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Abstract

Mozetic has recently given an algorithm (called IDA) for polynomial-time diagnosis of systems
described using models written in Prolog, under some conditions of which the most important is
ignorance of abnormal behavior. Mozetic’s algorithm uses models of the system to be written in
such a way that they can be called with a partial instantiation of their parameters and return a full
instantiation, a byproduct of the use of Prolog to write the models. We show that the requirement is
not necessary to insure polynomial-time diagnosis. We also show that, by exploiting Loveland’s critical
set algorithms, we can obtain performance comparable to IDA without requiring IDA-style models.

1 Introduction

There has been much work in recent years on the complexity of consistency-based and abductive model-
based diagnosis. No exhaustive review of the literature will be attempted here, but see [1, 4, 5, 12] for
some of the main results. A recent paper by Mozetic [10] builds on work by Friedrich et al. [5] and shows
that it is possible to compute the first k& diagnosis (for fixed k) in polynomial time, when only weak
fault models (and possibly physical negation axioms) are used. (For readers familiar with [3], this roughly
corresponds to models for which the ignorance of abnormal behavior assumption holds.) Mozetic’s solution
uses a theorem prover that returns a (non-necessarily minimal) diagnosis through the answer substitution
mechanism. We show that the problem solved by Mozetic can also be solved by using Loveland’s critical
set algorithm [8], without using the answer substitution mechanism and with comparable efficiency. We
describe our algorithm and its implementation and give some experimental results comparing it to Mozetic’s
algorithm.

2 Using Critical Sets in Diagnosis

Consider the problem of consistency-based diagnosis as formulated by Reiter [11]. In this formulation,
a diagnosis is a set of abnormal components. In certain situations, every superset of a diagnosis is also
a diagnosis (although not minimal)!. De Kleer et al [3] call this property the “Minimal Diagnostic Hy-
pothesis,” give a (non-syntactic) characterization of the system descriptions for which it holds and some
(syntactic) sufficient conditions. One of them is “Ignorance of Abnormal Behavior,” which we can describe
intuitively as follows (cf. [5]): the Minimal Diagnostic Hypothesis holds when the system description (SD)
is a set of formulas of the form

S Amab(e) AL A ab(e,) = . (1)
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n contrast to [11] we drop the requirement of minimality for diagnoses, for expository convenience.



where ¢; ...¢, € COMPONENTS. Note that ab(c;) always appears in its negated form on the left-hand
side of implications, and can therefore be substituted by a non-negated predicate name, such as ok(c;), so
that (1) is essentially a Horn clause. Usually, OBS U SD will then also be a set of Horn clauses.

Let a fault indicator function for a given SD U OBS be a function that maps C C COMPONENTS
to 1 if C' is a diagnosis for SD U OBS and to 0 otherwise.

Note that the value of the fault indicator function, f, for a set of components A can be computed by
testing if

SDUOBS U {ab(c;) | ¢; € AYyU {—ab(c;) | ¢ € COMPONENTS — A}

is consistent, or, more simply, by Proposition 3.4 in [11],

SDUOBS U {-ab(c;) | ¢ € COMPONENTS — A} 2)

is consistent. If it is, then f(A) = 1. If it is not, then f(A) =0.
Following Loveland [8], we define monotonicity and criticality.
A function from the power set of a set U to {0,1} is binary monotone if f(S) =1 = f(S;)=1,VS; D S.

A critical set S of a binary monotone function f is a set S such that f(S) =1 and f(S2) = 0VS: C
SAS #Ss.

Loveland [8] calls the problem of finding e critical set of a binary monotone function the critical set
problem. He gives four different algorithms to find one of the critical sets of a monotone function. These
polynomial-time algorithms take at most 2r[logn] calls to the binary monotone function f, where r is the
number of elements in the critical set and n is the number of elements in the universe U. There are several
applications for the critical set problem in Knowledge-Based Systems work. Loveland [8] mentions some
problems in knowledge base verification (cf. [7]) and refinement. For our purpose, we note that we can use a
critical set algorithm to find a diagnosis for a diagnostic problem with a monotone fault indicator function.
Recall that, while satisfiability is NP-hard in the general propositional case and checking consistency is
undecidable in general, it is easy to decide whether a set of simple Horn clauses (i.e., with bounded term
depth of all arguments and bounded arity) is satisfiable or consistent [5, p.331]. From these facts, it is easy
to show that, if SDUQOBS is a set of simple Horn clauses, then the fault indicator function for SDUOBS
is binary monotone, the critical sets are minimal diagnoses, and one diagnosis for a system described by
a set of simple Horn clauses can be found in polynomial time. It is remarkable that neither Bylander et
al. [1] nor Friedrich et al. [5] seems to be aware of Loveland’s efficient algorithms.

