
Instantiation to Support the Integration of

Logical and Probabilistic Knowledge

Jingsong Wang and Marco Valtorta

Department of Computer Science and Engineering
University of South Carolina, Columbia SC 29208, USA

{wang82, mgv}@cse.sc.edu

Abstract. Integrating the expressive power of first-order logic with the
ability of probabilistic reasoning of Bayesian networks has attracted the
interest of many researchers for decades. We present an approach to
integration that translates logical knowledge into Bayesian networks and
uses Bayesian network composition to build a uniform representation
that supports both logical and probabilistic reasoning. In particular, we
propose a new way of translation of logical knowledge, relation search,
that is easy to understand, simple to implement, and efficient to execute.
Grounding is required to generate a Bayesian network in the first-order
case. In order to limit the size of the generated Bayesian networks, our
prototype restricts the knowledge base to be function-free.

Keywords: Bayesian networks, First-order logic, Hybrid logical-probabilistic
systems, Implicative normal form

1 Introduction

1.1 Automated Reasoning and the Integration Problem

Knowledge-based systems normally comprise two components: a knowledge base
(KB) and an inference engine. The former encodes what we know about the
world, while the latter acts on the knowledge base to answer queries [11, 2]. Tra-
ditionally, the knowledge bases consist of a set of logical rules, and the reasoning
engine is based on logical deduction. Because of the unavoidable need of prob-
abilistic reasoning, Bayesian networks (BNs) and the laws of probability theory
play important roles in building knowledge-based systems.

However, a system based purely on logic or Bayesian networks is not practi-
cal for many advanced applications. Classical first-order logic (FOL) has great
expressive power but cannot handle uncertainty. Bayesian networks can repre-
sent probabilistic information well but scale poorly and require users to have
specialized expertise for effective modeling. This situation led many researchers
to work on the integration problems of these two types of inference and various
approaches have been proposed.

For the relation between logical reasoning and probabilistic reasoning, in case
of propositional logic, logical reasoning is just one special case of probabilistic

2

reasoning. For FOL, whose reasoning is mostly based on instantiation and de-
duction (although there are also lifted approaches), it could be translated into
propositional logic through instantiations (Herbrand Expansion), and therefore,
in some sense, FOL could be considered a special case of probabilistic reasoning.

1.2 Using Logical Knowledge in Probabilistic Reasoning

Probabilistic models have been widely used in AI. Because of various data
sources and ways of modeling, conflicts might appear in probabilistic reasoning
of large systems, especially when comparing its result with commonsense con-
clusion from traditional logical reasoning. Purely probabilistic knowledge and
modeling may not be accurate or strong enough, and we believe that the pre-
existing logical knowledge could be a very important complement that should
never be ignored in probabilistic reasoning. We can use a simple example to
show the influence. Figure 1 shows a Bayesian network with two nodes A and
B1. This Bayesian network represents our knowledge of probabilistic dependency
of proposition A and proposition B. Pr(A) and Pr(B|A) quantify these de-
pendencies. Then an abductive query for A’s probability of being true given
B is true is to calculate Pr(A|B), which has a unique value. In Figure 1,
Pr(A = true|B = false) = 0.27. However, suppose we also have some logi-
cal knowledge about the relation between A and B in KB, such as A → B.
Then there might be a disagreement with the posterior probability of A, as the
logical knowledge requires us to conclude that A should be false, with 100%
certainty. Which value should we choose? In some cases, we might like to accept
the result from logic reasoning, as traditionally we have more experience with
logical knowledge and we believe that logic reasoning is more mature in AI, while
probabilistic knowledge is normally hard to quantify and therefore error-prone.
This kind of case is possible especially in many design areas. The example shows
that sometimes our knowledge might be inconsistent when modeling a problem
from the logical view and the probabilistic view individually. Or we can say, the
previous probabilistic model has not combined all our knowledge of A and B,
and reasoning based on such a Bayesian network is insufficient.

If we use the logical relation to supplement the probabilistic model in a
way as shown in Figure 2, i.e., we add an extra node representing the logical
relationship, for the same evidence plus the additional logical knowledge, we get
a different result of the posterior probability of A from the Bayesian network.

Things get more complex when we can have the uncertainty over logical rules
from KB. However, the complexity also highlights the necessity of putting logical
knowledge into consideration of probabilistic reasoning.

