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Abstract

Refining deep (multilayer) rule bases of an expert system with uncertainty to cover a set
of new examples can be very difficult (NP-hard). We analyze refinement via reduction,
an approach first proposed in [Ginsberg, 1988b], where it is claimed that this approach
eases the complexity of refining rule bases without uncertainty. We outline a model
of rule bases with uncertainty, and give necessary and sufficient conditions on uncer-
tainty combination functions that permit reduction from deep to flat (non-chaining)
rule bases. We prove that reduction cannot be performed with most commonly used
uncertainty combination functions. However, we show that there is a class of reducible
rule bases in which the strength refinement problem is NP-hard in the deep rule base,
reduction is polynomial, and the flat rule base can be refined in polynomial time. This
result also allows polynomial refinement of practical expert systems in the form of
rule deletion. Thus, our results provide some theoretical evidence that refinement via

reduction is feasible.
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1 Introduction

It is well known that building and maintaining large rule bases is a time consuming, error
prone “bottleneck” process. Machine learning, a young and exciting field in Al, has been
providing promising solutions to the bottleneck problem [Buchanan, 1989]. Learning by
induction, the central topic of machine learning, studies how a theory is constructed and
revised from data. If the theory is incomplete or imperfect, some of its behavior (data
or cases it explains) would be incorrect. The goal of automatic knowledge acquisition is
to construct a knowledge base to have the desired behaviors, and to modify or update
the knowledge base from unexpected or incorrect behaviors. Inductive learning techniques
are useful in automatic knowledge base acquisition [Buchanan, 1989, Bareiss et al., 1989,
Valtorta, 1991a, Ling et al., 1993]. In this paper, we will consider the important special case
in which the knowledge base (to use the term prevailing in expert systems research) or theory
(to use the term prevailing in machine learning research) is a rule base with uncertainty,

whose format will be describe precisely in Section 2.

The central problems of automatic rule base acquisition are refinement and synthesis.
Rule base refinement is the process of modifying an existing rule base in a plausible or
conservative way so it performs desired behaviors (or derives a set of correct cases, to be
defined). In this paper, we assume all cases are noiseless. This may occur, for example,
when the cases are part of a set that the knowledge-based system must handle correctly
to be certified as fit for some purpose. One kind of conservative revision is called minimal
revision; i.e. revise the rule base as little as possible. Another kind is to revise the strengths of
rules only while keeping the structure of the given rule base unchanged. Rule base synthests,
on the other hand, is the process of constructing a new rule base from a set of cases. Thus
synthesis is a special form of refinement: it is a refinement from an empty rule base. In this

paper, we study both refinement and synthesis problems.

It was proved [Valtorta, 1989, Valtorta, 1991b] that many refinement and synthesis prob-
lems in simple rule bases are NP-hard. These rule bases are “simple” in the sense that they
are very shallow (but not flat) and have only a small number of intermediate terms. See
the references and Section 4 for a more precise description. These worst case results are
pessimistic, and they raise serious concerns: if algorithmic refinement and synthesis are in-

feasible in simple rule bases, is automatic knowledge acquisition possible for practical rule



bases?

Ginsberg in his papers [Ginsberg, 1988b, Ginsberg, 1989] explored refinement via reduc-
tion, an approach that might ease the refinement problem. A rule base may be represented
in a deep (multilayer) structure or in a flat (non-chaining) one (cf Section 2). The process of
transferring a rule base from a deep representation to a flat one is called reduction. Briefly,
refinement via reduction consists of three steps: reduction, refinement in the reduced (flat)
theory, and retranslation. However, Ginsberg’s work does not deal with uncertainty. In
addition, his refinement algorithm in the flat theory is highly heuristic in an attempt to
maintain minimal revision, an NP-hard problem. We view refinement simply as revision
of rule base under certain constraint (such as strength refinement, see later) to satisfy all
given cases. Under this theoretical framework, refinement without uncertainty can be done
trivially without even going through reduction!. The reduction process itself is trivial, too?.
We will show that in a rule base with uncertainty, the trivial refinement algorithm does not

work, and reduction cannot always be performed.

Our paper gives theoretical analyses showing that refinement via reduction indeed eases
the refinement of some practical rule bases. First, we present necessary and sufficient condi-
tions for performing reduction. These conditions indicate that, surprisingly, reduction cannot
be performed in most practical rule bases with uncertainty. However, we will show that there
is a class of reducible theories for which certain refinement problems that are NP-hard in
the “deep” theory can be solved in polynomial time in the corresponding reduced theory.
This result also allows polynomial refinement of rule bases in the form of rule deletion, an
interesting application of refinement via reduction. Note that our result does not mean that
an NP-hard problem is in P. Since reduction changes the structure of the theory, the result
of the refinement in the reduced theory may not correspond to a solution in the original,
deep theory. That is, we did not really solve the refinement problem in deep theories (which
is NP-hard) efficiently. All we do is to transfer the problem in one representation (deep the-
ory) into another representation (flat theory), and solve the problem efficiently in the new

representation. The distinction between the language of the deep theory and the language

!The trivial refinement algorithm first specializes the rule base (by adding conditions to the rules) until
no unwanted conclusions can be proved. Then it constructs a new, specific rule for each conclusion that can

not be derived from the current rule base.
2The procedure is the same as expanding a arbitrary and-or Boolean function to DNF (disjunction of

conjunctions of inputs variables.)



of the flat theory is analogous to that between the language of concepts and the language of
hypotheses in PAC-learning [Kearns, 1990].

The paper is organized as follows: In Section 2, a model of simple rule bases with uncer-
tainty is outlined. This model is used throughout the paper. Section 3 discusses necessary
and sufficient conditions for reduction. Sections 4, 5 and 6 prove results on various refinement
problems in deep rule bases and in reduced rule bases. These results show that refinement
via reduction indeed eases the refinement of practical rule bases. Section 7 discusses refine-
ment via rule deletion, an application of feasible refinement via reduction. Finally, Section

8 is for related work, and Section 9 for conclusions.

2 The Model of the Rule Bases

We study reduction in the truth functional uncertainty model in this paper. In the truth
functional (extensional) uncertainty model, the uncertainty of consequences of rules is a
function (consisting of uncertainty combination functions) of the uncertainties of premises
of rules [Pearl, 1988]. Depending on the choice of uncertainty combination functions, our
notion of “uncertainty” can represent degree of belief, probability, importance, or any sim-
ilar notions. Note, however, that the truth functionality requirement restricts the possible
semantics for uncertainty. We maintain that the simplicity and computational advantages
of truth-functional systems justify their study, despite their semantical problems. See the
first chapter of Pearl’s book [Pearl, 1988] for a discussion of the tradeoff between complexity
and soundness. See also [Wang and Valtorta, 1992] for a specific example of this tradeoff.
To prove a refinement problem is NP-hard or polynomially solvable, a particular set of com-
bination functions is chosen. To show conditions for performing reduction, only constraints

among combination functions have to be introduced.

