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ABSTRACT 

Belief networks are important objects for research study and for actual use, as the 
experience of  the MUNIN project demonstrates. There is evidence that humans are 
quite good at guessing network structure but poor at settling values for the numerical 
parameters. Determining these parameters by standard statistical techniques often 
requires too many sample points (test cases') for larger systems, so knowledge engineers 
have sought direct algorithms to define or adjust the parameters by appeal to selected 
test cases. It is shown for both Dempster-Shafer networks and Bayesian networks that 
for very simple networks (trees), defining parameter values (synthesis) or refining 
expert-estimated values (refinement) can be computationally intractable. These unpleas- 
ant results hold even when we settle for approximate values or demand agreement on 
only a certain percentage of  cases. 

KEYWORDS:  knowledge base refinement, expert systems, knowledge acquisi- 
tion, belief nets, Dempster-Shafer theory of evidence, Bayesian networks, 
computational complexity, NP-completeness 

I. INTRODUCTION 

Belief networks are gaining popularity as a formalism for implementing 
knowledge bases for expert systems. With respect to the more common 
MYCIN-style rule bases, belief networks overcome the problems arising 
from a truth-functional approach to evidence propagation, by adopting a 
model-based (or intensional) approach, as explained, for example, by Pearl 
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[1, Chapter 1]. A disadvantage of belief networks is the computational 
effort needed to process them. 

A key feature of belief networks is their use of numerical parameters. 
These parameters are probability masses in Dempster -Shafer  networks 
(see Smets [2] for a brief introduction) and conditional probabilities (or 
related parameters,  such as likelihood ratios) in Bayesian networks (see 
Pearl [1] for the canonical treatment). These numerical parameters can be 
estimated by using statistical techniques. However, such techniques re- 
quire a large number of sample points (cases), and developers often resort 
to knowledge engineering techniques, in the presence of fewer test cases, 
as documented in the construction of MUNIN. 

At present, there are few large applications of belief networks. Of these, 
probably the best known as MUNIN (Andreassen et al. [3]), a medical 
expert system for the diagnosis of muscle and nerve diseases from bioelec- 
tric signals. As of mid-June 1989, MUNIN had grown to a network of 
approximately 1000 nodes (Steen Andreassen, personal communication, 
June 1989), 1 and its developers assessed the system as too large to set the 
parameters directly from test cases: 

Estimating the 270 conditional probabilities [in part of the MUNIN 
belief network of 1987]...would require at least 10000 cases [for 
use of standard statistical techniques]. Instead of relying on this 
empirical approach, we have tried to rely as much as possible on 
"deep knowledge," using an understanding of pathophysiological 
processes as expressed in medical textbooks and papers (Andreas- 
sen et al. [3, p. 369]). 

However, the designers appeal to test cases to validate the estimates and 
refine them when necessary. In MUNIN, "Discrepancies between the 
network and the medical experts lead to revision of the model parameters" 
(Andreassen et al. [3, p. 370]). The expert here defines test cases, and the 
designers have the task of refining the parameters to fit the test cases. 

There  are several points to consider regarding synthesis and refinement 
of parameter  values for diagnostic systems. In addition to the well-docu- 
mented MUNIN case, there is ample evidence that refinement of parame- 
ters is normally performed in the construction of knowledge-based systems 
that use numerical uncertainty representations. Indeed, parameter  re- 
finement capability is needed to achieve diagnostic accuracy, because in 
many applications test cases reveal inaccuracies in the initial parameter  
settings that would lead to rejection of the system. However, it is difficult 
to refine parameters to fit test cases ("memorize").  One result we show is 
that there is no computationally feasible algorithm (explained below) that 
uniformly performs the refinement task. 

1 MUNIN has been developed in the context of ESPRIT project 599. 
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With the increasing interest in belief networks and the consideration of 
algorithms for them comes the need to understand the computational 
resources needed. There has already been work showing that important 
tasks in belief networks are computationally intensive, and these results 
restrict our vision of what is possible. The primary example so far is the 
work of Cooper [4], where it is shown that, even provided with the correct 
local conditional probabilities (direct causal relations), the calculation of 
the desired output conditional probability is computationaily intractable 
(NP-hard). This occurs in rather simple multiply connected graphs and 
raises serious questions about freedom to employ apparently commonly 
occurring graphs. Our paper gives perhaps even more disturbing results in 
that simple trees can underlie computationally intractable problems. 