The previous example is very simple, as there are only two nodes in the
original Bayesian network that are directly connected. For nodes with such direct
connections, people should have better knowledge about their relations and the

1 The probabilities shown in Figure 1 are computed using the commercial Bayesian
network shell Hugin (www.hugin.com), which uses the junction tree algorithm for
probabilistic inference [6].

3

Fig. 1. A Bayesian network with its CPTs and reasoning result given evidence.

Fig. 2. Based on the Bayesian network in Figure 1, an extra node representing logical
relations is added.

probabilistic dependency should be modeled consistently with the existing logical
knowledge. However, we can think of a more complex example. We still have
the same logic knowledge about A and B in the KB: A → B. The original
Bayesian network still contains node A and B, but there are also other nodes
between them. Figure 3 shows a Bayesian network based on three nodes, one of
which is the extra node C. Suppose now we are more interested in the posterior
probability of C being true, given evidence B being true, which is shown to be is
0.14 in Figure 3. Now we integrate the logical relationship A → B into the new
Bayesian network the same way as before, as shown in Figure 4. The posterior
probability of C being true is 0.27, which is apparently increased, compared
with the previous 0.14. Particularly, this shows the probabilistic influence of
the logical relation of A and B to the proposition C even if there is no logical
knowledge of C involved in the KB.

4

Fig. 3. A Bayesian network with its CPTs and reasoning result given evidence.

Fig. 4. An extra logical node is added to the Bayesian network in Figure 3.

This way of combining logical knowledge into probabilistic reasoning could
be more meaningful when the original Bayesian networks are more complex.
For example, just assume that nodes A and B in Figure 3 are now connected
through ten other nodes. Note that the connection is not necessarily a line, but
a network. In this case, because the distance from A to B is too long, people
cannot ensure that, when they are modeling the probabilistic dependencies using
Bayesian networks, they have put into enough consideration logical knowledge,
which could have been gained from an existing KB. Under this situation, a simple

5

logical partial model, such as the ones in Figure 2 and Figure 4, can achieve this
easily.

A special case is that when we have no knowledge over the logical rules, i.e.,
no evidence over logical rules, the composite model just resumes to the basic
probabilistic model. This is because of the way the logical model is generated: it
is a two level Bayesian network (in propositional case) where d-separations will
appear when no evidence over logical rule nodes, which always serve as children
of atomic formula nodes.

1.3 Our Framework for Integration

We pursue an approach that allows modelers to 1) specify special knowledge
using the most suitable languages, while reasoning in an uniform engine; 2)
make use of pre-existing logical knowledge bases for probabilistic reasoning (to
complete the model or minimize potential inconsistencies).

In our framework, the user is assumed to use FOL formulas to specify logical
knowledge stored in a KB, and a Bayesian network, which we call Probabilistic
Bayesian Network (PBN), to specify probabilistic knowledge. The basic idea is to
convert related knowledge from the logical KB into a logical model represented
through a Bayesian network, which we call Logical Bayesian Network (LBN).
Then the LBN is composed with the PBN. The final output of the composition
is a Bayesian network, Composite Bayesian Network (CBN), that integrates
both the logical knowledge and the probabilistic knowledge related to the query.
Figure 5 summarizes the process. Note that we still follow the knowledge-based
approach for reasoning, but our knowledge base is neither only the traditional
logical knowledge base nor simply the Bayesian networks, but their combination.
However reasoning is still based on the laws of probability theory.

Statements in Logic

Probability Theory

Query, Observations, and Assumptions

Conclusions

Bayesian Networks

LBN

PBN

CBN

Composition

Fig. 5. Reasoning systems with the combination of logic and Bayesian networks.

The main focus of this paper is the way the logical model is generated. More
details about the composition process and a comparison with related work can
be found in [12]. Here we improve the work of [12] by removing the need for a
theorem prover. The remainder of this paper is organized as follows. In section
2, we introduce the relation search algorithm in the propositional case at first

6

and then we extend it into the FOL case. A proof of correctness follows and an
instantiation problem is discussed. Then we conclude this paper in section 3.

2 Logical Bayesian Network Generation

2.1 Propositional Case Algorithm

The end purpose is to build a composite model from logical knowledge and
probabilistic knowledge. The PBN contains most of probabilistic knowledge, the
nodes of which consist of the query, observations, and assumptions. We call them
probabilistic atoms. When there is no direct probabilistic dependency specified
among probabilistic atoms, the Bayesian network contains a set of isolated nodes.

