed, it is possible to use this result and find if it really happened and terminate 
with failure just like in the sequential algorithm.  (Our parallel algorithm delays this 
detection process until all the processors have completed their work, even though it 
would be possible to terminate the algorithm with failure as soon as a pair of edges 
directed in the opposite direction is added in step 3.) ⁪ 
 
Theorem C.7: Step 10 directs all the undirected edges. 
Proof: The proof essentially has the same line of arguments as the preceding part, except 
that a sink s and all the neighbors of s are found by scanning all the edges in the first part 
and then using this result in the second part of step 10, which just checks whether all the 
neighbors of a node x connected to s by an undirected edge are also the neighbors of s 
(i.e. finding the clique with s). Except for finding the sink and neighborhood relationships 



22 Bhaskara Reddy Moole and Marco Valtorta 
 
of the sink in parallel, everything else is same as its counterpart sequential algorithm 
PDX, hence the same correctness arguments apply to this part as well.13 ⁪ 
 
Finally, steps 14, 15, and 16 have a trivial proof of correctness. All independence 
statements in M can be verified in any order, therefore verifying all of them in parallel 
and failing if any processor reports failure will verify the DAG. 
 
This completes our proof of correctness for the whole algorithm. 