2.1 Conjunctive Rule Model with Uncertainty

Throughout the paper (except in Section 7, we assume that each rule in the rule base is in

the form of the standard propositional Horn clause with uncertainty:

IF conditiony, ..., condition, THEN consequence; WITH STRENGTH (r), (1)
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where the conditions and the consequence are propositions with uncertainties attached. The
constant r in the rule (1) is the strength (or uncertainty) of the rule. The uncertainties of
the propositions and the rules range in a domain B, such as positive integers, integers from
1 to 100, the set {0, 1}, or the closed interval [0, 1] of the reals. The strength of the rule
r determines the uncertainty of the consequence from the uncertainties of the conditions.
Notice that uncertainty values of the rules and propositions do not affect the proof process
(inference) of propositional logic. In addition, no recursion occurs in the rule base (the same

assumption is made in [Ginsberg, 1988b, Ginsberg, 1989]).

Although many expert systems including MY CIN allow both disjunction and conjunction
in the condition part of the rules, rules in our model are a simplified version of rules in
MYCIN. One can, upon satisfaction of certain conditions (see Section 3), transfer rules
with disjunction in the conditions to another set of rules with only conjunctive conditions as
the ones in our model. Such a process may lead to an exponential growth in the number of
conjunctive rules. However, such exponential growth is intrinsic to the original disjunctive

rule set and is not introduced by reduction from conjunctive rules to “flat” rules.

The uncertainties of the conclusions are computed by uncertainty combination functions
(denoted by A, V and B ) from the uncertainties of input data and the strengths of the
rules. Given a set of true propositions with their uncertainties, new conclusions may be
derived using a standard forward chaining inference process. The inference process can be
described as follows: each cycle of deduction starts with matching the condition part of each
rule (in the form (1) above) with propositions true in the rule base. If all conditions are
matched and at least one of them matches the propositions just asserted into the rule base,
the rule is fired. The function A, called the combinator, is used to combine the uncertainties
of the conditions of the rule fired. A frequently used combinator is MIN (the minimum
function). The function B, called carry-over, then carries the combined uncertainty of
the conditions to the consequence of the rule with r (the strength of the rule). A common
practice is simply to multiply r» with the combined uncertainty of the conditions. If the
same consequence is derived from several rules or if the consequence is already in the rule
base, its uncertainty is integrated by applying the integrator function (denoted as V) that
integrates all uncertainties of the consequence together. The integrator functions frequently
used are MAX (the maximum function) and probabilistic sum (f(z,y) = ¢ +y — 2y). Then
all consequences with their uncertainties obtained this way are asserted into the current rule

base as new conclusions. Once this cycle of deduction finishes, the next starts from the



current (possibly enlarged) rule base. The process stops if there is no new assertion at the
end of a cycle. Since there is no recursion in the theory, the procedure always stops, and all

conclusions with their uncertainty values are obtained.

It is convenient to represent the rule base and the inference process in graphs, called
inference nets. Distinguished nodes are used corresponding to strengths carry-over (circles),
combinators (ellipses), and integrators (rectangles). For example, a rule base with three
rules:

IF a, b THEN F WITH STRENGTH ry

IF ¢, d THEN F WITH STRENGTH r,

IF F, e THEN @ WITH STRENGTH r;3
is represented in Figure 1 (a). Given the uncertainty functions and a case consisting of
input propositions with uncertainties, such as {(a,0.8)(b,0.3),(c,1),(d,0.7),(e,0.9)}, the

conclusions (F' and z) with their uncertainties can be calculated.

I
I
a b e
a b
Figure 1: (a) The inference net with three rules. (b) The corresponding reduced net

2.2 Deep vs. Flat Rule Bases

The set of propositions used in the rule bases can be partitioned into 3 subsets: the input
propositions, the output propositions, and the intermediate propositions. Both input and

output propositions are also called observable terms, since their truth values (and uncertain-



ties) can be observed, obtained, or verified. The intermediate propositions are also known as
theoretical terms. They act as intermediaries and are merely used to derive other observable

terms.

We say that a rule base with intermediate propositions has a deep structure, and that a
rule base without intermediate propositions has a flat or reduced structure. Such flat rule
bases, also called stimulus-response production systems, consist of rules asserting conclusions
(output proposition) from observations (input propositions) directly, without using interme-
diate propositions (see Figure 1 (b)). Although stimulus-response production systems have
the simplest kind of knowledge base representation, most of the more traditional machine

learning work (e.g., [Michalski, 1983]) has focused on these systems.

2.3 The Refinement and Synthesis Problems

First, we define the notion of case and what it means for a theory to derive or cover a case.

When a theory derives a case, we say that the case is satisfied in the theory.

Definitions. A case of a rule base is the set of input propositions and output propositions
with uncertainties attached to them. That is, a case is a set of {(p1,#p1), (p2, #p2), ---
(c1,#c1), (ca, #¢2), ...}, in which p; are input propositions, ¢; are output propositions, and
#ax or #(x) represents the uncertainty of . The set may be interpreted as “there is a
case whose inputs are p; with uncertainty #p;, p; with uncertainty #p,, etc. and whose
conclusions are ¢; with uncertainty #c;, c; with uncertainty #c; etc.” A case is correct if it

is true in the domain.

The rule base (or the inference net for the whole rule base) realizes a function from vectors
of input uncertainties to vectors of output uncertainties. We use {(c}, #¢}), (5, #¢5), ...} to

denote the actual output vector calculated from a given inference net and the input vector

{(p1, #pm1), (p2, #p2), ...} of the case.

Definitions. A case is satisfied in the rule base (or a theory derives or covers a case)
if {(c1,#c1), (2, F#c2),...} = {(), #)), (¢, #h),...}. Given a set of correct cases S, the
synthesis problem is to construct a rule base (theory) that derives all cases in S. The
refinement problem is to modify a given theory 71" into a theory 7" such that 7" derives S,

and certain features of T' is preserved. Strength refinement is a refinement in which only rule



strengths may be modified; i.e., the rule structure is preserved.

Three remarks are in order. First, when we discuss the complexity of refinement, the
problem size includes the size of the original theory plus the size of all given cases. Sec-
ond, the refined or synthesized strengths are not constrained. In practice, the new strengths
should be close to the old ones according to a suitable metric. This is a version of mini-
mal refinement that is often mentioned in the literature on knowledge base refinement. For
example, see the discussion on conservativeness and radicality of a refinement in Chapter
1 of Ginsberg’s book [Ginsberg, 1988a]. However, without a formal description of conser-
vativeness in refinement from the given rule bases, the complexity of rule base synthesis is
a lower bound on the complexity of refinement®. Third, we do not consider incremental
refinement. We assume that all cases are available at the same time. This may be impracti-
cal in many situations. However, our lower bound time complexity results are not affected,
since presentation of cases in order (one at a time or in small batches) is a special case of
presentation of cases in a set, and therefore no incremental algorithm is faster than the best
batch algorithm. We readily acknowledge that the last two issues deserve further work that
is outside the scope of this paper.

3 Necessary and Sufficient Conditions for Reduction

Theory reduction produces from a set of rules a functionally equivalent set without inter-
mediate propositions. More specifically, it transfers a rule base in the deep structure to
a functionally equivalent one in the flat structure. Functional equivalence means that the
deductive closures of the output propositions with their uncertainties are identical. That is,
given any set of input propositions, the same set of conclusions is drawn from both theories,

and for each conclusion drawn, its uncertainty is the same in both theories.