The logical knowledge is assumed to be from a logical KB comprising a set of
logical formulas. We will translate the KB directly into a LBN through a search
algorithm, called relation search. The basic idea of relation search is very simple.
We just look through the KB and extract all the logical formulas that are related
to the probabilistic atoms. A formula has a relation with an atom if that atom
appears directly or indirectly in this formula. The indirect appearance is defined
the following way. If atom A1 and A2 both appear in a formula R1, and A1 also
appears in a formula R2 while A2 does not, we say that A2 appears indirectly
in the formula R2. Algorithm 1 depicts the pseudocode for our relation search
algorithm.

Note that in Algorithm 1, we only explicitly generate the CPTs for the for-
mulas from KB. These CPTs are determined by the formulas’ logical structure.
For example, for formula A ∨ B, the value true has probability 1 if and only if
either A or B is true. BN(V, E ,L) denotes the Bayesian network built based
on (V, E ,L), where V represents the set of nodes (variables), E represents the
set of directed edges that connect nodes together, and L represents the set of
conditional probability tables.

2.2 FOL Case Modification of Algorithm

In the FOL case, instantiation and quantified formula node generation are needed
to build the LBN. Even in the FOL case, queries, observations and assumptions
should mostly be ground formulas. Thus we only consider ground atomic formu-
las from PBN and the set of such atoms is denoted by P. We assume that all the
formulas in KB are closed (i.e., no occurrence of free variables) and in Skolem
form, which allows only universal quantifiers. Also, we assume that constants
in KB are all the individuals in the domain, and we restrict the domain to be
function-free.

1. We do the same search and find all the related formulas R from KB.
2. We use the available constants in R ∪ P to get all the possible ground in-

stantiations of quantified formulas in R, and add these instantiations to R.
This new set is named R′.

7

Algorithm 1 Relation Search

Require: the probabilistic atom set P from PBN containing query, observations, and
assumptions, the set of logical formulas KB = {R1, R2, ..., Rz}, z = |KB|, and
the sets A1,A2, ...,Az. Ai comprises all the atoms appearing in its corresponding
logical formula Ri ∈ KB, where 1 ≤ i ≤ z.

1: V = P;
2: E = ∅;
3: L = ∅;
4: for i = 1 to z do

5: Tag Ri as not visited;
6: end for

7: while true do

8: Changed ⇐ false;
9: for i = 1 to z do

10: if Ri is not visited then

11: if Ai ∩ V 6= ∅ then

12: V = V ∪ Ai ∪ {Ri};
13: for all A ∈ Ai do

14: E = E ∪ {(A,Ri)};
15: end for

16: Build CPT Θi for Ri based on its logical structure;
17: L = L ∪ {Θi};
18: Tag Ri as visited;
19: Changed ⇐ true;
20: end if

21: end if

22: end for

23: if Changed = false then

24: break;
25: end if

26: end while

27: return BN(V, E ,L);

3. We build a Bayesian network based on R′. We follow exactly the same pro-
cedure as in the propositional case for generating nodes, edges, and CPTs for
the propositional formulas in R′. For a quantified formula, we put it as the
child of its ground instantiations (groundings) plus an extra node O, which
represents a proposition that all the other instantiations that are based on
constants appearing in KB but not in R′ hold. The CPT for such a quan-
tified formula is an AND table, i.e., the value true has probability 1 if all
parents are true and probability 0 otherwise.

Thus for the FOL case, the generated Bayesian network will usually be a
three level network if quantified formulas exist in R′ 2. The nodes corresponding

2 One extreme case is that the quantified formula itself is an atomic formula. The par-
ents of the corresponding node are root nodes in G directly. However, such formulas
do not make sense in a normal KB. We exclude this case.

8

to them are in the third level. One important change for the FOL case relation
search output is an O node for each quantified formula as one additional parent,
whose value reflects the actual influence of some constants, which seems to be
unrelated, through the related formulas.

Notice that any instantiation of the root nodes (including O nodes) of the
resulting Bayesian network has defined one truth value for any formula appearing
in the Bayesian network, as the Bayesian network has explicitly or implicitly
contained all the constants from KB and we have assumed that the constants
available in KB have been all the constants in the domain. For a ground atomic
formula (including O node), which appears as the root node, its truth value is
directly decided by its state value in the instantiation. For a ground compound
formula, its truth value is decided by its logical evaluation based on its parents’
truth values. For a quantified formula, its truth value is decided by the logical
AND evaluation based on its parents’ truth values.

