
On the Complexity of Belief
Network Synthesis and

Refinement
Marco Valtorta

University o f South Carolina, Columbia, South Carolina

Donald W. Loveland
Duke University, Durham, North Carolina

ABSTRACT

Belief networks are important objects for research study and for actual use, as the
experience of the MUNIN project demonstrates. There is evidence that humans are
quite good at guessing network structure but poor at settling values for the numerical
parameters. Determining these parameters by standard statistical techniques often
requires too many sample points (test cases') for larger systems, so knowledge engineers
have sought direct algorithms to define or adjust the parameters by appeal to selected
test cases. It is shown for both Dempster-Shafer networks and Bayesian networks that
for very simple networks (trees), defining parameter values (synthesis) or refining
expert-estimated values (refinement) can be computationally intractable. These unpleas-
ant results hold even when we settle for approximate values or demand agreement on
only a certain percentage of cases.

KEYWORDS: knowledge base refinement, expert systems, knowledge acquisi-
tion, belief nets, Dempster-Shafer theory of evidence, Bayesian networks,
computational complexity, NP-completeness

I. INTRODUCTION

Belief networks are gaining popularity as a formalism for implementing
knowledge bases for expert systems. With respect to the more common
MYCIN-style rule bases, belief networks overcome the problems arising
from a truth-functional approach to evidence propagation, by adopting a
model-based (or intensional) approach, as explained, for example, by Pearl

Address correspondence to Marco Valtorta, Department of Computer Science, University of South
Carolina, Columbia, SC 29208.

Received July 1, 1991; accepted February 26, 1992.

International Journal of Approximate Reasoning 1992; 7:121-148
© 1992 Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York, NY 10010 0888-613X/92/$5.00 121

122 Marco Valtorta and Donald W. Loveland

[1, Chapter 1]. A disadvantage of belief networks is the computational
effort needed to process them.

A key feature of belief networks is their use of numerical parameters.
These parameters are probability masses in Dempster -Shafer networks
(see Smets [2] for a brief introduction) and conditional probabilities (or
related parameters, such as likelihood ratios) in Bayesian networks (see
Pearl [1] for the canonical treatment). These numerical parameters can be
estimated by using statistical techniques. However, such techniques re-
quire a large number of sample points (cases), and developers often resort
to knowledge engineering techniques, in the presence of fewer test cases,
as documented in the construction of MUNIN.

At present, there are few large applications of belief networks. Of these,
probably the best known as MUNIN (Andreassen et al. [3]), a medical
expert system for the diagnosis of muscle and nerve diseases from bioelec-
tric signals. As of mid-June 1989, MUNIN had grown to a network of
approximately 1000 nodes (Steen Andreassen, personal communication,
June 1989), 1 and its developers assessed the system as too large to set the
parameters directly from test cases:

Estimating the 270 conditional probabilities [in part of the MUNIN
belief network of 1987]...would require at least 10000 cases [for
use of standard statistical techniques]. Instead of relying on this
empirical approach, we have tried to rely as much as possible on
"deep knowledge," using an understanding of pathophysiological
processes as expressed in medical textbooks and papers (Andreas-
sen et al. [3, p. 369]).

However, the designers appeal to test cases to validate the estimates and
refine them when necessary. In MUNIN, "Discrepancies between the
network and the medical experts lead to revision of the model parameters"
(Andreassen et al. [3, p. 370]). The expert here defines test cases, and the
designers have the task of refining the parameters to fit the test cases.

There are several points to consider regarding synthesis and refinement
of parameter values for diagnostic systems. In addition to the well-docu-
mented MUNIN case, there is ample evidence that refinement of parame-
ters is normally performed in the construction of knowledge-based systems
that use numerical uncertainty representations. Indeed, parameter re-
finement capability is needed to achieve diagnostic accuracy, because in
many applications test cases reveal inaccuracies in the initial parameter
settings that would lead to rejection of the system. However, it is difficult
to refine parameters to fit test cases ("memorize"). One result we show is
that there is no computationally feasible algorithm (explained below) that
uniformly performs the refinement task.

1 MUNIN has been developed in the context of ESPRIT project 599.

Complexity of Belief Networks 123

With the increasing interest in belief networks and the consideration of
algorithms for them comes the need to understand the computational
resources needed. There has already been work showing that important
tasks in belief networks are computationally intensive, and these results
restrict our vision of what is possible. The primary example so far is the
work of Cooper [4], where it is shown that, even provided with the correct
local conditional probabilities (direct causal relations), the calculation of
the desired output conditional probability is computationaily intractable
(NP-hard). This occurs in rather simple multiply connected graphs and
raises serious questions about freedom to employ apparently commonly
occurring graphs. Our paper gives perhaps even more disturbing results in
that simple trees can underlie computationally intractable problems.

To define a belief network involves a knowledge acquisition task. To
either directly define the network or validate it after some oracle (e.g.,
expert) has provided the initial specifications, one relies on test cases. In
essence, we show here that defining the numerical parameters (masses for
Dempster-Shafer nets, conditional probabilities for Bayes nets) for Demp-
ster-Shafer networks and for Bayesian networks of a common form is, in
very simple cases, computationally intractable. That is, to define the
network that agrees with the test cases can be intractable. Moreover, this
intractability remains true even when the expert can offer a good approxi-
mation to the parameters. It holds true if we demand agreement with only
k % of the cases offered. As perhaps a final blow, this intractability is still
present if we desire only an approximate answer.

This state of affairs has recently been shown to hold for MYCIN-type
rule-based systems (Valtorta [5]). Results of the same flavor appear for
neural nets. (Further comments are made in Section 9.) However, it has
not been known until now how strong the computational intractability
results are for belief networks.

This paper addresses the problem of synthesis and refinement of numer-
ical parameters in belief networks from an algorithmic standpoint. Both
Dempster-Shafer networks and Bayesian networks are considered. Section
2 formalizes the problem already described in this introduction, by using
the notion of case in the Dempster-Shafer framework. Section 3 shows
that the synthesis of masses in Dempster-Shafer networks from cases is
NP-hard. Section 4 is devoted to the proof that the refinement of masses in
Dempster-Shafer networks from cases is NP-hard. Section 5 does for
Bayesian network what Section 2 did for Dempster-Shafer networks, and
Section 6 is concerned with the synthesis of likelihood ratios in Bayesian
networks. This problem is also shown to be NP-hard. Many readers will
find Sections 7 and 8 to contain the most interesting results. We study
approximations in Section 7. We reconsider the notion of case in Section 8.
Informally, a case is an input-output pair that represents a point of the
function realized by the net. There are two kinds of cases. Up to Section 8,

124 Marco Valtorta and Donald W. Loveland

we view the network as mapping inputs to beliefs in particular states. We
call these oracular cases. In Section 8, we consider a particular class of
appl ica t ions- - those in which the task of the expert system that uses the
belief network is to classify, such as in diagnostic systems. For these
applications, it is more natural to assume that the output part of a case is
an indication of class. We call these cases observed cases. For example, in a
medical diagnosis setting, given a set of symptoms as input, the output part
of an oracular case would the beliefs in a list of diagnostic hypotheses,
whereas the output part of an observed case is either the actual diagnosis
(if there is such a thing) or the most likely diagnosis or a ranking of several
of the most likely diagnoses. Section 9 discusses related work, and Section
10 concludes the paper with an assessment of results and the sketch of an
alternative refinement model.