When represented in classical logic (without uncertainty), rule base synthesis can be
trivially simple: just construct a rule for each given case. Theory reduction is also very
simple since only the truth of the conclusions needs to be preserved. It is well known that

reduction can always be performed in the classical axiomatizable theories. However, we

3Problems AER (Approximate Epsilon Refinement) and RSN (Rule Strength Synthesis, No-Switch Case)

in [Valtorta, 1991b] are examples of formal descriptions of conservativeness in rule bases.



will show this is not true for theories with uncertainty. In this section, we study uncertainty
models that are closed under reduction. That is, we study necessary and sufficient conditions
of uncertainty functions under which intermediate propositions can be eliminated from the

theory while the same results in conclusions can be obtained.

The actual algorithm performing reduction (with or without uncertainties) is the same
and quite simple: each intermediate proposition in the condition part of any rule is repeatedly
replaced by disjunction of conditions of rules which conclude it. The resulting “nested” rules
contain no intermediate propositions, and are then “flattened” to disjunctive normal form
(reduced rule base). The uncertainty values of the reduced rules have to be calculated during
the reduction process. However, as we will see, the uncertainty combination functions must

satisfy certain conditions to insure equivalent transformation in rule bases with uncertainty.

The above algorithm performs reduction in polynomial time if the number of intermediate
terms is fixed. Otherwise reduction may result in a reduced theory of exponential size.
However, such a situation may not be realistic in practice. The size of the problem should
capture the size of the input variables as the number of observable features or symptoms
as well as the size of the cases given, but not the intermediate propositions since they are

“theoretical”.

3.1 General Conditions

Uncertainties of all propositions and rules should lie in a linearly ordered set B. For example,
B might be the interval of real numbers [0, 1], or the natural numbers with the usual order,
or the set {unlikely, possible, likely, certain} with the given order showing decreasing uncer-
tainty. We assume B is closed under the uncertainty functions, and that B has an upper
bound 1, representing absolute certain knowledge. A rule can be stated without doubt if
the strength of a rule is 1. In this case, we assume the uncertainty of the condition part is

directly carried over to the consequence, i.e. x B 1 = x for all x in B.

It is also reasonable to expect that the order of computing uncertainties by A and V
does not matter. Thus A and V are associative and commutative; furthermore, we need
only consider A, V and B to be binary operations. As usual, we assign priorities to the
three operators so that A has highest priority, followed by B and then V. Thus we may

omit parentheses when there is no ambiguity. In writing equations involving uncertainty



values, we will use proposition names (such as a) directly rather than “the uncertainty of a”
or #a) if there is no ambiguity. Without loss of generality, we assume that after reduction
no two rules have the same conditions and conclusion because two such rules can always be

merged into a single one with a new strength.

3.2 Preserving Uncertainty Values

Recall that to preserve conclusions and their uncertainty values in reduction given any case,

we require the following:

e The same set C of conclusions is drawn from each theory.

e For each ¢ € (', the uncertainty of ¢ is the same in either theory.

Example: Assume the original rules are (also see Figure 1 (a)):
If a,b then F' (rq)
If ¢,d then F' (rs)
If F,e then z (r3)
To preserve the deducibility of  from the original set of rules given any assertion of obser-
vational terms (i.e. a,b,c,d or €), the rules in the reduced theory must be (also see Figure
1 (b)):
If a,b,e then  (r))
If ¢,d, e then z (r)).
We seek conditions on uncertainty functions such that rj and r can be determined and the
uncertainty of z in the reduced theory will be the same as in the original theory. That is: if
all of a, b, c,d, and e are asserted, then:
#@)=((aAbbr)V(cAd bry))Ae brs,
while in the reduced theory:
#@)=(aAbAe b r)V(cAdNe br)).
Therefore,
((aAbBr)V(cAdbBry))Aebrs=(aAbAe Br))V(cAdAe b))
Similarly, when a, b, and e are asserted, and when ¢, d, and e are asserted, we have:
(aAbAebr)=(aAbbBr)Ae brs
(cAdAebr))=(cAdbr)Ae brs. (To be continued)

9



The following theorem give necessary conditions on A, V and B so that the reduced

theory will preserve uncertainty values.

Theorem 3.1 The three conditions below are necessary and sufficient conditions for reduc-
tion with uncertainty

LaN(yVz)=(zAy)V(zAz).

2. (zeVy)br=(z br)V(y br).

3. (xbr)Ay=(xAy) b f(r), where f is a function determined by A and b .

Proof:
To prove that the first condition is necessary, consider the following simple rule base:

If @ then F' (1)

If b then F' (1)

If F,c then z (1)
To preserve the conclusion z (independently of uncertainty value), the set of rules in the
reduced theory is of the form:

If a,c then  (rq)

If b, ¢ then x (rq).
Now consider preservation of uncertainty values. When all of a,b, and ¢ are asserted, we
have (aVb)Ac = (aAc) BriV(bAc) bry; when a,c are asserted, we have (aAc¢) =
(a A c) b ry; and when b, ¢ are asserted, we have (bAc¢) = (bAc¢) b ro. Thus, for all a, b, and
¢, we find

(aVb)ANec=(aAc)V (bAc).

To prove that the second condition is necessary, consider the following simple rule base:
If @ then F' (1)
If b then F' (1)
If £ then z (r)
In the reduced theory, there are two rules:
If @ then z (rq)
If b then z (rs).
It follows that (¢ Vb) br =a br; Vb b ry when a,b are asserted; a br = a bry when a
alone is asserted; and b b r = b B ry when b alone is asserted. Thus we conclude:
(aVbd)Bpr=(abr)V(bpr).

10



Notice that we cannot necessarily conclude ry = ry = r.

To prove that the third condition is necessary, consider the following simple rule base:
If @ then F' (1)
If F,c then z (1)
In the reduced theory, there is only one rule:
If a,c then z (r').
When a is asserted, we have

(a Bri)Ac=aAc b1, where r’ depends only on ry.

Although these three conditions are derived from three small and specific rule bases,
we now prove that they are actually sufficient for reducing general rules with uncertainties.
Recall that we are assuming commutativity and associativity for A and V. The first two
conditions enable us to “flatten” any propositional formula to disjunctive normal form, and
the third condition enables us to pull out B from the middle of propositions to the strength

part of the rule, in both cases preserving uncertainty values. a

Example. (continued from the beginning of this Section) When the three conditions are

met, the #(z) of the original theory can be rewritten as follows:

#(z) = ((aAbBr)V(cAdbry))Ae brs
((aAbbBri)AeV(cAd Br)Ae) brs
= (aAbbri)AebrsV(cAdbry)Ae brs

(aAbAe) BTy BrsV(cAdAe) bry brs

where r] = f(r1) and r, = f(ry), for f the function of theorem 3. If f is the identity function
(f(xz) = z), then the two rules in the reduced theory are (as shown in Figure 1 (b)):

If a,b,e then z (r; b r3)

If ¢,d, e then & (ry b r3). (End of the example)

There are natural functions A, V, and B which satisfy all three conditions: for exam-
ple, we may take both A and B to be the minimum function, and V to be the maximum
function; or both A and B to be multiplication, and V to be plus (with the domain of
natural numbers with an upper bound “infinity”); or A to be MIN, Bk to be the multi-
plication function, V to be the maximum function and uncertainty ranges on {0,1}. In
these cases (as in many others) the function f of theorem 3 is just f(r) = r. Functions

satisfying conditions for reduction are adopted in several rule based systems. Some expert
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systems, such as Prospector [Gashnig, 1981, Duda et al., 1976] and AL/X [Reiter, 1980], use
the “fuzzy” formulae for conjunction (MIN) and disjunction (MAX) [Quinlan, 1983]. The
same is true for some fuzzy control systems and rule based systems based on fuzzy logic
(although not all of them). For example, [Togai and Watanabe, 1986]. Note that in all these
cases, the uncertainty values must be either 0 or 1; otherwise (if they are real numbers from
0 to 1) the third condition of theorem 3.1 will not be satisfied. However, a slight extension
of our model with uncertainty in [0, 1] allows us to refine a rule base through rule deletion.