We can use one example to illustrate how instantiation works. Suppose we
have a logical KB containing formulas as shown in Table 1. P = {P (a), P (b)}
are from PBN 3. Then after the relation search,

R = {∀xP (x) → Q(x)}.

Here constants are a, b, and c. We note that the second and the third formula
in KB are ignored as they cannot be related. The output Bayesian network G
is shown in Figure 6.

Table 1. The original FOL KB’s formulas.

1 ∀xP (x) → Q(x),
2 ∀xH(x) → L(x),
3 H(c).

2.3 Correctness

We want to show that models constructed in relation search behave according
to our logical intuitions.

Theorem 1. For a BN resulting from relation search, G = (V, E ,L), for any
U ∈ V and any V ′ ⊆ V, if V ′ |= U , then Pr(U = true|V ′ = true) = 1 in G,
where V ′ = true means that all the nodes in V ′ of G are set to true.

Proof of Theorem 1 The idea is to use weighted model counting [2], over the
Bayesian network G, to conclude the joint probability of evidence e = {U =
false}∪V ′ = true to be 0, and then follow Bayes’ rule to conclude the posterior

3 Note that the PBN can be the result of any modeling technique, such as MEBN [9,
10] or BLP [7], that outputs a Bayesian network.

9

P(a) Q(b)Q(a)P(b)

P(a) Q(a) P(b) Q(b)

P(x) Q(x)

O

Fig. 6. A FOL case LBN example.

probability Pr(U = true|V ′ = true) = 1. We can assume V ′ = {S1, S2, ..., Sk},
where k ≤ |V|. Then evidence can be represented by e = {u, s1, s2, ..., sk}.

If V ′ |= U , then FOL theory {¬U} ∪ V ′ = {¬U, S1, S2, ..., Sk} is logically
unsatisfiable. We define F = U ∧ S1 ∧ S2 ∧ ... ∧ Sk and F ′ = ¬U ∧ S1 ∧ S2 ∧
... ∧ Sk. Then a Herbrand structure of F is also the one of F ′ and vice versa.
Note that every subformula of F has a corresponding node in G. We know
that F ′ is unsatisfiable. This means that all interpretations (more commonly
called structures in FOL) of F ′, including its Herbrand structures, that evaluate
formula U to false will also evaluate at least one formula Sx (1 ≤ x ≤ k) to
false.4

For BN G, each instantiation includes one instantiation of G’s root nodes,
which are all ground atomic formulas because of the way G is built. (The root
nodes also include the O nodes, which are also atomic propositions.) Such an
instantiation of root nodes in G has defined a Herbrand structure for the lan-
guage of G. Thus given an instantiation G, there is a corresponding evaluation
for any formula appearing in G and this evaluation result is fixed. For example,
the ground logical constituents of nodes {U, S1, S2, ..., Sk} ⊆ V are root nodes in
G. Each instantiation of the root nodes of G contains one Herbrand structure
for formula F = U ∧ S1 ∧ S2 ∧ ... ∧ Sk and its subformulas.

In addition, for each quantified formula appearing in G, all its possible
groundings based on constants available in the relation search result (R ∪ P)
also appear in G.

Consider the special CNF encoding introduced in Section 11.6.1 [2] of BN G.
Any instantiation of G corresponds to a model of such a CNF encoding. To com-
pute Pr(e) through the weighted model count, we only consider instantiations
of G that are compatible with evidence e = {u, s1, s2, ..., sk}.

4 For a closed formula in Skolem form, it is satisfiable if and only if it has a Herbrand
model. In other words, unsatisfiability ≡ no Herbrand model.

10

We choose one arbitrary instantiation of G compatible with e. The Herbrand
structure contained in the current instantiation is denoted by H. We know that
formula U can evaluate to true or false under H. We consider these two cases
separately.

1. U evaluates to false in H.
Thus U is false in H. Because of the unsatisfiability of F ′, we know that
F ′ does not have a Herbrand model. Therefore if U evaluates to false in H,
there must be at least a Sx that evaluates to false in H. As we know that the
nodes of G are in three levels, node Sx might appear in the first level (being
an atomic formula node), in the second level (being a ground formula), or
in the third level (being a quantified formula). Note that atomic formulas,
appearing as root nodes in G, definitely evaluate to the same values as their
state values in the instantiation. Remember that all the nodes S1, S2, ..., Sk

are in state true, as the current instantiation is compatible with evidence e.
Since Sx is false in H, Sx could not be in the first level. This also excludes
the case that Sx is an O node. If Sx is in the second level, then there is
an inconsistency between its logical evaluation, which is false based on its
parents’ state values, and its state value, which is true as determined by e.
If node Sx is in the third level, i.e., it is a quantified formula, there are two
cases for possible instantiations of its parent nodes, which are groundings of
Sx, in G:
(a) All the parent nodes of Sx are in state value true.