2. F O R M A L I Z I N G MASS R E F I N E M E N T

Without loss of generality, since we are after lower-bound results, we
consider Demps t e r -S ha fe r networks (from now on, DS-nets) in the form
of a tree (and call them, simply, DS-trees). There are many different
versions of DS-trees in the literature, all related in rather straightforward
ways. In this paper, alternating Markov trees are used. Markov trees are
defined in various places, such as the works of Shafer [6], Shenoy and
Shafer [7, 8], and Zarley [9]. Our definition is adapted from Mellouli [10,
pp. 66, 85]. A (qualitative) Markov tree of variables in a set S is a tree
T = (N, E), such that N is a subset of the power set of S (i.e., the nodes
of the tree are subsets of S) and such that the intersection of two nodes nt
and n 2 is contained in node n o if n o lies between n~ and n 2 in some
branch of T. 2 A Markov tree T = (N, E) is alternating if every node in the
tree either is contained in all its neighbors or contains all its neighbors.
(The reader who is unfamiliar with the definitions may want to verify that
the tree in Figure 1 is an alternating Markov tree for variables in the set
S = {ci, c2 cn, d}.)

For simplicity (and again, without loss of generality), each of the
variables in the DS-tree will be assumed to be two-valued. Call the two
values 0 and 1. We will express the mass assigned to a subset of the f rame
of discernment 3 of variable a as m(a = vi), where v~ = 0, 1, or as m(la),

2As noted by Shenoy and Shafer [8], Markov trees are called join trees in the database
literature.

3 See, for example, Smets [2] or Gordon and Shortliffe [11] for the definition. Informally,
the frame of discernment for a set S of variables (where all variables have a discrete range of
values) is the Cartesian product of the set of variable-value pairs for all variables in S.

Complexity of Belief Networks 1 2 5

m l (c 1 ~ d) = $1, r n l (O) = 1 - s 1

m 2 (c 2 ~ d) = s 2, m 2 (®) = 1 - s 2

m . (c n ~ d) = s n , m n (O) = 1 - s n

Figure 1. DS-tree and associated compatibility relations for problem MS.

where I a = a, ~ a. T h e mass assigned to the f r ame of d i scernment of
var iable a will be indicated as m (O (a)) or, when there is no ambiguity,
s imply as m(O) . F o r jo int variables , we will indicate a subset of the f r ame
of d i sce rnment by a p ropos i t iona l formula . Fo r example , consider the joint
var iable (a , b) whose f r ame of d i sce rnment is O((a , b)) = {{a = 0, b = 0},
{a = 0, b = 1}, {a = 1, b = 0}, {a = 1, b = 1}}. T h e mass assigned to the
subsets {{a --- 0, b = 0}, {a = 0, b = 1}, {a = 1, b = 1}} will be indicated as
m (~ a v b), or as m (a ~ b). T h e mass assigned to the f r ame of discern-
m e n t of the joint var iable (a , b) will b indicated as m (O ((a , b))) or, when
the re is no ambiguity, s imply as re(O). Fol lowing Pear l [1, p. 418], we call a
subset o f the f r ame of d i sce rnment such as (~ a v b) a compatibility
relation. [Intuitively, m (~ a v b) quantif ies the constra int that a is not
compat ib le with ~ b.]

A DS-presentation is def ined as a triple consist ing of a DS- t ree , a set of
compat ibi l i ty relat ions, and an ass ignment of masses to some of the
compat ibi l i ty re la t ions and their f r ames of d iscernment . F igure 1 shows a
DS-p re sen t a t i on when values s 1, s 2 s n are fixed. DS-presen ta t ions will
be cons idered as realizing a funct ion f rom the vec tor of masses assigned to
the leaf nodes of a DS- t r ee to a be l ief (simply a mass for the nets that we
consider in this pape r) for the roo t node (via a process involving D e m p s t e r ' s
rule and s u m m a r i z e d later) . A point in the g raph of the funct ion will be
called a case. In o the r words, a case is an i n p u t - o u t p u t pair tha t repre-
sents the po in t o f the funct ion real ized by the net. In a classification

126 Marco Valtorta and Donald W. Loveland

system, the input part of the case is an assignment of masses to traits of
the item to be classified, and the output part of the case is an assignment
of masses to the possible classifications. T~ through T 4 of Figure 2 are
examples of cases. We now describe how this models the situation de-
scribed by Andreassen et al. [3] and summarized in the introduction. The
output part of a case describes the desired "answer" of the DS-tree when
"queried" with the evidence encoded as the input part of the same case.
Typically, there will be a discrepancy between the value of the belief as
computed by the tree and the belief given as the output part of the case.
This discrepancy must be eliminated in order for the DS-tree to work
correctly.

Before addressing the task of refinement, we address the more basic
task of parameter instantiation (assigning values to the parameters). We
call this the synthesis task.

3. INITIAL MASS SYNTHESIS IS NP-HARD

The problem considered in this section is a problem of synthesis rather
than a problem of refinement of masses in DS-presentations.

m l (c ~ ~ d) = sl, m l (O) = 1 - s l

m 4 (c 4 =~ d) = $ 4 , m4(O) = 1 - s 4

T1: ((a , a , a , O) , a)

7"2: ((b , b , b , O) , b)

T3: ((a , a , O , a) , a)

T4: ((b , b , O , b) , b)

Figure 2. Instance of MS corresponding to (x l v x2 v x3) & (xt V x 2 v x4).

Complexity of Belief Networks 127

PROBLEM NAME Mass Synthesis (MS).

PROBLEM INSTANCE A DS-tree and associated compatibility relations as
given in Figure 1; a set of cases.

QUESTION Is there an assignment of values to s 1 Sn, such that the
function realized by the DS-tree satisfies the cases?

THEOREM 1 MS is NP-hard.

Proof One-in-three satisfiability (OTS) (Garey and Johnson [12, p.
259]) will be transformed into MS. The variant in which no clause in the
formula contains a negative literal will be used. The generic OTS instance
is a propositional formula in 3-conjunctive normal form, with no negated
variables, such as (x 1 v x 2 v x3) (~L (x 1 v x 2 v x4). The question is whether
there is a model (i.e., a satisfying assignment of true or false to each
variable) for the expression such that each clause has exactly one true
variable.

Given a formula E in OTS, the following algorithm produces in time
polynomial in the size of E an instance of MS such that the question has
answer yes if and only if E has a model in which only one variable per
clause is true.

Let n be the number of distinct propositional variables in E and m the
number of clauses in E. (n and m can be obtained in polynomial time
from any reasonable encoding of E.) (Name the variables xl x~ for
convenience.)

The number of leaves in the DS-tree of the corresponding MS-instance
is n. The number of cases in the corresponding MS-instance is 2m.

There are two cases for each clause in E. Let a and b be a pair of
numbers such that 0 < a < b < 1. Let a generic clause contain the vari-
ables xi, xj, x k. The input part of the first case for each clause has
m(c i) = m(c j) = m (c k) = a , and 0 everywhere else. The output part of the
first case for each clause is a. To obtain the second case for this clause,
substitute b for a.

The reader can easily verify that the algorithm just given runs in time
polynomial in the size of E.

As an example, Figure 2 shows the instance of MS corresponding to
E = (x I v x 2 V X3) • (X 1 V X 2 V X4). In the figure, T~ and T 2 correspond
to the first clause in E, while T 3 and T 4 correspond to the second clause in
E.

Now we prove the following statement. An instance of MS built accord-
ing to the algorithm just given is a yes-instance if and only if the
corresponding instance of OTS is a yes-instance. The following fact is
useful.