See Section 7 for details.

We have also obtained a set of sufficient and necessary conditions for reduction when
only the rank order of uncertainties of conclusions or the most likely conclusion is preserved.
These conditions are slightly relaxed in comparison with the ones for preserving uncertainty

values shown in this section. See [Ling and Dawes, 1990] for detailed discussions and proofs.

3.3 What If a Theory Cannot be Reduced?

Surprisingly, the MY CIN type of uncertainty combination functions are not compatible with
reduction. (We consider here a simplified version of the original MYCIN combination func-
tion, as described in [Shortliffe, 1976], as opposed to the one described in [Buchanan and Shortliffe, 1984].)
In MYCIN-type rule based expert systems, the certainty factor (CF') is a real number in
[0,1]. The particular A used is the minimum function, B is the multiplication function,
and V (z,y) =x@b=x+y—zy. It is easy to verify that this choice of A, V and b does
not satisfy condition 1 of Theorem 3.1, even when rule strengths are limited to {0, 1}. As
a simple example, look at the following MYCIN rule base which contains three rules with
strengths ry, 7y, r3, from {0, 1}:

If @ then F' (1)

If b then F' (ry)

If ' then z (r3),
The uncertainty of x is

(ary + broy — ar1bry)rs.
On the other hand, the reduced rule would take the form

If @ then z (r))

If b then z (r})

The uncertainty of « would be

12



ary + brl, — arjbri,.
If the rule base were reducible, we would be able to find constants r; and r} such that

(ary + broy — aribre)rs = ari + brly, — arjbrs,.
That is, the uncertainty value of conclusion z would be preserved for any given uncertainty
values of input a, b and any given strengths ry,rq, r5. It is easy to verify that such constants

ry and 1}, do not exist. Thus, this rule base cannot be reduced.

Although the necessary and sufficient constraints discussed in the previous section is for
a complete (all intermediate propositions are eliminated) and total (the whole rule base is
reduced) reduction, they are applicable on “partial” reduction as well. That is, if these
conditions are not met, partial reduction that eliminates some intermediate propositions can
not be done; neither can part of the rule base be reduced. Such a rule base has a “rigid”
structure which would be difficult to be transferred into another functionally equivalent form.
However, inequivalent transfer of the rule base may result in very unexpected behaviors or
destroy early prototypes. Thus, it can be inflexible to work with models of expert systems

in which the conditions for reduction are not satisfied.

As an example, the refinement problem in the deep rule structure of MYCIN is NP-
complete [Valtorta, 1991b]. Our conditions for reduction indicate that it is, in general,
impossible to transform MYCIN rules into an equivalent reduced set for a possibly feasible
refinement. Moreover, we prove in section 6.2 that such a refinement in the reduced theory
is also NP-hard. This provides evidence that maintaining a large expert system like MY CIN
by knowledge engineers or knowledge acquisition programs is inherently difficult in the worst
case. In practice, it may be possible to use only a rough estimation of probabilistic sum?,
or to perform approximate refinements that do not require an absolute consistency with a

given set of cases.

4 Strength Refinement in Deep Rule Bases

In this section, we list many strength refinement problems that are NP-complete when com-
monly used uncertainty combination functions are chosen. Some of these problems will be

shown to be polynomially solvable after reduction. The topology of the inference net used in

4For example, only the largest two values are integrated.
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the first two theorems below is a tree, with one layer of two intermediate propositions. The
in-degree of combinators from input propositions is two, the in-degree of the two integrators
for intermediate propositions may grow with the size of the inputs. That is, there is no
limit on number of rules concluding the two intermediate propositions. The combination
functions are chosen among many popularly used functions. For example, the combinator
and integrator are MIN and MAX respectively, the rule strengths are multiplicative; and
the uncertainty range B is the set {0,1} or the reals from 0 to 1 inclusive ([0,1]). See Fig-
ure 2(a). The strength refinement problem considered here starts with a rule base with a
correct structure but with no known strengths. Given a set of cases, strengths of all rules are
to be determined so the resulting rule base covers all given cases with correct uncertainty
values or correct rank order of uncertainty values. Because no strength is known, such a
strength refinement problem is also called strength synthesis problem. Refinement can be as

hard as synthesis, when a proper measure of conservativeness is not given.

The following strength synthesis problems are established and proved to be NP-complete
[Valtorta, 1991b]. We state the results here without proofs and give some explanation if
necessary. For the detailed proofs, refer to [Valtorta, 1991b]. The complexity of the refine-
ment is measured with respect to the size of theory and cases, which, under some technical
assumptions, is characterized by the number of input propositions and the number of cases
given. Of course the complexity of refinement in such trees is a lower bound of the com-
plexity of arbitrary inference net. For the purpose of proof, it is sufficient to consider the
inference net with the topology described in Figure 2(b). This is a special case of the infer-
ence net in Figure 2(a) when the combinators are MIN, the strengths of input propositions
are {x1,1,29,1,....} (i.e. y1 = y2 = ... = 1), and the carry-over function is multiplicative.
The Restricted Rule Strength Synthesis (RS) problem is to find® an assignment of strengths
such that the network, when given the input part of each case, computes the correct out-
put part. If such an assignment exists, we say that the network satisfies the cases for that

assignment.

Theorem 4.1 RS with B = {0,1} is NP-complete.

Note that such rule bases are polynomially reducible (Section 3). As we will show in the

SProblems RS and RSP are defined as decision problems in [Valtorta, 1991b]. The corresponding search
problems are NP-hard.
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Figure 2: (a) The topology of a deep rule base. (b) The simplification of (a) in the proof.

next section, the reduced rule bases can be solved in polynomial time. The next theorem

extends the previous one when the uncertainty ranges in [0, 1].

Theorem 4.2 RS with B =[0,1] is NP-hard.

Many expert systems adopt MY CIN-like certainty factor and combination functions.
Rule strength synthesis is NP-hard for MYCIN like inference trees where the combinator
function is MIN, the integrator function is probabilistic sum (P+), and the carry-over is
multiplication. The Restricted Rule Strength Synthesis with MIN/P+ (RSP) problem is to
find an assignment of strengths in [0,1] or {0,1} that satisfies the given cases.