Finding More Critical Sets Suppose that a collection of critical sets has been found. Loveland [8,
pp.370-371] gives a combinatorial argument that shows that finding whether there are additional critical
sets must take exponential time in the size of the number of elements in U. Friedrich et al. [5, Theorem 2]
prove the closely related result that the next diagnosis problem is NP-complete. Mozetic and Holzbaur [9]
and Mozetic [10] gives a polynomial time algorithm to find the first k£ diagnoses in polynomial time for a
fixed k. Like Bylander et al. and Friedrich et al., they also ignore Loveland’s paper.

Fault models may easily destroy the Minimal Diagnostic Hypothesis and the Horn property of a system
description. Therefore, even finding one diagnosis for a system described by a set of Horn clauses is
intractable, when fault models are present. Physical impossibility axioms, as defined in [5] do not destroy
the Horn property, and they may be a practical alternative to fault models.

3 Description of the Algorithm and Complexity

We have implemented an algorithm in Prolog called IC. We will provide only a high-level description of
the algorithm in this section; a large part of the Prolog code implementing the algorithm is given in the
Appendix. The algorithm merges Mozetic’s IDA [10] and the Critical set algorithm (hence the name IC).
There are five critical set algorithms in [8], named algorithms I, II, IT'; III, and IV. The first diagnosis
computed by IC is computed using critical set algorithm II' in [8]. A full description of this algorithm
can be found in the original reference?. The algorithm starts from a set that is a diagnosis, i.e., a set S

2Note that Algorithm IT in [8] is incorrect. We will present a modified version of algorithm II and proof of its correctness
elsewhere.



such that f(S) = 1. It divides the set of all components into two roughly equal disjoint sets, then checks
whether one of these sets is a diagnosis. If it is, the other half is discarded. If it is not, then the other
set must contain elements of the critical set being isolated. Therefore, one element of the critical set is
isolated in at most logn calls to the function f, where n is the number of components in the system to
be diagnosed. In the worst case, r(1 + logn) calls to f are necessary to construct a critical set of size 7.
This contrasts very favorably with the algorithm used in IDA (and the ones described in [5, 12]), which
work by generating all immediate subsets of a diagnosis, check each subset to see whether it is a diagnosis,
and repeat this process until a critical set is found. This takes time linear in n. Moreover, in contrast
to algorithm II', the performance of IDA’s algorithm decreases with the decreasing size of the critical set
being isolated. Small critical sets are likely to be prevalent in many diagnostic applications. (In other
words, IC is more efficient when minimal diagnoses are small.)

To find subsequent diagnoses, we apply the same algorithm used in IDA, which Loveland describes (us-
ing different terminology) in [8, pp.370-371], although we believe that Mozetic rediscovered the algorithm
independently. The basic idea is to find a complement (with respect to the set of all components) of the
hitting set of the minimal diagnoses found so far that is also a diagnosis, and then apply the critical set
algorithm (again, we chose to implement II') to this diagnosis to compute a minimal diagnosis (critical set).
Loveland notes that the difficult part of this computation is to find a suitable complement of the hitting
set of minimal diagnoses. In his words: “the problem of finding a set that contains only new critical sets
can be extremely costly even when only one more critical set exists. We emphasize that the complexity of
finding a critical set is a function of the number of critical sets already found; the first critical set is not
hard to find.” Mozetic [10] shows that the first k critical sets (diagnoses) can be found in polynomial time.

A difference between IC and IDA is that the implementation of the fault indicator function (f) in IDA
is by using a logic programming model. The model is such that, when queried with a list of components (a
label) S, it will return the value of f(S) (0 or 1) and, when f(S) = 1, it will also return a set of abnormal
components S1 which may be S itself or a subset of S. (The set S1 is found using the answer substitution
process.) When a small set S1 is found, the computation time for IDA is substantially reduced. However,
the model is not required to return a smaller diagnosis than the one it is queried with and no guidelines are
given for constructing such a model®. This point is illustrated by a detailed example and some experimental
results in the following section.