128 Marco Valtorta and Donald W. Loveland

Let [p +] denote the p r o b a b i l i s t i c s u m operator, defined as a [p +]b
= a + b - a b . It is easy to show, on the basis of an observation by Gordon
and Shortliffe [11, Section 3.3], that the mass of d , r e (d) , can be computed
as follows4:

m(d) = m(c~)* s~[p +]--. [p +]m(c.)* s.

The details of the computation, which involves projections over different
frames of discernment and the use of Dempster 's rule, are left to the
reader. Here, m (d) is also the Dempster -Shafer b e l i e f in d, written
Bel(d), as defined, for example, by Smets [2].

We first prove the " i f part" of the statement. If variable xi in the model
for E is true, set s i to 1. Otherwise, set it to 0. This ensures that exactly
one of the masses corresponding to each case is 1 and the other two are 0.
Therefore, the computed Bel is equal to the mass, and each case is
satisfied.

The "only if" part is proved now. Assume that we have a yes-instance of
MS. It will be shown that in order for an instance of MS to be a
yes-instance, it must be that exactly one of the si corresponding to each
case is 1 and the other two are 0. By assigning true to the variable
corresponding to this single s i, a model for E is obtained that satisfies the
"one in three" condition. Consider a generic pair of cases corresponding to
a clause in E. We show, by algebraic manipulation, that this pair is
satisfied if and only if exactly one of the three s~ corresponding to the
cases is 1 and the other two are 0. Call the strengths x, y, and z. The pair
of cases is satisfied if and only if the following system has a solution:

a x [p +] a y [p +] a z = a , b x [p +]by[p +]b z = b

that is, after carrying out the probabilistic sums and dividing each side by
a, we have

x + y - a x y + z - a x z - a y z + a 2 x y z = 1

x + y - b x y + z - b x z - b y z + b 2 x y z = 1

If any two of x, y, and z have value 0, the system has a solution if and only
if the other variable has value 1.

To show that the system has no solution if only one of the three
variables is 0, subtract the second equation from the first side by side, and
divide by (b - a):

x y + x z + y z = (b + a) x y z

This equation has no solution if only one of the three variables is O.

4 Each m should have a different subscript, which is dropped here for readability,

Complexity of Belief Networks 129

The only case left is that in which the three variables are all positive
(and, of course, no greater than 1). In this case, each of the products xy,
xz, and yz is greater than or equal to xyz:

xy + xz + yz > 2xyz > (b + a) xyz

and therefore it is impossible that xy + xz + yz = (b + a)xyz. •

It has been shown that MS is NP-hard. It is appropriate to ask if we can
bound the computat ion f rom above; in particular, is MS in NP? Consider
the following argument. We guess the correct value for each mass (if there
is one, else guess 0) and compute the mass of d. If the guessed values have
short representations, then the computat ion of re (d) is do-able in polyno-
mial time, and the check against cases is possible in polynomial time.
However, we have no assurance that when masses exist for sl , s n,
values of sufficiently small representat ion exist, Without further analytic
results, we must allow for the possibility that some s i has such a long
representat ion that it cannot even be scanned in polynomial time in the
length of the problem input. Thus, we can have the best possible upper
bound on computat ion t ime for sl s~, given the circumstances, if the
sought values are reasonable. This is somewhat of a moot point anyway;
the problem would be intractable enough even if it were in NP. A similar
argument applies for the other NP-hardness results in this paper.

4. MASS REFINEMENT IS NP-HARD

PROBLEM NAME Mass Refinement, Search Version (MRS).

PROBLEM INSTANCE A DS-presentat ion with an assignment of values 5
for s l , . . . , s n as in Figure 1; a positive constant e; a set of cases.

QUESTION Find an assignment of values to s l , . . . , s n each of which is at
most e away from the given assignment such that the function realized by
the DS-tree satisfies the cases.

MRS is NP-hard if the next decision problem is NP-hard.

PROBLEM NAME Mass Refinement (MR).

PROBLEM INSTANCE A DS-presentat ion with an assignment of values
for s I s~, as in Figure 1; a positive constant e; a set of cases.

5 These values may be expert-given or otherwise estimated.

130 Marco Valtorta and Donald W. Loveland

QUESTION Is there an assignment of values to s~ s, each of which is
at most e away from the given assignment such that the function realized
by the DS-tree satisfies the cases?

THEOREM 2 M R is N P - h a r d f o r a n y f i r e d e.

Proof OTS (defined in the proof for problem MS in the previous
section) will be shown to be reducible to MR. Given a formula E in
positive 3-conjunctive normal form, the following algorithm produces in
time polynomial in the size of E an instance of MR such that the question
has answer yes if and only if E has a model in which only one literal per
clause is true. Let k = e /2 . The algorithm is totally analogous to the one
in the proof for problem MR except that the output of the first case in
each pair is a * k, and the output of the second case in each pair is b * k.

As an example, Figure 3 shows the instance of MR corresponding to
E = (x I V x 2 V x3) • (x 1 V x 2 V x4). In the figure, T l and T 2 correspond
to the first clause in E, and T 3 and T 4 correspond to the second clause
in E.

rnl(c I ~ d) = s~, m l (®) = 1 - s 1

m4(c 4 ~ d) = s4, m4(O) = 1 -- s 4

Estimates: s 1 = s z = s 3 = s 4 = 0

Tz: ((a , a , a , O) , a k)

T2: ((b, b, b,0), t,k)

T3: ((a , a , O , a) , a k)

T4: ((b,b,O,b),b/,)

Figure 3. Instance of MR corresponding to (x I v x 2 v x 3) &(x 1 v x 2 v x4).

Complexity of Belief Networks 131

An instance of M R built according to the algorithm just given is a
yes-instance if and only if the corresponding instance of OTS is a yes-
instance.

The "if par t" is so similar to that of the proof that MS is NP-hard that it
will not be detailed.

The "only if" part is also analogous. The system to be satisfied is

ax[p +]ay[p +]az[p +] = ak, bx[p +]by[p +]bz[p +1 = bk

that is, after carrying out the probabilistic sums and dividing each side of
the equation by a and b respectively, we have

x + y + z - axy - axz - ayz + aZxyz = k

x + y + z - b x y - b x z - b y z + b Z x y z = k

If any two of the variables have value O, the system has a solution if and
only if the other has value k.

To show that the system has no solution if only one of the three
variables is O, subtract the second from the first, side by side:

xy + xz + yz = (b + a)xyz

From this point on, the proof is the same as for MS. •

5. FORMALIZING LIKELIHOOD SYNTHESIS

We now consider Bayesian networks, which provide a related but
alternative approach to belief networks. The relationship between Demp-
s te r -Shafe r networks and Bayesian networks is not clear enough for us to
translate any intractability results directly from one formulation of belief
networks to the other. 6 We do prove similar intractability results for
Bayesian networks (from now on, Ba-nets) in this and the following
sections but in a somewhat different manner, because we have no counter-
part to this section's L e m m a 1 that applies to Demps t e r -Sha fe r networks.
We also suspect that, should the relationship be made entirely precise, the
translation of arguments here would be less clear than the direct reproofs.

As in Section 2, we consider only Ba-nets that are trees (Ba-trees), and
assume that all variables are two-valued. Call the two values 0 and 1. The
event corresponding to variable E being 1 will be denoted as e, and the

6 Lauritzen and Spiegelhalter [13] show that join trees can be used as a representation for
Bayesian networks as well as DS-nets. Shenoy and Sharer [8] show that the rules for
traversing a join tree are the same whether one is computing a belief according to
Dempster-Shafer theory or according to Pearl. Also see Pearl [1, Chapter 9].