Theorem 4.3 RSP with B = {0,1} or B =0, 1] is NP-complete.

It has also been shown that if only the rank order of the conclusions ordered by their
uncertainties is important, the strength refinement and synthesis problems are still NP-hard
[Valtorta, 1991b]. That is, it is NP-hard to synthesize rule strengths in rule bases even when

the most likely conclusion, or a list of conclusions ordered by uncertainty values, matters.
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5 Strength Refinement in Reduced Rule Bases

Let us consider some of the refinement and synthesis problems in the reduced theory with a
flat structure. (Recall that the reduction algorithm is given in Section 3.) First, we will show
that some strength refinement problems can be solved in polynomial time, while the same
problem is NP-hard in the deep, polynomially reducible rule bases. These results demon-
strate that there are cases in which reduction makes the refinement problems strictly easier
to solve. Then we will show that some other strength refinement and complete refinement
problems in the reduced theory is still NP-hard.

5.1 Strength Refinement with MIN and MAX

Recall that strength refinement in the deep theory is NP-complete, that is, RS with B =
{0,1} or B = [0, 1] is NP-complete. Now we show that the same problem with B = [0, 1] is
polynomially solvable in the reduced theory using the same combination functions. Assume
a set of cases and a rule base with a fixed flat structure is given. For each given case j of
total ¢ cases, assume the outputs of the MIN nodes are p{,pé, ...p, and the output of the
MAX node is v/. See Figure 4. The algorithm in Figure 3 processes cases incrementally, and
each time weights are lowered just enough to get this case correct. The algorithm will return
the setting of all strengths such that the rule base covers all given cases, if such a setting
exists. If the uncertainty is allowed to be 0 and 1 only (B = {0,1}), then change the last
line in the above algorithm to “else output aq, ..., a, if all of them are 0 or 1 as the results of

refinement”.

As an example, if there are total of 3 inputs to the integrator MAX (s = 3 in Figure 4),

and there are two cases with

pr =06, pp =09, p3=0.5; v=04

pr = 0.7, po =08, p3 =0.9; v=0.5,
then the algorithm first calculates the possible values for the strengths a1, as and a3 as:

a; = MIN(0.4/0.6, 0.5/0.7) = 2/3

az = MIN(0.4/0.9, 0.5/0.8) = 4/9

az = MIN(0.4/0.5, 0.5/0.9) = 5/9
Then the algorithm verifies if the desired outputs can still be obtained by the strengths just
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for 1 <:<s
set a; = o0
for each case j (1 < j <ygq)
for 1 <:<sseta; = min(vj/pf,ai)
for each case j (1 < j <gq)
verify if maz(a; x P as X Py =l
if the verification step fails for any case
then refinement fails: no rule strengths exist to cover all cases

else output aq, ..., a, as the result of refinement

Figure 3: Algorithm that refines the strengths of rules in polynomial time

calculated:
MAX(0.6 x (2/3), 0.9 x (4/9), 0.5 x (5/9)) =0.4
MAX(0.7 x (2/3), 0.8 x (4/9), 0.9 x (5/9)) =0.5

Obviously the verification succeeds.

It can easily be shown that the above algorithm is polynomial. Let ¢ be the number of
cases and s be the number of strengths. Let the number of input propositions be n. (Note
that the number of strengths is equal to the number of MIN nodes and n = 2s.) The first two
steps of the algorithm (initialization and computation of strengths) takes total time O(gs).
The third step of the algorithm (verification) takes total time O(gs). The last step (output)
takes time O(s). It is obvious that the algorithm terminates. We claim that all cases are
satisfied if and only if the algorithm terminates successfully. Since each case is satisfied if
the algorithm terminates successfully, the “if” part is trivial. We show the “only if” part by
contradiction. If a strength is set to a larger value than that computed in step 2, there is a
case k for which the output of the MAX node is greater than v*. Conversely, if a strength is
set to a smaller value than that computed in step 2, there is a case k for which the output of
the MAX node is less than v*. The preceding discussion can be summarized in the following

Theorem.

Theorem 5.1 The Algorithm in figure 3 refines the strengths of rules in polynomial time.
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Figure 4: Reduced theory in which refinement is polynomial

The complexity of the algorithm is O(gn) where q is the number of cases in the set, and n
is the number of input propositions (which is twice the number of strengths in the inference
net).

Here comes the main conclusion of the paper. Consider a deep theory in which the
number of inputs (n) and the size of cases (¢) may increase as the size of the problem in this
model, but the number of intermediate propositions is fixed at 2. As discussed in Section
3, such a theory can be reduced in polynomial time (O(n?)), with an increase of input
propositions from n to O(n?). By Theorem 5.1, the total time complexity of reduction and
strength refinement is polynomial (O(n?q)) with respect to the size of the original theory n
and ¢, While by Theorems 4.1 and 4.2, strength refinement in the deep theory is NP-hard.
Thus, we have shown that indeed there are cases in which changing the representation of

rules via reduction makes the refinement problems strictly easier to solve.

Note that restricting strengths of rules to {0,1 } does not mean that we just get propo-
sitional logic as in Ginsberg’s work, because uncertainties associated to propositions can
still range in (e.g.) [0,1]. Refinement with uncertainty is harder than refinement without
uncertainty. Restricting strengths to {0,1 } is equivalent to rule deletion or rule selection
from a large rule base. In Section 7, we will show an interesting application of rule deletion

in a slightly extended model of rule bases that allow arbitrary rule strengths.
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5.2 Strength Refinement with Probabilistic Sum

Although we have shown that some strength refinement problems that are NP-complete
in the deep theory can be solved efficiently in the flat theory, our next result is negative:
the strength refinement problem in the reduced theory is still NP-hard for other integrator
functions. A particularly important example is probabilistic sum (P+), denoted as @ and
defined as a @ b = a + b — ab. Probabilistic sum is used in MYCIN [Shortliffe, 1976] and
many other expert systems with certainty factors. The problem of Rule Strength Synthesis
in a Flat Structure with Probabilistic Sum (SRP) is to find an assignment of strengths that
satisfies all given cases. See Figure 5(b). The inference net in Figure 5(b) is a special case
of the net in Figure 5(a), when the strengths of input propositions are p1, 1,ps, 1,..... This

is analogous to the situation described in Figures 2(a) and 2(b).

i i
= )

Figure 5: (a) An inference net. (b) The simplification of (a) used in SRP instances

Theorem 5.2 SRP is NP-hard.

Proof: See Appendix.

Our result indicates that strength refinement even in flat rule bases using probabilistic
sum as integrator is intractable. Probabilistic sum is used widely in many expert systems
including MY CIN. Thus, to facilitate refinement, probably a simpler function (such as MIN

or the probabilistic sum of the largest two uncertainty values) may be used.
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6 Complete Refinement

Since we have shown that strength refinement in the reduced theory with uncertainty is
polynomial, and complete refinement in the rule base without uncertainty is also polynomial
(and trivial), one might tend to think that complete refinement (both the structure and the
strengths of the rule base can be modified) in the reduced theory with uncertainty is also
easy. After all, a reduced theory with uncertainty is the simplest form of rule bases with
uncertainty, and it seems that allowing the structure of rules to be modified too gives more
freedom in revision and thus eases the complete refinement task. It is surprising that this
is not the case: total refinement is intractable. Intuitively, this is because the strengths of

disjunctive rules interact with each other.