4 Experimental Results

We present results obtained by running IDA and IC with some synthetic models, which consist of a list of
numbered components and a list of minimal diagnoses. The main purpose of this section is not to show
statistically significant or conclusive experimental results (which are beyond the scope of this paper), but
to make the discussion of the relative performance in the previous section of IDA and IC more concrete.
In the set of examples that follows a system with 15 components is represented. We present two runs of
IDA and one run of IC. The performance of IDA is greatly affected by how close to minimal the diagnosis
returned by the model through the answer substitution process is. In one of the IDA runs, the model
simply returns the minimal diagnosis directly: possibly most of the components in the label are assigned
ok. In this case, the model itself solves the critical set problem. This is the best possible case for IDA. In
the other IDA run, the model returns the label itself as a diagnosis: all components that are in the label
are taken to be abnormal.
We consider a 15-component system with minimal diagnoses {1, 2}, {3, 4}, {6, 7}, {5,6,9}, and {3,7,11,13}.

Here follows an annotated trace of IDA, with the best model definition.

3 ?- ida(D,C).

15 : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] is label

% After being queried with £(S) = £({1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}),

% the model returns S1 = {6,7}, a minimal diagnosis.

1 : [7] is label %£f({7}) = £({6}) = 0: {6,7} is a minimal diagnosis, because

1 : [6] is label Ythe fault indicator function for all its subsets has value 0
14 : [1,2,3,4,5,7,8,9,10,11,12,13,14,15] is label

3Note that if the model returned a minimal diagnosis, it would have to solve the critical set problem.



% The label above is a complement of the set of diagnoses found so far, {{6,7}}.
% The model returns {1,2}, a minimal diagnosis.

1 : [2] is label

1 : [1] is label

13 : [2,3,4,5,7,8,9,10,11,12,13,14,15] is label

% The label above is a complement of the set of diagnoses found so far, {{1,2},{6,7}}
1 : [4] is label

1 : [3] is label

12 : [2,4,5,7,8,9,10,11,12,13,14,15] is label

12: [2,4,5,6,8,9,10,11,12,13,14,15] is label

2 : [6,9] is label

2 : [5,6] is label

11 : [2,4,6,8,9,10,11,12,13,14,15] is label

11 : [2,4,5,6,8,10,11,12,13,14,15] is label

12 : [2,3,5,7,8,9,10,11,12,13,14,15] is label

3 : [3,11,13] is label

3 : [3,7,13] is label

3 : [3,7,11] is label

% The label generated below are complements of the hitting sets of the set of

% minimal diagnoses {{1,2},{3,4},{6,7},{5,6,9},{3,7,11,13}}. ©None of them are diagnoses.
11 : [2,3,5,8,9,10,11,12,13,14,15] is label

11 : [2,3,5,7,8,9,10,12,13,14,15] is label
11 : [2,3,5,7,8,9,10,11,12,14,15] is label
11 : [2,3,6,8,9,10,11,12,13,14,15] is label
11 : [2,3,5,6,8,10,11,12,13,14,15] is label
12 : [1,4,5,7,8,9,10,11,12,13,14,15] is label
11 : [1,4,6,8,9,10,11,12,13,14,15] is label
11 : [1,4,5,6,8,10,11,12,13,14,15] is label
11 : [1,3,5,8,9,10,11,12,13,14,15] is label
11 : [1,3,5,7,8,9,10,12,13,14,15] is label
11 : [1,3,5,7,8,9,10,11,12,14,15] is label
11 : [1,3,6,8,9,10,11,12,13,14,15] is label
i1 : [1,3,5,6,8,10,11,12,13,14,15] is label

¢ =1[2: [2,4,5,7,8,9,10,11,12,13,14,15],12
[1,4,5,7,8,9,10,11,12,13,14,15],1

1: [2,4,6,8,9,10,11,12,13,14,15],11 : [2,4,5,6,8,10,11,12,13,14,15],
11 : [2,3,6 ,8,9,10,11,12,13,14,15],11 : [2,3,5,8,9,10,11,12,13,14,15],

11 : [2,3,5,7,8,9,10, 12,13,14,15],11 : [2,3,5,7,8,9,10,11,12,14,15],
i1 : [2,8,5,6,8,10,11,12,13,14,15 ],11 : [1,4,6,8,9,10,11,12,13,14,15],
11 : [1,4,5,6,8,10,11,12,13,14,15], 11 : [1,3,6,8,9,10,11,12,13,14,15],
11 : [1,3,5,8,9,10,11,12,13,14,15],11 : [1,3,5,7,8,9, 10,12,13,14,15],
11 : [1,3,5,7,8,9,10,11,12,14,15],11 : [1,3,5,6,8,10,11,12,13,14 ,15]]
p=1[2:[1,2],2 : [3,4],2 : [6,7]1,3 : [5,6,9]1,4 : [3,7,11,13]]

The next trace is the IDA worst case scenario on the same 15-component system:

3 ?- ida(D,C).