132 Marco Valtorta and Donald W. Loveland

event corresponding to variable E being 0 will be denoted as ~ e. The
prior odds of A are indicated as O (A) and defined as O (A) = P (A) / P (~
A). The likelihood (ratio) of A I B is indicated as L (A f B) and defined as
L (A I B) = P (A I B) / P (A P ~ B). The posterior odds of A I B are indi-
cated as O (A I B) and defined as O(A I B) = P (A I B) / P (~ A I B).

The belief in E, BeI(E), is defined as the (posterior) conditional proba-
bility of E given all available evidence. For example, in the network of
Figure 4, BeI(H) is the conditional probability of H given all evidence. By
"all evidence," we mean the prior probability of H, whether e i or ~ e i
holds for each i, and the two conditional probabilities P (E I H) and
P (E I ~ H) for each of the links between E~ and H. Alternatively, the
evidence can consist of the prior odds of H, whether e i or ~ ei holds for
each i, and the two likelihoods L(el H) and L(~ e J H) for each of the
links between E~ and H. Note that there is a (very) simple procedure to
compute prior probabilities from prior odds, conditional probabilities from
likelihood ratios, and vice versa. Moreover, there is a (very) simple proce-
dure to compute the posterior odds of H from BeI(H) and vice versa.
Therefore, we are at liberty to choose either presentation when we
examine the computational complexity of operations in Bayesian networks.
We choose the odds-likelihood ratio presentation for simplicity.

To define a case for a Bayesian network, we need to recall a distinction
made by Pearl [1] between tangible and intangible (or virtual) evidence.
Tangible evidence is direct, categorical evidence for an event. Intangible
evidence is a summary (in uncertain terms) of evidence bearing on an
event. For example, there could be tangible evidence that an alarm sounds,
or there could be an uncertain testimonial of the same event. Pearl argues
that the uncertain testimonial (and, generally, intangible evidence) can be
summarized using likelihood ratios. He also proposes [1, pp. 151-152] to
introduce special events ("dummy nodes") for testimonials and link them
to the events of interest (e.g., alarm activations) through a link whose
likelihood ratio is the summary of intangible evidence. With the introduc-
tion of dummy nodes, intangible evidence is reduced to a special case of

Figure 4. Ba-tree for Example 1.

Complexity of Belief Networks 133

tangible evidence] Therefore, only tangible evidence is considered in this
section.

A Ba-presentation is a triple consisting of a Ba-tree, prior odds, and
likelihood ratios. Ba-presentat ions will be considered as realizing a func-
tion from a set of outcomes for the events that are the leaves of the
Ba-tree to a belief for the root node. A point in the graph of the function
is called a case. We do not require a case to indicate the value of don' t
care variables, as illustrated in the following example.

EXAMPLE 1 (Pearl [1]) a Suppose that a shop has installed a set of n
burglar alarms. Each burglar alarm consists of a different sensor device
(e.g., photocell, air pressure sensor) that produces a distinct alarm signal.
Let H stand for the event that a burglary takes place and E i stand for the
event that the ith alarm goes off, so that e i indicates that the ith alarm
goes off and ~ e i indicates that the ith alarm does not go off. This setup
can be represented by the simple Ba-tree in Figure 4. (Recall that
Bayesian networks are directed graphs and the direction of the edges is
determined by causality. 9) The reliability and sensitivity of alarm k are
characterized by the conditional probabilities P (e k I H) and P (e ~ [~ H)
or, more succinctly, by L(ek l H) = P(ek l H) / P (e k [~ H) . (Reliability
and sensitivity are the terms used by Pearl. Related terms used in the
medical domain are true positive rate, selectivity, and false positive rate.)

A case for this example consists of an indication of active and inactive
alarms and of the corresponding belief in a burglary taking place. For
instance, suppose that the belief in a burglary taking place when the first
alarm goes off but the second does not is 0. The corresponding case is
represented as ((e 1, ~ e2), 0). Note that, as the belief in a burglary de-
pends only on the state of alarms 1 and 2, we are not required to specify
the state of all other ("don ' t care") alarms. The specification of the state of
all alarms in this example would require an unreasonably large number of
data, even for a moderately small number of alarms, because each don' t
care alarm can be either on or off in a case.

The situation described in the introduction has been modeled as follows.
The output part of a case describes the desired answer of the Ba-tree when
queried with the evidence encoded as the input part of the case. Typically,

7 This trick works in the Dempster-Shafer case too, as shown (with some technical
restrictions) by Kyburg [14, Section 7], and, of course, in MYCIN-style rule bases.

8 This example is adapted from Section 2.1.3 of Pearl [1].
9 We do not take a position here for or against the "true" causal nature of the links. As in

[1], the term "causality" is used here in a very broad sense.

13,1 Marco Valtorta and Donald W. Loveland

there will be a discrepancy between the value of the belief computed by
the tree and the belief given as the output part of the case. This discrep-
ancy must be eliminated in order for the Ba-tree to work correctly. We
consider a different definition of case in Section 8.

6. LIKELIHOOD SYNTHESIS IS NP-HARD

With reference to the situation described in Figure 4, Pearl [1, Section
2.1.3], exploiting the conditional independence relation expressed by the
BA-tree, shows that

O(HI_E) = O(H [E ~ , . . . , E n) = O(H) I I L (E k [H) ,

where E i is either e i or ~ e i. For notational convenience, define Lil =
L(ei [H) (the ith positive likelihood) and Lio = L(~ ei [H) (the ith nega-
tive likelihood).

Recall that O (H I E) is the output of the Ba-presentation and is easily
converted to belief.

The properties that cause the synthesis and refinement of likelihoods to
be NP-hard are related to the fact that positive and negative likelihoods
cannot be set independently. (Ironically, builders of expert systems have
criticized this lack of independence as a requirement that "does violence
to intuition" (Duda et al. [15], p. 1077]). This situation is summarized in the
lemma that follows. We use only the first property in most proofs. The
other property is used for problems LSO and LRO, in Section 9.

LEMMA 1
(i) I f L/O = O, then Lil > 1. I f Lil = O, then Lio > 1.
(ii) I f Lio and Lil are both nonzero, either (1) they are both equal to 1,

or (2) one is greater than 1 and the other is less than 1.

Proof Property l is proved first. The proof consists of the application
of the definition of likelihood ratio.

If L/0 = 0, then P (~ e i l H) = 0, because the numerator of L/0 is
P (~ e i [H) . But then p (e i l H) = 1, and since this is the numerator of
Lil,Li t > 1.

Similarly, if L' l = O, then P(ei[H) = O, because the numerator of L/O is
P(ei[H). But then P (~ ell H) -- 1, and since this is the numerator of L/0,
L '0> 1.

A proof of property 2 is given by Duda et al. [15, p. 1077] and is not
repeated. (See also Tanimoto [16, Section 7.4.1] and O'Leary [17].) •

Complexity of Belief Networks

PROBLEM NAME Likelihood Synthesis (LS).

135

PROBLEM INSTANCE A Ba-tree as given in Figure 5 with the associated
prior odds; a set of cases.

QUESTION Is there an assignment of likelihood ratios to the links of the
Ba-tree such that the function realized by the Ba-presentation satisfies the
cases?

THEOREM 3 L S is N P - h a r d .