In this section we prove that complete refinement in the flat structure is NP-complete. It
is still unknown if complete refinement (with arbitrary change of structure) in the deep the-
ory is NP-hard, or harder than synthesis with no change in structure, although we strongly
conjecture that the answer to both questions is yes. At least we know that complete refine-
ment in a deep theory that does not create over a fired number of intermediate terms in
addition to those in the original deep theory is NP-hard. For otherwise we could apply such
algorithm on a flat theory and reduce the revised theory in polynomial time (since there is
at most a fixed number of intermediate terms). This contradicts the proof (given below)

that complete refinement in the flat theory is NP-complete.

MAX MAX

2
«l © xl  x2 X3

Figure 6: (a) An inference net in the flat structure. (b) A modification of the net

The flat inference network has MAX as the root node, a layer of strengths, and a layer
of MIN nodes (cf. Figure 6(a)). We now allow for changes in the structure of the net of
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the following form: we can vary the number of inputs to each MIN node and the overall
number of MIN nodes. This is equivalent to allowing the addition of new rules, the deletion
of old rules, and the modification of rules by deletion and addition of propositions in their
premises. Note that the overall number of inputs is fixed, since it is the size of the input
part of a case. Figure 6(b) shows a modified net that satisfies our restriction on change of

structure.

We call the synthesis problem just described CSRT (Complete Synthesis in Reduced The-
ory) where changes in structure are allowed and prove that the new synthesis problem is
NP-hard. An interpretation of this result is that complete synthesis in the flat structure is,
at least in some cases, strictly harder than strength synthesis in the flat network of fixed
structure (if P # NP). This result confirms a conjecture contained in [Valtorta, 1991b].

Theorem 6.1 CSRT with B = [0,1] is NP-hard.

Proof: See Appendix.

7 Refinement through Rule Deletion

We have found a class of polynomial reducible theories where strength refinement is in-
tractable in the deep theory (the RS problem in Section 4), and polynomial in the corre-
sponding reduced theory (Section 5). The class of rule bases uses MIN as the combinator,
MAX as the integrator, and strengths as 0 or 1 only. It seems that this class of rule bases is

quite restrictive. Is this result useful in practical expert system refinement?

Strength refinement where strengths can only be assigned to 0 or 1 accounts for rule
addition and deletion. It has been argued [Ma and Wilkins, 1991] that strengths of rules
should not be modified ("tweaked”) anyway, and refinement should only allow the deletion
of rules. In other words, if we have a large set of rules for various situations, the refinement
of rule bases is reduced to selecting a proper subset of the rules for some specific situation.

Thus, rule deletion is interesting and important in practice.

Restricting the strengths of rules to be 0 or 1 only does not mean that rules cannot

have uncertainty. In fact, since the uncertainties of rules cannot be modified, they can be
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incorporated as a component of the rules. That is, the uncertainty of the conditions of rules
can be altered by the carry-over function ( b ) before being integrated by the combinator
(A). For example, any conjunctive rule in the form:

IF a, b then z (r)
can be translated into

IF a (r), b (r) then (1)
as long as

(aAb) Br=(abr)Abpr).
This constraint is satisfied when strength is multiplicative (i.e. the B is multiplication). In
fact, MYCIN allows alteration of uncertainty of conditions in rules using predicate functions
just like this.

Thus, to refine via rule deletion a given set of such rules with rule strengths ranging in
[0, 1], we first push all rule strengths into the condition part of the rules, leaving all the rules
to have strengths of 1. Then the rule base is reduced in polynomial time. Refinement in
the form of rule deletion can be done in polynomial time in the reduced rule base using the
algorithm discussed in Section 5. Notice that it is proved to be NP-hard to do rule deletion
if the rule base is not reduced. Since many rule bases [Gashnig, 1981, Duda et al., 1976,
Reiter, 1980, Togai and Watanabe, 1986] do use MIN, MAX, and [0,1], our method provides

a feasible refinement of the rule bases in the form of rule deletion and rule selection.

&8 Related Work

Knowledge base refinement is a form of inductive learning from examples. For summaries of
classic work on inductive learning, see [Angluin and Smith, 1983] [Dietterich and Michalski, 1983].
Much work on refinement has been done. For a bibliography, see [Valtorta, 1991a]. In con-
trast to the present study, most of the previous research avoids numerical uncertain repre-
sentations, and uses heuristics without average or worse case complexity analyses. It seems
that almost no work devoted to refinement in uncertain rule bases from a complexity theory

perspective has yet been published.

Ginsberg [Ginsberg, 1988b, Ginsberg, 1989] first suggested that refinement via reduction

might be feasible and robust. (For other research on refinement via reduction see [Jackson, 1991,
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Zlatareva, 1992].) However, his work does not deal with uncertainty, and it employs many
heuristics. For example, his refinement algorithm in the reduced theory uses five procedures
[Ginsberg, 1988b]: massive label generalization and specialization, focused label generaliza-
tion and specialization, and patching. Each of the five procedures is highly heuristic. One
experiment was reported, but there is no analysis comparing the time complexity of refine-
ment in the reduced theory with the one in the original theory and their predictive power.

It was unclear if refinement via reduction indeed helps in solving these problems.

Theory reduction is a pre-process of refinement. Methodologically, reduction is a form of
compilation: It is similar to the operationalization process of Explanation Based Learning
(EBL) [Mitchell et al., 1986]. The operational criterion in EBL corresponds to the observa-
tional (non-theoretical) criterion in reduction. The difference between reduction and EBL is
that, first, the compilation is not the purpose but just a pre-process in refinement; second,
reduction is performed completely in the whole rule base without using any positive exam-
ples; and third, EBL does not deal with uncertainty. Theory reduction with uncertainty is
much more complicated than the operationalization process in EBL, since both conclusions

and their uncertainty values (or rank order) need to be preserved.

Solving a problem by first changing its representation is a common and very important ap-
proach in Al. Some early work on problem reformulation includes [Amarel, 1982, Korf, 1980].
However, very little of the work done in the area (such as papers in [Benjamin, 1990]) seems

directly applicable to reduction in knowledge base refinement.

9 Conclusions

We have demonstrated that rule base refinement to cover a set of given cases is computa-
tionally intractable (NP-complete) in deep rule bases that use truth functional (extensional)
uncertainty models®. We have shown that some of these refinement problems become feasi-
ble if they are solved in rule bases with a flat structure obtained via reduction, while other
refinement problems remain NP-complete. We have provided constraints on truth functional

uncertainty models that permit reduction. We have also provided theoretical evidence, for

6Some analysis of refinement in non-truth functional (intensional) probabilistic network models has been
done in [Valtorta, 1990, Valtorta and Loveland, 1992].
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the first time, supporting the effectiveness of refinement via reduction when reduction is

possible.