15 : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] is label

%The model verifies that S = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} is a diagnosis,
%and returns S1 S.

14 : [2,3,4,5,6,7,8,9,10,11,12,13,14,15] is label
13 : [3,4,5,6,7,8,9,10,11,12,13,14,15] is label
12 : [4,5,6,7,8,9,10,11,12,13,14,15] is label

11 : [5,6,7,8,9,10,11,12,13,14,15] is label

10 : [6,7,8,9,10,11,12,13,14,15] is label
: [7,8,9,10,11,12,13,14,15] is label
[6,8,9,10,11,12,13,14,15] is label
[6,7,9,10,11,12,13,14,15] is label
[6,7,10,11,12,13,14,15] is label
[6,7,11,12,13,14,15] is label
[6,7,12,13,14,15] is label
[6,7,13,14,15] is label
[6,7,14,15] is label
[6,7,15] is label
[6,7] is label

N WP 1o N OO o



14 : [1,2,3,4,5,7,8,9,10,11,12,13,14,15] is label
13 : [2,3,4,5,7,8,9,10,11,12,13,14,15] is label
12 : [3,4,5,7,8,9,10,11,12,13,14,15] is label
11 : [4,5,7,8,9,10,11,12,13,14,15] is label
i1 : [3,5,7,8,9,10,11,12,13,14,15] is label
10 : [3,7,8,9,10,11,12,13,14,15] is label

. [3,8,9,10,11,12,13,14,15] is label

9

9 [3,7,9,10,11,12,13,14,15] is label
8 [3,7,10,11,12,13,14,15] is label

7 : [3,7,11,12,13,14,15] is Iabel

6 : [3,7,12,13,14,15] is label
6 .

5

5

4

[3,7,11,13,14,15] is label
[3,7,11,14,15] is label
[3,7,11,13,15] is label

: [3,7,11,13] is label
13 : [1,2,4,5,7,8,9,10,11,12,13,14,15] is label

12 : 12,4,5,7,8,9,10,11,12,13,14,15] is label
12 : [1,4,5,7,8,9,10,11,12,13,14,15] is label
12 : [1,2,5,7,8,9,10,11,12,13,14,15] is label
11 : [1,2,7,8,9,10,11,12,13,14,15] is label

10 : [1,2,8,9,10,11,12,13,14,15] is label
9 : [1,2,9,10,11,12,13,14,15] is label

8 [1,2,10,11,12,13,14,15] is label

7 : [1,2,11,12,13,14,15] is label

6 : [1,2,12,13,14,15] is label
5 .
4
3
2

[1,2,13,14,15] is label

[1,2,14,15] is label

[1,2,15] is label

: [1,2] is label

12 : [2,3,4,5,7,8,9,10,12,13,14,15] is label
11 : [3,4,5,7,8,9,10,12,13,14,15] is label
10 : [3,5,7,8,9,10,12,13,14,15] is label
10 : [3,4,7,8,9,10,12,13,14,15] is label
[3,4,8,9,10,12,13,14,15] is label
[3,4,9,10,12,13,14,15] is label
[3,4,10,12,13,14,15] is label
[3,4,12,13,14,15] is label
[3,4,13,14,15] is label
[3,4,14,15] is label
[3,4,15] is label
[3,4] is label
[2,4,5,6,8,9,10,11,12,13,14,15] is label
[4,5,6,8,9,10,11,12,13,14,15] is label
[5,6,8,9,10,11,12,13,14,15] is label
[5,6,9,10,11,12,13,14,15] is label
[5,6,10,11,12,13,14,15] is label
[5,6,9,11,12,13,14,15] is label
[5,6,9,12,13,14,15] is label
[5,6,9,13,14,15] is label
[5,6,9,14,15] is label
: [65,6,9,15] is label
3 : [5,6,9] is label
11 : [2,4,6,8,9,10,11,12,13,14,15] is label