Consider the Herbrand structureH for F contained in the current instan-
tiation. Based on the definition of the truth value of quantified formulas
with universal quantifier, because H evaluates Sx (which has universal
quantifier) to false, there must be at least one grounding of Sx, denoted
by Sxg, that evaluates to false in H. Based on the way G is built, Sxg is
a parent node of Sx and it is in the second level of G. (Note that the O

node associated with Sx is excluded from being Sxg, because it is a root
node, which should have the same evaluation in H as its state value, and
a parent of Sx, and we have assumed that Sx’s parent nodes are all in
state value true) However, we have assumed that Sx’s parent nodes are
all in state value true. Thus for Sxg, there is a similar inconsistency as
before between its logical evaluation, which is false based on its parents’
state values, and its state value, which is true.

(b) There is at least one parent node of Sx in state false, including its O

node.
The CPT for node Sx, which represents a formula with universal quan-
tifier, is an AND table. There is still a similar inconsistency as discussed
before between Sx’s logical evaluation, which is false based on its par-
ents’ state values, and its real state value, which is true in order to be
compatible with e.

Therefore, if node Sx is in the third level of G, for any possible instantiation
compatible with e, we can always find a node with logical inconsistency. This
node might be Sx itself, or one of its parents Sxg.

11

2. U evaluates to true in H.
There are three cases for the appearance of U : U is an O node, a ground
formula that is not an O node, and a quantified formula.
(a) U is an O node. This case is impossible.

Being a root node, an O node should have the same evaluation as its
state value false, which is compatible with evidence e.

(b) U is a ground formula but not an O node.
Still, U cannot be a root node. Thus U is a second level grounding. U
has a state value false, which is compatible with evidence e, and however
it evaluates to true. Thus U itself has an inconsistency.

(c) U is a quantified formula. We have a similar analysis as before.
If all the parent nodes of U are in state value true, then there is an
inconsistency in U , as we know that the CPT of U is an AND table, and
however its state value is false to be compatible with e.
Otherwise, there is at least one parent in state value false. Based on
the definition of the truth value of a quantified formula, all the parent
formulas (node O or not) of U in G need to evaluate to true in H. Being
a root node, the O node cannot be in state value false, as its state value
should be the same value as its evaluation in H. Therefore there must be
a grounding in state value false, which however evaluates to true. Then
this grounding has an inconsistency.

Because of the way CPTs are built in G, as shown in the propositional case
analysis, the entries of a CPT of a non-root node in G all have value 0, if
the logical evaluation of its logical formula, given its parents’ state values, is
inconsistent with the node’s real state value. For a node with such inconsistency,
denoted by S, if we use c to represent the state values of its parent nodes in the
current instantiation, and the corresponding truth assignment of CNF encoding
is denoted by ω, we know that

Wt(Ps|c) = θs|c = 0,

and the weight of the model ω is

Wt(ω) = Wt(Ps|c) ∗
t−1∏

i=1

Wt(Pi) = 0,

where t is the number of nodes in G, i.e., |G| = t, and Pi represents the other
parameter literal of the model ω that is not Ps|c.

This conclusion holds for all the other models. Thus

Pr(e) = Pr(u,V ′ = true) = Pr(u, s1, s2, ..., sk) =

2
t−k−1∑

i=1

Wt(ωi) = 0,

where ωi represents the model corresponding to the different instantiation of G
compatible with evidence {u, s1, s2, ..., sk}. Thus, as claimed in the statement of
the theorem,

Pr(u|V ′ = true) =
Pr(u,V ′ = true)

Pr(u,V ′ = true) +Pr(u,V ′ = true)
=

Pr(u,V ′ = true)

Pr(u,V ′ = true) + 0
= 1.

12

2.4 A Partial Instantiation

In the FOL case, as the number of atoms containing different variables in a quan-
tified formula increases, the number of groundings could increase exponentially.
This might make the BN G very large. However, many nodes, including atoms
and groundings, in this BN are not meaningful in real use.