Our work may provide some guidelines for future work in automatic knowledge acqui-
sition and expert system construction. First of all, unless carefully chosen, uncertainty
combination functions make refinement computationally infeasible, not only in a deep rule
structure, but also in a flat one. Probabilistic sum, for example, may be too complicated to
use for integration of uncertainty. Second, unless carefully chosen, uncertainty combination
functions may not satisfy the constraints for reduction. This implies that the rule structure
of the expert system is “rigid”: it is no longer an easy task to change the rule structure while
maintaining the equivalence of the rule base. Inequivalent transferring of the rule base may
destroy the prototype built earlier, resulting in unexpected behaviors. In addition, it is not
possible to transfer the rule base into the flat structure in which refinement is possibly easier
to solve. Third, a total refinement (modify the rule base to fit all given cases) may be too
crude a standard as the criterion for successful refinement, especially if the training data are
noisy. Although some approximate refinement problems have been studied [Valtorta, 1991b],
more future work is needed in this area. Fourth, knowledge acquisition via cases (or exam-
ples) only may be insufficient for efficient learning.  In automatic knowledge acquisition,
other assistance besides cases and examples, such as explanations of the example (or hints as
in [Angluin, 1987]), selected typical and “good” examples’, queries (e.g. membership of in-
stances or generic cases), knowledge base support tools [Musen, 1989], and interactions with
human experts, may be required, justifying a shift of activity from automatic to computer-

assisted knowledge acquisition.
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10 Appendix

Theorem 5.2:
The problem of Rule Strength Synthesis in a Flat Structure with Probabilistic Sum (SRP) is
NP-hard.

Proof:

One in Three Satisfiability (OTS) [Garey and Johnson, 1979] (page 259) will be transformed
into SRP. The variant in which no clause in the formula contains a negative literal will be
used. The generic OTS instance is a formula in 3-conjunctive normal form, with no negated
variables. The question is whether there is a model for the expression such that each clause

has exactly one true variable.

Given a formula F in monotone 3-conjunctive normal form, the following algorithm
produces in time polynomial in the size of £/ an instance of SRP such that the Question has

answer yes if and only if £ has a model in which only one variable per clause is true.

Let n be the number of distinct propositional variables in £, m be the number of clauses
in . (n and m can be obtained in polynomial time from any reasonable encoding of F.)
(Name the variables 1, ..., x, for convenience.) The number of leaves in the inference tree
of the corresponding SRP instance is n. The number of cases in the corresponding SRP

instance is 2m.

There are 2 cases for each clause in F. The cases are defined as follows. Let a and b
be a pair of numbers such that 0 < a < b < 1. Let a (generic) clause contain the variables
x;, 2, 2. The input part of the first case for each clause has p, = p; = pr = a and 0
everywhere else. The output part of the first case for each clause is a. To obtain the second
case for this clause, substitute b for a. The reader can easily verify that the algorithm just
given runs in time polynomial in the size of . As an example, Figure 7 shows the instance
of SRP corresponding to £ = (1 V 23 V 23) A (21 V 23 V 24). In the Figure, T} and T,

correspond to the first clause in £, while T3 and T correspond to the second clause in E.

The “if part” is simpler. If variable z; in the model for F is true, set s; to 1. Otherwise,
set it to 0. This insures that exactly one of the uncertainties corresponding to each case is

1 and the other two are 0. Therefore, each case is satisfied.
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@ T1 = ((a,a,a,0),a)

T2 = ((b,b,b,0),b)

T3 =((a,a,0,a),a)
T4 = ((b,b,0,b),b)

x1 x2 x3 x4

Figure 7: Instance of SRP corresponding to (1 V 22 V 23) A (21 V z3 V 24).

The “only if” part is proved now. Assume that we have a yes-instance of SRP. It will
be shown that, in order for an instance of SRP to be a yes-instance, it must be that exactly
one of the s; corresponding to each case is 1 and the other two are 0. By assigning true to
variable corresponding to this single s;, a model for F is obtained that satisfies the "one in
three” condition. Consider a generic pair of cases corresponding to a clause in K. We show,
by algebraic manipulation, that this pair is satisfied if and only if exactly one of the three
s; corresponding to the cases is 1 and the other two are 0. Call the strengths x, y, and z.
The pair of cases is satisfied if and only if the following system has a solution:

ar D ay Daz=a
br @ by P bz = b,
i.e., after carrying out the probabilistic sums (indicated by &) and dividing each side by a,
:1;—|—y—a:1;y—|—z—axz—ayz—|—a2xyz::1
z+y—bry+2z—brz—byz+ bPryz = 1.

If any two of z, y, and 2z have value 0, the system has a solution if and only if the
other variable has value 1. To show that the system has no solution if only one of the three
variables is 0, subtract the second from the first equation side by side and divide by (b— a),
we obtain:

ry+az+yz = (b+ a)zyz.

This equation has no solution if only one of the three variables is 0.

The only case left is that in which the three variables are all positive (and, of course, no
greater than 1). In this case, each of the products zy, zz, and yz is greater than or equal to
xyz. Thus

ry +xz+yz > 2zyz > (b+a)zyz
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Therefore it is impossible that
ry+az+yz = (b4 a)zyz.

It has been shown that SRP is NP-hard. In order to complete the proof that SRP is
NP-complete, it remains to show that SRP is in NP. A non-deterministic program to solve
SRP has a loop whose body assigns (non-deterministically) a value to each uncertainty and
tests whether for that assignment the function realized by the inference net satisfies all cases.
Since the test can be performed in deterministic polynomial time, the whole program runs

in non-deterministic polynomial time. a

Remark: We have not specified the possible values for si,...,s, in the statement of
problem SRP. The proof of NP-hardness shows that SRP is NP-complete even when the
values are restricted to be in 0,1. If there are more than a constant number of different
values, SRP remains NP-hard, but we cannot show it to be in NP. Similarly, we have not
specified the possible values for the input part of the cases. The proof shows that SRP is
NP-hard even when the values are restricted to ¢ and b, 0 < @ < b < 1. Finally, SRP is
NP-complete even if both input and s; values are restricted as just outlined at the same

time.

Theorem 6.1:
The problem of Complete Synthesis in Reduced Theory (CSRT) with B = [0,1] is NP-hard.

Proof:

We transform monotone three-conjunctive normal form satisfiability (MSAT) [Garey and Johnson, 1979]
to CSRT. The generic MSAT instance has the form £ = ¢; A ca A ... A ¢,,, with n distinct

variables z1, 2, ...,2,. (Rename variables, if necessary.) FEach clause contains only three
un-negated variables (in which case it is a positive clause) or negated variables (in which

case it is a negative clause). The question is whether there is a satisfying truth assignment

(i.e., a model) for the expression (i.e., formula) £.

Given an expression F of MSAT, the following algorithm produces, in time polynomial
in the size of F, an instance of CSRT such that the question has answer yes if and only if E

is satisfiable.

The CSRT instance has 2n 42 inputs and (2n+1)4+ (2n+3)+m = 4n+m+4 cases. All
the cases have output .4, except two, as will be noted in due course. For mnemonic reasons

that will become apparent later, input n + 1 is called the POS input; input 2n + 2 is called
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the NEG input; input n 4+ 1 + ¢ is the complementary input of input .