N wd 1o N O
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11 : [2,4,5,6,8,10,11,12,13,14,15] is label
11 : [2,3,5,8,9,10,11,12,13,14,15] is label
11 [2,3,5,7,8,9,10,12,13,14,15] is label
11 [2,3,5,7,8,9,10,11,12,14,15] is label
11 [2,3,6,8,9,10,11,12,13,14,15] is label
11 [2,3,5,6,8,10,11,12,13,14,15] is label
11 [1,4,6,8,9,10,11,12,13,14,15] is label
11 [1,4,5,6,8,10,11,12,13,14,15] is label
11 [1,3,5,8,9,10,11,12,13,14,15] is label
11 [1,3,5,7,8,9,10,12,13,14,15] is label
11 [1,3,5,7,8,9,10,11,12,14,15] is label
11 [1,3,6,8,9,10,11,12,13,14,15] is label
11 [1,3,5,6,8,10,11,12,13,14,15] is label

¢ =1[12: [2,4,5,7,8,9,10,11,12,13,14,15],12 : [1,4,5,7,8,9,10,11,12,13,14,15],



11 : [2,4,6,8,9,10,11,12,13,14,15],11 : [2,4,5,6,8,10,11,12,13,14,15]7,
11 : [2,3,6,8,9,10,11,12,13,14,15],11 : [2,3,5,8,9,10,11,12,13,14,15],
11 : [2,3,5,7,8,9,10,12,13,14,15],11 : [2,3,5,7,8,9,10,11,12,14,15],
11 : [2,3,5,6,8,10,11,12,13,14,15],11 : [1,4,6,8,9,10,11,12,13,14,15],
11 : [1,4,5,6,8,10,11,12,13,14,15],11 : [1,3,6,8,9,10,11,12,13,14,15],
11 : [1,3,5,8,9,10,11,12,13,14,15],11 : [1,3,5,7,8,9,10,12,13,14,15],
11 : [1,3,5,7,8,9,10,11,12,14,15],11 : [1,3,5,6,8,10,11,12,13,14,15]]
D=1[2: [1,2],2 : [3,41,2 : [6,7]1,3 : [5,6,9],4 : [3,7,11,13]]

Yes

Now we see IC’s performance on the same 15-component system:

3 ?- ic(15,[[1,2],(3,4],[6,7],[5,6,91,[3,7,11,1311).
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] is label
[1,2,3,4,5,6,7,8] is label

[1,2,3,4] is label

[1,2] is label

1] is label

2] is label

[2,1] is label
[1,3,4,5,6,7,8,9,10,11,12,13,14,15] is label
[1,3,4,5,6,7,8] is label

[1,3,4,5] is label

[1,3] is label

[1,3,4] is label

[4] is label

[4,1] is label

[4,3] is label
[1,3,5,6,7,8,9,10,11,12,13,14,15] is label
[1,3,5,6,7,8,9] is label

[1,3,5,6] is label

[1,3,5,6,7,8] is label

[1,3,5,6,7] is label

[7] is label

[7,1,3] is label

[7,1,3,5] is label

[7,6] is label
[1,3,5,6,8,9,10,11,12,13,14,15] is label
[1,3,5,6,8,9] is label

[1,3,5] is label

[1,3,5,6,8] is label

[9] is label

[9,6,8,1] is label

[9,6,8,1,3] is label

[9,5] is label

[9,5,3,6] is label

[9,5,3] is label

[9,5,6] is label
[1,3,5,6,8,10,11,12,13,14,15] is label
[1,3,6,8,9,10,11,12,13,14,15] is label
[1,3,5,7,8,9,10,11,12,13,14,15] is label
[1,3,5,7,8,9] is label
[1,3,5,7,8,9,10,11,12] is label
[10,11,12,1,3,5,7,8,9,13,14] is label
[10,11,12,1,3,5,7,8,9,13] is label

[13] is label

[13,10,11,12,1,3] is label
[13,10,11,12,1,3,5,7] is label
[13,10,11,12,1,3,5] is label

[13,7] is label

[13,7,5,10,11] is label
[13,7,5,10,11,12,1] is label

[13,7,3] is label

[13,7,3,12,1,5] is label
[13,7,3,12,1,5,10] is label

[13,7,3,11] is label
[1,3,5,7,8,9,10,11,12,14,15] is label




System IDA best IC IDA worst
15 components, 3 minimal diagnoses | 17 calls to model | 32 calls | 51 calls