Proof 3-Conjunctive normal form satisfiability (3SAT) (Garey and
Johnson [12, p. 259]) will be transformed to LS.

Given a formula F in 3-conjunctive normal form, the following algo-
rithm produces in time polynomial in the size of F an instance of LS such
that the question has answer yes if and only if F has a model. Let n be the
number of distinct propositional variables in F, and m the number of
clauses in F. (Name the variables xl , x n for convenience.)

The number of leaves in the Ba-tree of the corresponding LS instance is
n. The number of cases in the corresponding LS instance is m. The prior
odds are any positive constant (o > 0).

A case is built for each clause c i = (l i l v li2 v Ii3) as follows. Each case
has output O (H L_E) = 0. The input is built as follows:

If lij = x i j (i.e., lij is a positive literal), then ~ eij .

If lij = ,~ xi j (i.e., lij is a negative literal), then eij .

O (H) = o

Figure 5. Ba-tree and associated prior odds for problem LS.

136 Marco Valtorta and Donald W. Loveland

A s an example , F igure 6 shows the ins tance o f LS c o r r e s p o n d i n g to
F = (~ x 1 v ~ x 2 V x 3) & (x I v ~ x 2 x/ ~ x 4) . Case T l c o r r e s p o n d s to
the first c lause in F , and case T 2 c o r r e s p o n d s to the second c lause in F . ~°

A n ins tance o f LS bui l t accord ing to the a lgo r i thm just given a yes- in-
s tance if and only if the c o r r e s p o n d i n g ins tance of 3 S A T is a yes- ins tance .

The " i f p a r t " is p roved first. Le t k be a posi t ive cons tant , k > 1.
C o n s i d e r the gene r i c var iab le x i that is false in the model . Set Li~ = 0 and
L' 0 = k. C o n s i d e r the gener ic var iab le x~ tha t is t rue in the model . Set
L ' 1 = k and L'0 = 0. I f E has a mode l , then each c lause o f E is t rue in the
model . C o n s i d e r case T, c o r r e s p o n d i n g to c lause c i with l i tera ls lil, li2, li3.
In o r d e r for the c lause to be t rue, at leas t one o f the l i terals mus t be true.
Say tha t the l i tera l is lij. T h e r e are two poss ib le s i tuat ions:

l . lij is a posi t ive l i teral . Then xij is t rue in the mode l . T h e n L~ is 0 in
the c o r r e s p o n d i n g ins tance o f LS. Tes t T~ is satisfied.

2. lij is a nega t ive l i teral . Then xij is false in the mode l . Then U (is 0 in
the c o r r e s p o n d i n g ins tance o f LS. Tes t T~ is satisfied.

Since all c lauses a re t rue, all tests a re satisfied, and t he r e fo re the LS
ins tance is a yes- ins tance .

T h e "on ly if" pa r t is p roved now. A s s u m e that LS is a yes - ins tance and
t h e r e f o r e has a sat isfying a s s ignmen t o f va lues to the l ike l ihoods for each

O (H) = o, where o is positive

TI: ((e l , e 2, ~ e3) ,0)

7"2: ((~ el, eZ, e4),O)

Figure 6. Instance of LS corresponding to F = (~ x I v ~ x 2 V x 3) & (x I v ~ x 2
V ~ X4).

10 Note that, as discussed at the end of Example 1, in case 1, O(H I_E) is the product of the
likelihood of E 4 being either e 4 or ~ e 4 times O(H)* L~ * L] * L30. However, since the
probability that E 4 is either e 4 o r ~ e 4 i s l, we can just write O (H I E) =
O(H)* L~ * ~112, Do.r3 Clearly, this argument applies to all cases considered in this proof and
in other proofs of this paper.

Complexity of Belief Networks 137

case. Construct an interpretation for F as follows. Consider case T~. In
order for T i to be satisfied, at least one of the corresponding likelihoods
must have value 0. There are two possibilities.

1. Assume that this is L!i. Then assign false to xij.
2. Assume that this is L~. Then assign true to xij.

Lemma 1 guarantees that it is impossible for any pair of complementary
likelihoods L~ and L~ to both be 0. However, there may be some
complementary likelihoods Lkl and Lk0 that are both nonzero in the
solution of the yes-instance of LS. In this case, assign true or false,
arbitrarily, to variable xk, because it must be that one of the other
likelihoods corresponding to T~ is 0. Note that the assignment of true and
false just defined is an interpretation, because it is impossible for a
variable in F to be assigned both true and false at the same time.

We now show that the interpretation just defined is a model and
therefore the 3SAT instance is a yes-instance. Consider each clause ci of
F in isolation. The corresponding case T, is satisfied because LS is a
yes-instance. In order for the test to be satisfied, one of the corresponding
likelihoods must be 0. First, assume that this likelihood is U~. By construc-
tion of T~ from ci, c i is true if x~j is false. But this is exactly what has been
assigned to xi j in the model of the 3SAT instance, according to the rules
stated in the previous paragraphs. The case in which the likelihood is L~i is
analogous and will not be shown. Since each of the clauses of F is true in
the interpretation, F is true in the interpretation, and therefore the
interpretation is a model for F. •

Like all NP-hardness results, Theorem 3 does not exclude the possibility
that many or even most of the problem instances in LS are readily
computable. To show that the complexity of a class of problems is high is
to show that some bad members exist; this usually happens at "extreme"
points. (As an analogy, consider that the undecidability of the predicate
calculus does not say that you can't establish the validity of most formulas
of real interest.) In our proof, we use problem instances in which likeli-
hoods are zero. This does not seem unnatural, because the net structure is
extremely simple. In fact, the structure is so simple that the class would
likely not be suspect until after Theorem 3 is proved. We also emphasize
that in theorems proved in subsequent sections of this paper we study
problems with restrictions on allowable instances. For example, we do not
need any likelihoods to be 0 in the proofs concerning synthesis and
refinement in classification (LSO and LRO, Section 8). The more theoreti-
cally oriented reader may be able to use the techniques in our proofs to
show results for problems with different, but similar, restrictions. Also, we
study refinement, approximate solutions, and percentage error in later
sections.

138 Marco Valtorta and Donald W. Loveland

The problem of synthesis of likelihoods and prior odds will also be
shown to be NP-hard.

PROBLEM NAME Likelihood and Prior Odds Synthesis (LPS).

PROBLEM INSTANCE A Ba-tree as given in Figure 4; a set of cases.

QUESTION Is there an assignment of likelihood ratios to the links of the
Ba-tree and of odds to node H such that the function realized by the
Ba-presentation satisfies the cases?

THEOREM 4 LPS is NP-hard.

Proof

Proof (sketch) Adapt the proof that LS is NP-hard as follows:
1. The tree of the instance of LS corresponding to the generic instance

of 3SAT has n + 1 leaves (instead of n).
2. Cases are built as before, ignoring the (n + 1)th leaf, except for the

additional case ((e "+ 1), p), where p is any positive constant.
The new case ensures that in any solution to an LPS instance corre-

sponding to a 3SAT instance O (H) = o, where o is a positive constant.
Therefore, the modified proof that LS is NP-hard is a proof that LPS is
NP-hard. •

7. APPROXIMATIONS

This section presents two problems that arise from attempts to define
meaningful approximate solutions to the refinement of numerical parame-
ters. Both problems deal with DS-trees. The two corresponding problems
for Ba-trees are also NP-hard.

PROBLEM NAME Approximate Mass Synthesis (AMS).

PROBLEM INSTANCE As for problem MS in Section 3.