We call each of the first 2n + 1 cases a wvariable case. Each pair of the first 2n cases
corresponds to a variable in K. For each variable x;, the first case has input ¢ set to .4, input
POS set to .9, input n + 1 + 2 set to .4, input NEG set to 0, and all other inputs set to 1.
The second case has input 2 set to .4, input POS set to 0, input n + 1 4 ¢ set to .4, input
NEG set to .9, and all other inputs set to 1. The (2n 4+ 1) case has output 0, inputs POS
and NEG set to 0, and all other inputs set to 1.

Each of the 2n + 3 cases in the second group is a strength case. The i*" case in this group
has .4 in position i (1 < ¢ < 2n 4 2) and 1 everywhere else, except for the last case that has
all inputs and the output set to 1. This is the only case with output set to 1.

Each of the m cases in the third group is a clause case. Case j corresponding to clause
¢; = (xj1,Tj2,2,3) is built as follows when ¢; is a positive clause: inputs ji, ja, j3 are set to
A4, input n+ 1 is set to 0. All other inputs are set to 1. When ¢; is a negative clause, inputs
n+14+j1,m+ 142, n+ 1+ 73 are set to .4, input n + 1 is set to 0, and all other inputs

are set to 1.

Clearly these cases can be built in time polynomial in n and m. Therefore this construc-

tion takes polynomial time in the size of a reasonable encoding of K.
Example: Instance of CSRT corresponding to £ = (21 V 22V 23) A (—21 V —22 V —24).

Ty =((4,1,1,1,.9,.4,1,1,1,0), .4)
Ty = ((4,1,1,1,1,.4,1,1,1,.9), 4)

17

=((1,1,1, .4,.9,1,1,1, .4,0), .4)
Ty = ((1,1,1,.4,0,1,1,1, .4,.9), .4)
Ty = ((1,1,1,1,0,1,1,1,1,0),0)
Tio = ((4,1,1,1,1,1,1,1,1,1), .4)

Tyo = ((1,1,1,1,1,1,1,1,1,1,.4), .4)
Too=((1,1,1,1,1,1,1,1,1,1,1),1)
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Ty = ((4,.4,4,1,.9,1,1,1,1,0), .4)
Ty = ((1,1,1,1,0,.4,.4,1,.4,.9), 4)

Each case has 2n 4+ 2 = 10 inputs and one output. Cases T} through Ty (9 = 2n + 1) are
variable cases. Cases Tig through Ty are strength cases. (Note that there are 11 such cases

and 2n + 3 = 11.) Cases Ty and Ty, are clause cases. (Note that there are two clauses in

E.) (End of example.)

We now show that the instance of CSRT built according to the algorithm just given is a

yes-instance if and only if E is satisfiable. We start by proving two lemmas.

Lemma 10.1 All strengths in an instance of CSRT that satisfies the strength cases have

value 1.

Proof: 1t is easy to verify that all strength cases are satisfied by setting all strengths to 1.
We need to show that if at least one strength is less than one, at least one strength case
is not satisfied. First observe that the last strength case (in the example, Ti9) cannot be
satisfied if all strengths are less than 1. Assume that there is a strength (say s) at the output
of a MIN node with input z; and possibly other inputs (cf. Figure 8), and s < 1.

Xi

Figure 8: The output of one MIN node is less than 0.4.

Consider the ** strength case. For this case, since z; = .4 and s = 1, the output of the
MIN node (say v) is less than .4. Recall in our nets that all outputs of MIN nodes are input
to a MAX node (cf. Figures 6(a) and (b)). Therefore, in order for the output of the net
to be .4, it must be that none of the other MIN nodes have output greater than .4 and at
least one has output equal to .4. Since all the other inputs in the :** case have value 1, this
requires that the strengths of all other MIN nodes be at most .4. We have shown that, if
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one strength has value less than 1, then all strengths must have value less than 1. But, as
we have already observed, the last strength case cannot be satisfied if all strengths are less
than 1. Contradiction! O

Lemma 10.2 The i*" pair of variable cases is satisfied if and only if

either the i*" input is MINned with the (n+ 1) input and the (n+1+ i)th input is MINned
with the (2n + 2)" input,

or the (n + 1+ i)th input is MINned with the (n + 1)* input and the it input is MINned
with the (2n + 2)”d.

Proof: The last variable case requires that each input must be MINned with either POS, or
NEG, or both. Consider the j* pair of variable cases. If input j is MINned with POS (NEG),
it is clear that the complementary input n 4+ 1+ j cannot be MINned with POS (NEG). But
each input must be MINned with either POS or NEG. Therefore, the complementary input
must be MINned with either NEG or POS. O

Note that Lemmas 10.1 and 10.2 require any solution of CSRT), i.e., every inference tree
such that all cases are satisfied, to have the form shown in Figure 9. All inputs are divided
in two groups, one assigned to the same node as POS (the POS node), the other assigned to
the same node as NEG (the NEG node).

MAX

POS NEG

Figure 9: The structure of a solution of CSRT (see text)

Lemma 10.3 If F is satisfied then (the corresponding instance of) CSRT is a yes-instance.

Proof: We give an algorithm to construct a solution of CSRT), i.e., an inference tree such

that all cases are satisfied. In the solution, all strengths are one. (Therefore all strength
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cases are satisfied, by Lemma 10.1.) The topology of the solution is given in Figure 9. Note
that there are only two MIN nodes. The POS node has POS as one of its inputs. The NEG
node has NEG as one of its inputs. Since F is satisfiable, it has one or more models. Choose
a model. If z;; is true (false) in the model, let input ¢; be input to the POS (NEG) node
and input n+1+4i be input to the NEG (POS) node.

We have already shown that all strength cases are satisfied. Lemma 10.2 allows to
conclude that each variable case is satisfied since each pair of inputs corresponding to the

same variable is assigned to a different node.

Since at least one of the literals in a clause is true in the model, at least one of the inputs
with value .4 in the model is assigned to the POS (NEG) node for a positive (negative)

clause. Therefore, each clause case is satisfied. a

Lemma 10.4 If CSRT is a yes-instance, than FE is satisfied.

Proof: We give an algorithm to construct a model of £ from the CSRT instance.

If input ¢ is assigned to the POS (NEG) node and input n 4 1 4 ¢ is assigned to the NEG
(POS) node, then let x; be true (false) in the model. The other variables are assigned true

or false arbitrarily.

We now show that this algorithm indeed constructs a model. First of all, Lemma 10.2
guarantees that it is impossible for the algorithm to assign true and false to the same variable,
therefore the algorithm builds an interpretation. To show that it is a satisfying interpretation
(i.e.,amodel), consider first the generic positive clause in £. The generic positive clause (say,
C)in FE is satisfied if (at least) one of the variables in it is true, or, equivalently, not all of the
variables are false. Since pairs of complementary variables are assigned to pairs (POS, NEG)
or (NEG, POS) by Lemma 10.1, by the algorithm just given, all the variables in C' would
be false only if the inputs corresponding to them were assigned to to the NEG node and the
complementary inputs were assigned to the POS node. Clearly, such an assignment would
violate the corresponding clause case, contradicting the fact that CSRT is a yes-instance.

Similarly for negative clauses. O

Based on Lemmas 10.3 and 10.4, the main Theorem 6.1 is proved. O
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