15 components, 5 minimal diagnoses | 32 calls to model | 67 calls | 83 calls
20 components, 3 minimal diagnoses | 17 calls to model | 32 calls | 66 calls
20 components, 5 minimal diagnoses | 32 calls to model | 68 calls | 107 calls
30 components, 5 minimal diagnoses | 62 calls to model | 110 calls | 181 calls

Table 1: Some experimental results comparing the efficiency of IC and IDA

10,11,12,13,14,15] is label
9,10,12,13,14,15] is label
10,11,12,13,14,15] is label
10,11,12,13,14,15] is label
9,10,11,12,13,14,15] is label
10,11,12,13,14,15] is label
10,11,12,13,14,15] is label
9,10,11,12,14,15] is label
10,11,12,13,14,15] is label
9,10,12,13,14,15] is label
10,11,12,13,14,15] is label
10,11,12,13,14,15] is label
9,10,11,12,13,14,15] is label

Diagnoses are: [2 : [2,1],2 : [4,3],2 : [7,6],3 : [9,5,6],4 : [13,7,3,11]]

Yes
3 7-=

In Table 1 some additional examples are presented.

Throughout this comparison, we have used only calls to the model (or the fault indicator function
f) as complexity measure. Note however that the critical set algorithms are described in an imperative
language. (Loveland [8] mentions that they were implemented in Pascal.) Since it is not necessary to use
the answer substitution feature of the logic programming models, the whole IC algorithm could easily be
coded in an imperative language. Such a version of IC is likely to be much faster than a version requiring
logic programming-style models. This is a desirable result for reasons of efficiency.

5 Conclusion

The study of the use of the critical set algorithm in diagnosis is not completed in this paper. A natural
extension of this work involve the comparison of the critical set algorithm implemented in IC with the
other ones described in [8], using not only synthetic examples, but also real-life or realistic ones.

We emphasize, however, that the Minimal Diagnosis Hypothesis (and equivalently monotonicity of the
fault indicator function) does not apply in many realistic situations. For example, the use of (strong) fault
models usually destroys it. A less known situation in which the Minimal Diagnostic Hypothesis does not
hold is the diagnostic problem described by Gallanti et al. in [6] (also cf. [2]). In extreme synthesis, this
problem consists of finding a minimal (in terms of non-zero values) solution to a system of linear equali-
ties. We prove that the fault indicator function for this diagnostic problem is not monotonic by giving a
counterexample, using the following quantitative model (from [6]):

6 = 2Ap; + 3Aps — 4Aps — 2Aps + 5Aps
4 = 2Ap; + 2Aps, — 6Ap; + 8Aps
0 = Ap — 5Ap3 — 5Ap

Let f be the fault indicator function. In this case, the system has a solution in which Ap; = Aps =
Apy = Aps = 0 and Aps # 0, but Apl = Apy, = Aps = Apy = Ap; = 0 is not a solution. Therefore,
{p2} is a diagnosis (hence f({p2}) = 1). However, its superset {p2,ps} is not a diagnosis (and there-
fore f({p2,ps}) = 0). This directly contradicts the definition of monotonicity for f. This result shows



that we cannot use a critical set algorithm to find diagnoses efficiently in ODS-PI. We note that Mozetic
(in [10]) incorrectly includes this as an example of a problem that can be solved by IDA. In particu-
lar, IDA finds the following diagnoses: {{p2},{ps}, {p1,p3}, {p1,p1},{p3,pa}}. The actual diagnoses are:
{{p2}, {p1,p3}, {P1,P4,05}, {pP3,ps,p5}}. Besides the obvious difference between these two sets, not all
supersets of {p»} are diagnoses, since this diagnostic problem is non-monotonic?.

6 Appendix

h Ic

% A Diagnostic Procedure that Uses

% Igor Mozetic’s Incremental Diagnostic Algorithm
% in Combination with

% D.W. Loveland’s Critical Set Algorithm

h

% written in SWI-Prolog (University of Amsterdam)
h

%

% Rita L. Childress and Marco Valtorta

pA University of South Carolina

pA April 1993

% _— _— _—

% The following part is a Prolog implementation of Loveland’s

% Algorithm II’ for isolating a critical set.

% [Loveland, Donald W., ‘‘Finding Critical Sets.’’ _Journal of
% Algorithms_ 8, 362-371 (1987)].