In a well-defined KB, besides formulas representing rules, there are some
facts that represent basic and fixed features of a few context constants in KB.
For atoms describing such features, any groundings of them that are not explic-
itly specified in KB are regarded impossible. This is often referred as closed world
assumption, i.e., for a feature F of a sequence of constants C in the domain, if
F (C) is not listed as a fact, then we believe F (C) is false. We call the predicates
like F context predicates and the set of related facts context facts.5 For example,
consider two atoms Person(a) and Table(b) as existing facts in KB. For the
constants specified by these two atoms, their features are not exchangeable, as
we know that Person(b) and Table(a) are meaningless. There should not be
uncertainty over them any time as they are always false. Therefore, we can con-
trol the number of groundings of quantified formulas by discarding meaningless
instantiations. In addition, we assume that all the rules in KB are in Implicative
Normal Form (INF). Note that any formula can be easily translated into INF.
For example, (A1 ∧A2)∨ (B1 ∧B2) → C, where A1, A2, B1, and B2 are literals
and C is a subformula, can be converted into A1 ∧ A2 → C and B1 ∧ B2 → C.
Then we add one extra step for the instantiation process of quantified formulas,
which are in INF. We will still try all the possible instantiations of a quantified
formula that contains context predicates. We discard a grounding unless all of
the context predicates appearing in its body are context facts. The idea is sim-
ple. Each rule in KB naturally adds one constraint to the set of possible worlds.
However, when one part of the body of the rule, which is in INF, is determin-
istically false, the rule will not constrain anything, based on the definition of
logical implication. Then adding the rule is truly meaningless. Thus we can just
ignore such groundings when building the BN. In applications, the users can
define their context predicates and context facts flexibly for controlling the size
of resulting BN.

3 Conclusion

In this paper, we presented a new way of translating logical knowledge into
Bayesian networks that supports a new approach to the integration problem of
logical and probabilistic reasoning that is easy to understand, simple to imple-
ment, and efficient to execute.

The method presented in this paper can be used not only for the general inte-
gration problem but also the traditional BN learning problem. There have been

5 Context predicates and context facts play similar roles in instantiation as random

variable declarations in LBN [4] and context terms in MEBN [9, 10]; these are all
similar to typed predicates and terms.

13

classical ways to learn BNs, which include parameter estimation and structure
learning, such as the EM algorithm [3] for parameter estimation with incomplete
data and score-based learning for BN structure [1]. Meanwhile, Inductive logic
programming (ILP), which is concerned with relational data mining, has been
greatly researched. The problem of learning logic programs is the first and still
most commonly addressed problem in ILP [5]. Because our approach provides a
way of translating logic programs into Bayesian networks, we can easily extend
most existing ILP techniques to work on BN learning.

We also notice that one quantitive label of a formula could be produced from
the logic program’s learning process. This label represents, e.g., the formula’s
rate of successful matching in the training data. Thus it is ideal to be used
as soft evidence [8] in the composite model BN resulting from the integration
process for further probabilistic reasoning. How to use such soft evidence for the
improvement of accurate reasoning for many problems, such as classification, is
an interesting topic for future work .

References

1. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks from data. Machine Learning 9, 309–347 (1992)

2. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press (2009)

3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society, Series B 39(1),
1–38 (1977)

4. Fierens, D., Blockeel, H., Bruynooghe, M., Ramon, J.: Logical bayesian networks
and their relation to other probabilistic logical models. In: Proceedings of the 15th
International Conference on Inductive Logic Programming. pp. 121–135. Springer
(2005)

5. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press (2007)

6. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, second edi-
tion. Springer, New York, NY (2007)

7. Kersting, K., Raedt, L.D.: Bayesian logic programs. CoRR cs.AI/0111058 (2001)
8. Kim, Y.G., Valtorta, M., Vomlel, J.: A prototypical system for soft evidential

update. Applied Intelligence 21(1) (July–August 2004)
9. Laskey, K.B.: First-order Bayesian logic, Technical Report C4I06-01. Tech. rep.,

SEOR Department, George Mason University (February 2006)
10. Laskey, K.B.: MEBN: A language for first-order knowledge bases. Artificial Intel-

ligence 172, 140–178 (2008)
11. McCarthy, J.: Programs with common sense. In: Semantic Information Processing.

pp. 403–418. MIT Press (1959)
12. Wang, J., Byrnes, J., Valtorta, M., Huhns, M.: On the combination of logical

and probabilistic models for information analysis. Applied Intelligence pp. 1–26
(January 2011)