QUESTION Find an assignment to s~ , s n strictly within 0.5 of the
correct assignment, where the correct assignment is the assignment such
that the function realized by the DS-presentation satisfies the cases.

THEOREM 5 A M S is NP-hard.

Proof (sketch) Consider a variant of problem MS with the possible
values of s I sn restricted to the set {0,1}. It is easy to show, by
adapting the proof of Theorem 1, that the variant is still NP-hard.

Complexity of Belief Networks 139

If AMS were tractable, problem MS with instances having masses
restricted to {0, 1} would be tractable. But this contradicts the variant of
Theorem 1 just mentioned. •

PROBLEM NAME Noisy Mass Refinement (NMR).

PROBLEM INSTANCE A DS-tree and associated compatibility relations as
given in Figure 1; an assignment of values for s 1 , sn; a positive constant
e; a positive constant k less than 100; a set of cases.

QUESTION Is there an assignment of values to s 1 , s n each of which is
at most e away from the given ones such that the function satisfies k % of
the cases?

THEOREM 6 N M R is NP-hard.

Proof (sketch) Consider a generic M R instance with m - m k / l O 0
cases (for arbitrary m). 11 Consider the instance of N M R with m cases built
as follows. The N M R instance is identical to the M R instance except that
it has m cases, m - m k / l O 0 of the cases are as for the M R instance,
while each of the remaining m k / l O 0 cases is a copy of the first case of the
M R instance. By this reduction, if N M R were tractable, MR would be
tractable. But this contradicts Theorem 2. •

8. CLASSIFIERS

In applications in which the task (as defined, e.g., by Breuker et al. [18];
cf. Karbach et al. [19]) of the expert system using the belief network is to
classify, the user is concerned with the relative ranking (rather than the
exact values) of beliefs associated with the terminal nodes 12 of a DS-net or
a Ba-net. Cooper [4, Section 5.4 and 5.5] and Valtorta [5] provide addi-
tional motivation and techniques.

The corresponding refinement problems are NP-hard. We present the
problem for Ba-nets; it is easy to show that the analogous problems for
DS-nets are also NP-hard.

In the first problem, we redefine the function computed by the network
as follows. The Ba-net classifies the input part of a case to be of class 1 if
the computed odds of the net is less than or equal to 1. The Ba-net
classifies the input part of a case to be of class 2 if the computed belief in
the output node is greater than 1. Correspondingly, we change the defini-

11 Round rnk/lO0 to the nearest integer.
12 When suitably defined, in the obvious way.

140 Marco Valtorta and Donald W. Loveland

tion of the output part of a case to be the specification of a class, that is,
either "class 1" or "class 2." Note that the problem given below is stated
identically to problem LS. The problems differ only because they use a
different definition of case.

PROBLEM NAME Likelihood Synthesis, Ordered Output (LSO).

PROBLEM INSTANCE A Ba-tree as given in Figure 5 with the associated
prior odds, a set of cases.

QUESTION Is there an assignment of likelihood ratios to the links of the
Ba-tree such that the function realized by the Ba-presentation satisfies the
cases?

THEOREM 7 LSO is NP-hard.

This result is proved by the same technique as for problem LRO, which
follows.

PROBLEM NAME Likelihood Refinement, Ordered Output (LRO).

PROBLEM INSTANCE A Ba-tree as given in Figure 5 with the associated
prior odds; an assignment of values for L~ L'~; a positive constant e; a
set of cases.

QUESTION Is there an assignment of values to L~ L'~ each of which
is at most e away from the given ones such that the function realized by
the Ba-presentation satisfies the cases?

THEOREM 8 LRO is NP-hard.

Proof Monotone 3-conjunctive normal form satisfiability (MSAT)
(Garey and Johnson [12, p. 259]) will be transformed to LRO. The generic
MSAT instance is a formula in conjunctive normal form, where each
clause contains only three positive (positive clause), or three negated
(negative clause) variables [e.g., (x 1 v x 2 V x3) • (~ x 1 V x ~- x 2 V ~ x 2)].

The question is whether there is a model for the formula.
Given an MSAT formula F, the following algorithm produces in time

polynomial in the size of F an instance of LRO such that the question has
answer yes if and only if F has a model. Let n be the number of distinct
propositional variables in F and m the number of clauses in F. (Name the
variables X l , . . . , x n for convenience.)

The number of leaves in the Ba-tree of the corresponding LRO instance
is n. The number of cases is m. The prior odds are set to 1. The given
assignment for each of the positive likelihood ratios is 1 + e /2 . The given
assignment for each of the negative likelihood ratios is 1 - e / 2 .

Complexity of Belief Networks 141

The following case (a positive case) is built for each positive clause
(x i v xj v Xk): ((e i, e i, ek), class 2)

Similarly, the following case (a negative case) is built for each negative
c l a u s e (~ x i v ~ xj v ~ x k) : ((~ e i, ~ e j, ~ ek), class 2).

As an example, Figure 7 shows part of the LRO instance corresponding
to F = (x ~ v x 2 v x 3) & (~ x ~ v ~ x 2V ~x4) . Case T 1 corresponds to
the first clause in F, and case T 2 corresponds to the second clause in F.
The assignment of values to the positive and negative likelihood ratios is
not given in Figure 7.

An instance of LRO built according to the algorithm just given is a
yes-instance if and only if the corresponding instance of MSAT is a
yes-instance.

The "if part" is proved first. Let g = e /2 . l e t h = 1 + g and k = 1 -
g / 8 . Note that h > 1, 0 < k < 1, and hkk > 1 and that h and k are within
e of the values 1 + e / 2 and 1 - e / 2 , the given assignments of the problem
specification. Assume that the MSAT instance is a yes-instance. Since the
MSAT instance is a yes-instance, it has a model. Consider the generic
variable x i that is true in the model. Set L'~ = h and L~ = k. Similarly,
consider the generic variable xi that is false in the model. Set L~ = h and
L~ = k. These assignments are consistent with the definition of positive
and negative likelihood and with the restriction that likelihood ratios be
within e of the ones originally assigned.

Consider the generic clause, which is true in the model. The correspond-
ing test is satisfied by the setting of likelihoods just given, because the
computed output is equal to either ohhh or ohhk or ohkk, and each of
these terms is greater than 1, by definition of h and k. Therefore, all the
tests are satisfied, and the LRO instance is a yes-instance.

O (H) =

/'1: ((e l, e 2, eS), class 2)

/'2: ((~ e 1, ~ e 2, ~ e4), class 2)

Figure 7. Part of the instance of LRO corresponding to F = (x~ v x 2 v x 3) &
(~ x l v ~ x 2 v ~x4).

142 Marco Valtorta and Donald W. Loveland

The "only if" part is proved now. Assume that the LRO instance is a
yes-instance. Therefore, each of the tests is satisfied. Build an interpreta-
tion for the corresonding MSAT instance as follows:

Set x i to true if both L ' 1 > 1 and 0 < L' 0 < 1.

Set xi to false if both L' 0 > ! and 0 < L' 1 < 1.

Set x i to true if both L' 0 = 1 and L' l = 1.

Because all the cases built by the transformation algorithm have output
"class 2," we can ignore the situation in which the ith positive or negative
likelihood is 0. Therefore, by I~mma 1, the three cases considered just
above are exhaustive, and an interpretation has indeed been built. It will
next be shown that the interpretation satisfies the MSAT instance and is
therefore a model for it.