% Pseudocode for Algorithm II’ (quoted from above article)

% {Assumption: a critical set exists}

% (1) ¢ <--{}

% A<--1T

% R <—- {}

% (2) Split A into roughly equal disjoint sets Al and A2
% such that [Al] <= [A2]

% (3) If £(C union R union A1) =1

% then

% A <-- A1

% else {A2 contains elements of the critical set being
% isolated}

% R <-- Al union R

A A <-- A2

% (4) If |Al > 1

% then

% return to step 2

% else {An element of the critical set is isolated}
% C <-- A union C

pA A <--R

% R <-—- {}

% if A = {}

% then

% C is a critical set

% else

% if £(C) =1

% then

% C is a critical set

% else

% continue (with step 2)

4The reader familiar with [6] may wonder whether we are using the numerical model or the (abstract) logical model. The
latter is the case, but this is irrelevant here, since {p2,ps} is not a diagnosis in the abstract logical model, while {p2} is.



i= dynamic
min_diag/1.

% makes an assignment if one argument is unbound;
% if both are bound it tests for equality
assign(A,R).

% sets up split routine
split(A,A1,A2) :-
split_aux(A4,[T,MidA1,[T,A2),
reverse(MidA1,A1).

% split routine

% base case if list splits evenly
split_aux([],A1,A1,A2,A2).

% base case if list doesn’t split evenly
split_aux([H|[]1],01dA1,A1,A2,A2) :-
append ([H] ,01dA1,A1).

% recursive case
split_aux([H[TJ],01dA1,A1,01dA2,A2) :-
last(T,Last,NewTail),
append([H],01dA1,MidAl),
append(Last,01dA2,MidA2),
split_aux(NewTail,MidA1,A1,MidA2,A2).

% returns the last element in the list (as a list) and
% the list minus the last element

last (T, [Last] ,NewTail) :-

reverse(T,T1),

assign(T1, [Last|RevTaill),

reverse(RevTail,NewTail).

% returns the cardinality of a set
cardinality([],Card,Card).
cardinality([_|T],01d,New) :-

Newl is 01d + 1,
cardinality(T,Newl,New).

% takes the user’s minimal diagnoses and asserts each of them as a min_diag

% used to implement the binary monotone fault indicator function for synthetic tests
assert_diags([]).

assert_diags([H|T]) :-

assert(min_diag(H)),

assert_diags(T).

% tests if C is a superset of any minimal diagnosis
% diag(C) is true iff £(C) = 1 in Loveland’s paper
diag(C) :-
write(C), write_ln(’ is label’), ¥ output for trace and counting
% number of calls to model
min_diag(M),
test_subset(M,C).

% Succeeds if first argument is a subset of the second argument
test_subset([],_).
test_subset([H|T],C) :-

member (H,C),

test_subset(T,C).

% Step 2 of Loveland’s algorithm
step2(4,014C,01dR,C) :-
split(A,A1,A2),
append(01dC,01dR,B1),
append(B1,A1,Big),!,
step3(Big,01dR,MidR,A1,A2,NewA),
step4(01dC,NewA,MidR,C) .



% Step 3 of Loveland’s algorithm
step3(Big,01dR,R,A1,A2,A) :-

(diag(Big),

assign(R,01dR), 7% R’s value didn’t change
assign(4,A1);

append(A1,01dR, Temp),

assign(R,Temp),

assign(A,A2)).

% Step 4 of Loveland’s algorithm

step4(01dC,MidA,MidR,C) :-

cardinality(MidA,0,Card),

Card > 1,

step2(MidA,01dC,MidR,C).

step4(01dC,MidA,MidR,C) :-

append(01dC,MidA,C),

assign(A,MidR),

assign(A,[]), % if A is the empty set
1

step4(01dC,MidA,MidR,C) :-

append (01dC,MidA,CI1),

assign(A,MidR),

(diag(Cl),
assign(C,C1), % assign result to return parameter
!; %(redundant?) cut added

step2(A,C1,R,C)).

% setting up critical set algorithm with U as universe of components,
% and C being a critical set being returned

critical_set(U,C) :-

assign(A,U),

assign(01dC, [1),

assign(R,[1),

step2(4,01dC,R,C).

% interface between Mozetic’s IDA and the Critical Set Algorithm
% replaces his min_diag with call to critical set algorithm
min_diag(Succs, Diag0, ConfsO, Diag, Confs, 0Obs) :-

Diag0 = _:Y,

critical_set(Y,Diagnosis), !, % essential cut added
length(Diagnosis,L),

Diag = L:Diagnosis,

Confs = ConfsO. J0ur min_diag currently does not change Confs.

% top level goal U is the number of components and Diagnoses are
% the minimal diagnoses in the synthetic models

ic(U, Diagnoses) :-

assert_diags(Diagnoses), Ysets up the function f (model)
assert(state_size(U)),

ida(D,_), nl, write(’Diagnoses are: ’), write_ln(D).

% P P P

%% IDA (c) Copyright 1992, Austrian Research Institute for Artificial Intelligence

%% File: init
%% Author: Igor Mozetic (igor@ai.univie.ac.at)
%% Date: April 15, 1992

% Top level loading directives.
% An interface to the model <SD, Comps, Obs> must be defined in terms of
% the following predicates (see examples):

% model( Comps, Obs ) - a binary predicate which relates Comps to Obs,
% observation( Obs ) - an instance of Obs (optional),
% state_functor( Funct ) - a functor of Comps,



% state_size( N ) - the arity of Comps,

% state_normal( I, Ok ) - a constant which denotes normal state in Comps

% at argument position I (must be singleton),

% state_abnormal( I, Ab ) - a constant which denotes abnormal state in Comps
% (there can be several abnormal states at I).

:- op( 600, xfy, ’:’ ).

load_file( File ) :- consult( File ). % C-Prolog
%load_file( File ) :- compile( File ). % Quintus, SICStus Prolog

%:- load_file( ’kdiags.pl’ ). 7 we don’t use Mozetic’s kdiags.pl
% the predicates needed from kdiags.pl are
% below in this file, with modifications as noted

;= load_file( ’hset.pl’ ).

:= load_file( ’lattice.pl’ ).

:- load_file( ’ords.pl’ ). % sets represented by ordered lists
%:- load_file( ’bits.pl’ ). % sets represented by bit vectors

ida( Diags, Confs ) :-
observation( Obs ),
k_diags( 1000, Obs, Diags, Confs ),
retractall(min_diag(_)).
observation([]). % No observations

% sets up to find k = 1000 diagnoses
ida( Obs, Diags, Confs ) :-
k_diags( 1000, Obs, Diags, Confs ).

k_diags( K, Obs, Diags, Confs ) :-
k_diags( 0, K, [], [], Diags, Confs, Obs ).

% k_diags( +N, +K, +DiagsO, +ConfsO, -Diags, -Confs, +0bs )
% Given an initial set of minimal DiagsO and (non-minimal) ConfsO,
% computes next K-N minimal diagnoses. Returns updated Diags and Confs.

k_diags( N, K, Diags0O, ConfsO, Diags, Confs, Obs ) :-
N < K,
gen_label( DiagsO, ConfsO, Label ), !,
verify_label( Label, DiagsO, ConfsO, Diagsl, Confsl, Obs ),
( DiagsO == Diagsl -> N1 = N ; N1 is N+1 ),
k_diags( N1, K, Diagsl, Confsl, Diags, Confs, Obs ).
k_diags( _, _, Diags, Confs, Diags, Confs, _ ).

% verify_label( +Label, +DiagsO, +ConfsO, -Diags, -Confs, +0bs )

% Verifies whether Label is a diagnosis or a conflict. If it is

% a (non-minimal) Diag0 then min_diag/6 returns a minimal Diag and
% previous DiagsO are updated into new Diags. Otherwise Label is

% a Conf, and ConfsO are updated into Confs.

verify_label( Label, DiagsO, ConfsO, Diags, Confs, Obs ) :-
call_model( Label, DiagO, Obs ), !,
%  gen_succs( Diag0O, Succs ), % part of IDA not used in our program
min_diag( Succs, DiagO, ConfsO, Diag, Confs, Obs ), % uses our version to
% call the critical set
% algorithm
ord_insert( DiagsO, Diag, Diags ).
% latt_insert( DiagsO, Diag, Diags ). % part of IDA not used in our program
verify_label( Conf, Diags, ConfsO, Diags, Confs, _ ) :-
latt_replace( ConfsO, Conf, Confs ).

call_model(Label, Label, 0Obs) :-
Label = _:Y,
diag(Y).

% gen_label( +Diags, +Confs, -Label )
% Label is a complement of a hitting set of minimal Diags,
% such that it is not a SUBset of any Confs.



2:11,21, 2:11,5

o :[1,2], 2:[1, x 4:11,2,3,4
% Nondeterministic,

NP complexity !

gen_label( Diags, Confs, Label ) :-
hitting_set( Diags, Hset ),
ords_complement ( Hset, Label ),
\+ latt_member( Label, Confs ).
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