Consider the generic positive case ((e i, e j, ek), class 2). In order for it to
be satisfied, it must be that at least one of the ith, j th, and kth positive
likelihoods is greater than 1. But in this situation the interpretation
described in the previous paragraph has at least one of x i, xj, x k set to
true. Therefore, the positive clause corresponding to the generic positive
test is true.

Similarly, consider the generic negative case ((~ e i, ~ e J, ~ ek), class 2).
In order for it to be satisfied, it must be that at least one of the ith, j th,
and kth negative likelihoods is greater than 1. But in this situation the
interpretation described in the previous paragraph has at least one of
x i, x j , x k set to false. Therefore, the negative clause corresponding to the
generic negative test is true.

Finally, since there exists a one-to-one correspondence between all cases
in the LRO instance and corresponding clauses in the MSAT instance, and
all of the cases are satisfied, then all of the clauses are true and the MSAT
instance is a yes-instance. •

For the next problem, the output part of a case is again an indication of
a class. However, now we have a net architecture different from a tree; we
consider a multiple-output net. In particular, in place of a root node, we
may have many output or t e r m i n a l nodes. Terminal nodes are labeled by
class number. We say that the Ba-net c l a s s i f i e s a case input as being of
class i if the computed belief for the terminal node labeled i is at least as
high as the belief for the other terminal nodes. We consider explicitly this
different network, because there is much interest in applying belief net-
works to situations in which a decision among multiple competing hypothe-
ses must be made. The fact that we need only slightly modify a previous
proof to obtain the following result helps show the robustness of this class
of results.

Complexity of Belief Networks 143 classy1 class 2

O(H1) = o

O(H2) = p

Figure 8. Ba-net and associated prior odds for problem LSM.

PROBLEM NAME Likelihood Synthesis, Multiple Outputs (LSM).

PROBLEM INSTANCE A Ba-net as given in Figure 8, with the associated
prior odds, and labels on the terminal nodes; a set of cases.

QUESTION Is there an assignment of likelihood ratios to the links of the
Ba-net such that the Ba-net correctly classifies all cases?

THEOREM 9 L S M is NP-hard.

Proof (sketch) Change the proof that LS is NP-hard as follows:
1. Change the output of each case to 2.
2. Set p = 0.
Observe that O (H z I E) = O, because O (H 2) = p and p has been set to

0. Further observe that each of the other new cases is satisfied if and only
if the belief in the node labeled 1 is 0 and therefore if and only if each of
the cases in the proof that LS is NP-hard is satisfied. Therefore, a proof
that LSM is NP-hard has been obtained. •

9. RELATED WORK

The main reference on the algorithmic complexity of computations in
belief networks is Cooper 's work [4]. The relationship between that paper
and ours is discussed in Sections 1 and 10. Other work on the complexity
of computation in belief networks includes that of Orponen [20] and
Provan [21].

Belief neworks are a kind of knowledge base. There is a substantial body
of literature dealing with the refinement of (truth-functional) rule bases,
another kind of knowledge base that is historically prevalent in expert
systems. The Sixth International Workshop no Machine Learning included
a track on knowledge base refinement and theory revision. See the pro-

144 Marco Valtorta and Donald W. Loveland

ceedings for contributions (Segre [22]). In particular, it has been shown
that automatic refinement of rule bases from cases is NP-hard (Valtorta
[5]).

Synthesis of numerical parameters in rule bases is somewhat analogous
to training in neural networks. Indeed, there are apparently similar results
of intractability (see Judd [23, 24], Blum and Rivest [25], and Lin and
Vitter [26]). However, the functions used in neural networks to process
weights are different from those used in rule bases or belief networks (see
Fu [27], Valtorta [5]). Laskey [28] proposes to use a kind of neural network
(the Boltzmann machine) to "adjust conditional probabilities on the links
of a Bayes network."

One would expect parameter refinement to fit cases ("memorization") to
be related to and at least as hard as refining parameters to deal with new
situations ("generalization"). Chapter 7 of Judd's monograph on the com-
plexity of neural network design [29] is an excellent explanation of the
"memorizat ion" versus "generalization" issue. Much of that explanation is
applicable to rule bases and belief networks and explains better than we
could in a limited space why we do not address generalization directly in
this paper.

An alternative to direct refinement of numerical parameters in Ba-nets
is the introduction of "dummy nodes" representing unknown events whose
only purpose is to account for the failure of a Ba-net with given numerical
parameters. ~3 (For example, the failure of the Ba-net in Figure 4 to
compute the correct belief in H could be attributed to the influence of an
unknown event linked to H rather than to errors in the likelihood ratios in
the network. The numerical parameters related to the unknown event
could be computed using cases.) It is conjectured that this kind of refine-
ment with limited changes in the structure of the belief network is also
NP-hard, an interesting conjecture that we are not prepared to address in
this paper. The arguments in this paper are based on fixed network
structure.

10. CONCLUSION

A major technical contribution of this paper is the proof that refinement
of (Dempster -Shafer and Bayesian) belief networks from cases is NP-hard.
Two points regarding this result deserve amplification for their potential

13 Judea Pearl showed one of us this technique and noted its apparent complexity in August
1989. Spiegelhalter and Lauritzen consider a related technique in a recent manuscript.

Complexity of Belief Networks 145

impact on the practice of expert system construction and will be addressed
now.

The networks used in the problem instance of MS, MR, and LS (and, in
fact, of all the other problems with the exception of LSM) are trees. They
are much simpler than the nets used by Cooper [4] in proving that the
computation of beliefs in belief networks is NP-hard. Even more strongly,
it is well known (e.g., Kong [30], Pearl [1], Lauritzen and Spiegelhalter [13],
Shenoy and Shafer [8]) that the computation of beliefs in trees TM is
tractable. Therefore, a developer could be faced with the unpleasant
situation in which the belief network is nicely structured for efficient
computation of beliefs, but acquisition of the parameters (e.g., likelihood
ratios, masses) for the calculation is extremely difficult, and this holds even
if good estimates of the parameters are available.

Synthesis of numerical parameters in knowledge bases, be they rule
bases or belief networks, is a kind of refinement of knowledge bases: the
numerical estimates of the parameters are not available although the
structure of the knowledge base is. This situation is particularly interesting.
The structure of the knowledge base can be determined by answering
relatively simple questions about independence of events. Therefore, the
knowledge engineer should believe more strongly in the (qualitative)
network structure than in the values of the numerical parameters, ~5 and it
is natural to use an expert to obtain the knowledge structure and initial
guesses. These considerations suggest a methodology for the construction
of knowledge-based systems that use belief networks. At the heart of this
methodology is a propose-and-fit cycle. In this cycle, after interviewing an
expert, the designer proposes a structure for the belief network. The
network parameters are set or adjusted to fit selected test cases. If
parameters can be set to fit the cases, the development is complete. If they
cannot, the designer must consult the expert further until a new (qualita-
tive) network structure is proposed. Another attempt is made to set the
parameters to fit the cases, and so on. Our results indicate that it is
difficult to automate the "fit" step of this methodology.

In this paper, we have not assumed that an expert who can give the
correct probability for any set of (input) evidence is on call. Instead, we
have assumed (more realistically, according to MUNIN designers 16) that

14 The same is true for some kinds of graphs that are not trees.
15 This is related to the argument (Wilkins and Buchanan [31], Valtorta [32], Andreassen et

al. [3], Lauritzen and Spiegelhalter [13]) that the structure of the knowledge base should be
changed only if the numerical parameters cannot be set in such a way that the knowledge
base performs correctly.

~6 Stig Andersen, personal communication, November 1989.

146 Marco Valtorta and Donald W. Loveland

an arbitrary collection of cases is determined a priori. These may come
from an expert, a textbook, a database, or some other source. As an
example of alternative methods for refinement, consider the use of a type
of oracle. If an expert is available after construction of the knowledge
base, the expert could be used as an oracle to facilitate knowledge base
refinement. In this mode, the expert would be queried with specially
focused questions allowing the synthesis or refinement of specific masses
or likelihoods. A result in the setting in which the oracle is on call
concerning rule bases (Valtorta [32, Chapters 4 and 7; 33]) indicates that
automatic synthesis or refinement in certain belief networks that are trees
is do-able in polynomial time and suggests that it is intractable for graphs.
More remains to be done along this line of work.

ACKNOWLEDGMENTS

M.V. thanks several members of the MUNIN team, especially Stig
Andersen and Steen Andreassen, for several useful conversations concern-
ing MUNIN and, more generally, the design, construction, and mainte-
nance of Bayesian networks. Research was supported by a University of
South Carolina summer grant to M.V. and by grant AFOSR-83-8205, with
D.W.L. as principal investigator.

References

1. Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan-Kaufmann, San Mateo, Calif., 1988.

2. Smets, P., Belief functions, in Non-Standard Logics for Automated Reasoning (P.
Smets, E. H. Mamdani, D. Dubois, and H. Prade, Eds.), Academic, London,
1988.

3. Andreassen, S., Woldbye, M., Falck, B., and Andersen, S. K., MUNIN--a
causal probabilistic network for interpretation of electromyographic findings,
Proceedings of the Tenth International Joint Conference on ,41 366-372, 1987.

4. Cooper, G. F., Probabilistic inference using belief networks is NP-hard, Stan-
ford Univ. Knowledge Systems Laboratory Memo KSL-82-27, May 1987 (re-
vised July 1988). (Short version appeared as The computational complexity of
probabilistic inference using Bayesian belief networks, A1 42, 393-405, 1990.)

5. Valtorta, M., Some results on the computational complexity of refining confi-
dence factors, Int. J. Approx. Reasoning 5, 123-148, 1991.

6. Shafer, G., Shenoy, P. P., and Mellouli, K., Propagating belief functions in
qualitative Markov trees, lnt. J. Approx. Reasoning, 349-400, 1987.

Complexity of Belief Networks 147

7. Shenoy, P. P., and Sharer, G., Propagating belief functions with local computa-
tions, IEEE Expert 1(3), 43-52, 1986.

8. Shenoy, P. P., and Shafer, G., An axiomatic framework for Bayesian and
belief-function propagation, Proceedings of the Fourth Workshop on Uncertainty
in AI, 307-314, 1988.

9. Zarley, D. K., An evidential reasoning system, Working Paper 206, Businesss
School, Univ. Kansas, 1988.

10. Mellouli, K., On the propagation of beliefs in networks using the
Dempster-Shafer theory of evidence, Ph.D. Dissertation and Working Paper
No. 196, School of Business, Univ. Kansas, April 1988.

11. Gordon, J., and Shortliffe, E. H., A method for managing evidential reasoning
in a hierarchical hypothesis space, AI 26, 323-357, 1985.

12. Garey, M. R., and Johnson, D. S., Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, New York, 1979.

13. Lauritzen, S. L., and Spiegelhalter, D. J., Local computations with probabilities
on graphical structures and their applications to expert systems, J. Roy. Stat.
Soe. Ser. B $0(2), 157-224, 1988.

14. Kyburg, H. E., Jr., Bayesian and non-Bayesian evidential updating, AI 31,
271-293, 1987.

15. Duda, R. O., Hart, P. E., and Nilsson, N. J., Subjective Bayesian methods for
rule-based inference systems, Proceedings of the 1976 National Computer Con-
ference, 1075-1082. [Reprinted in Readings in Artificial Intelligence (B. L.
Webber and N. J. Nilsson, Eds.), Morgan-Kaufmann, San Mateo, Calif.,
192-199, 1981.]

16. Tanimoto, S. L., The Elements of Artificial Intelligence Using Common LISP,
Computer Science Press, New York, 1990.

17. O'Leary, D. E., Soliciting weights or probabilities from experts for rule-based
expert systems, Int. J. Man-Mach. Stud. 32, 293-301, 1990.

18. Breuker, J., Wielinga, B., van Someren, M., de Hoog, R., Schreiber, G., de
Greef, P., Bredeweg, B., Wielemaker, J., Billault, J.-P., Davoodi, M., and
Hayward, S., Model-driven knowledge acquisition: interpretation models, De-
liverable task A1, ESPRIT Project 1098, and Memo 87, VF Project Knowledge
Acquisition in Formal Domains, 1987. (This report is available from the Dept.
of Social Science Informatics, Univ. Amsterdam.)

19. Karbach, W., Linster, M., and Voss, A., Models, methods, roles, and tasks:
many labels--one idea?, Knowledge Acquisition 2, 279-299, 1990.

20. Orponen, P., Dempster's rule of combination is #P-complete, AI 44, 245-253,
1990.

21. Provan, G. M., A Logic-based analysis of Dempster-Shafer theory, Int. J.
Approx. Reasoning 4(5/6), 451-495, 1990.

148 Marco Valtorta and Donald W. Loveland

22. Segre, A. M. (Ed.), Machine Learning: Proceedings of the Sixth International
Workshop, Morgan-Kaufmann, San Mateo, Calif., 1989.

23. Judd, S., Complexity of connectionist learning with various node functions,
Tech. Rep. 87-60, Univ. Massachusetts at Amherst, July 1987.

24. Judd, S., Learning in neural networks, Proceedings of the 1988 Workshop on
Computational Learning Theory (COLT-88), 2-8, 1988.

25. Blum, A., and Rivest, R. L., Training a 3-node neural network is NP-complete,
Proceedings of the 1988 Workshop on Computational Learning Theory (COLT-88),
9-18, 1988.

26. Lin, J.-H., and Vitter, J. S., Complexity issues in learning by neural nets,
Proceedings of the Second Annual Workshop on Computational Learning Theory
(COLT-89), 118-133, 1989.

27. Fu, L., Truth maintenance under uncertainty, Proceedings of the Fourth Work-
shop on Uncertainty in .41 119-126, 1988.

28. Laskey, K. B., Adapting connectionist learning to Bayes networks, Int. J.
Approx. Reasoning 4, 261-282, 1990.

29. Judd, S., Neural Network Design and the Complexity of Learning, MIT Press,
Cambridge, Mass., 1990.

30. Kong, C. T. A., Multivariate belief functions and graphical models, Ph.D.
Dissertation, Dept. of Statistics, Harvard Univ., 1986. (Available as Res. Rep.
S-107, Dept. of Statistics, Harvard Univ.)

31. Wilkins, D. C., and Buchanan, B. G., On debugging rule sets when reasoning
under uncertainty, Proceedings of A.4A1-86, 448-454, 1986.

32. Valtorta, M., Automating rule strength in expert systems, Ph.D. Dissertation,
Dept. of Computer Science, Duke Univ., April 1987. (Also Tech. Rep. CS-
1987-15, Dept. of Computer Science, Duke Univ., and available as ADG87-
25869 from University Microfilm International.)

33. Valtorta, M., Some results on knowledge base refinement with an oracle, Tech.
Rep. TR89005, Dept. of Computer Science, Univ. South Carolina, April 1989.