To define a belief network involves a knowledge acquisition task. To 
either directly define the network or validate it after some oracle (e.g., 
expert) has provided the initial specifications, one relies on test cases. In 
essence, we show here that defining the numerical parameters (masses for 
Dempster-Shafer nets, conditional probabilities for Bayes nets) for Demp- 
ster-Shafer networks and for Bayesian networks of a common form is, in 
very simple cases, computationally intractable. That is, to define the 
network that agrees with the test cases can be intractable. Moreover, this 
intractability remains true even when the expert can offer a good approxi- 
mation to the parameters. It holds true if we demand agreement with only 
k % of the cases offered. As perhaps a final blow, this intractability is still 
present if we desire only an approximate answer. 

This state of affairs has recently been shown to hold for MYCIN-type 
rule-based systems (Valtorta [5]). Results of the same flavor appear for 
neural nets. (Further comments are made in Section 9.) However, it has 
not been known until now how strong the computational intractability 
results are for belief networks. 

This paper addresses the problem of synthesis and refinement of numer- 
ical parameters in belief networks from an algorithmic standpoint. Both 
Dempster-Shafer networks and Bayesian networks are considered. Section 
2 formalizes the problem already described in this introduction, by using 
the notion of case in the Dempster-Shafer framework. Section 3 shows 
that the synthesis of masses in Dempster-Shafer networks from cases is 
NP-hard. Section 4 is devoted to the proof that the refinement of masses in 
Dempster-Shafer networks from cases is NP-hard. Section 5 does for 
Bayesian network what Section 2 did for Dempster-Shafer networks, and 
Section 6 is concerned with the synthesis of likelihood ratios in Bayesian 
networks. This problem is also shown to be NP-hard. Many readers will 
find Sections 7 and 8 to contain the most interesting results. We study 
approximations in Section 7. We reconsider the notion of case in Section 8. 
Informally, a case is an input-output pair that represents a point of the 
function realized by the net. There are two kinds of cases. Up to Section 8, 
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we view the network as mapping inputs to beliefs in particular states. We 
call these oracular cases. In Section 8, we consider a particular class of  
appl ica t ions- - those  in which the task of the expert system that uses the 
belief network is to classify, such as in diagnostic systems. For these 
applications, it is more  natural to assume that the output part  of  a case is 
an indication of class. We call these cases observed cases. For example, in a 
medical diagnosis setting, given a set of symptoms as input, the output part  
of  an oracular case would the beliefs in a list of diagnostic hypotheses, 
whereas the output  part  of  an observed case is either the actual diagnosis 
(if there is such a thing) or the most likely diagnosis or a ranking of several 
of  the most likely diagnoses. Section 9 discusses related work, and Section 
10 concludes the paper  with an assessment of  results and the sketch of an 
alternative refinement model. 

2. F O R M A L I Z I N G  MASS R E F I N E M E N T  

Without loss of  generality, since we are after lower-bound results, we 
consider Demps t e r -S ha fe r  networks (from now on, DS-nets) in the form 
of a tree (and call them, simply, DS-trees). There  are many different 
versions of  DS-trees in the literature, all related in rather  straightforward 
ways. In this paper,  alternating Markov trees are used. Markov trees are 
defined in various places, such as the works of Shafer [6], Shenoy and 
Shafer [7, 8], and Zarley [9]. Our  definition is adapted from Mellouli [10, 
pp. 66, 85]. A (qualitative) Markov tree of variables in a set S is a tree 
T = (N,  E), such that N is a subset of  the power set of  S (i.e., the nodes 
of  the tree are subsets of  S) and such that the intersection of two nodes nt 
and n 2 is contained in node n o if n o lies between n~ and n 2 in some 
branch of  T. 2 A Markov tree T = (N,  E)  is alternating if every node in the 
tree either is contained in all its neighbors or contains all its neighbors. 
(The reader  who is unfamiliar with the definitions may want to verify that 
the tree in Figure 1 is an alternating Markov tree for variables in the set 
S = {ci, c2 . . . . .  cn, d}.) 

For  simplicity (and again, without loss of generality), each of the 
variables in the DS-tree will be assumed to be two-valued. Call the two 
values 0 and 1. We will express the mass assigned to a subset of  the f rame 
of discernment 3 of  variable a as m(a  = vi), where v~ = 0, 1, or as m(la), 

2As noted by Shenoy and Shafer [8], Markov trees are called join trees in the database 
literature. 

3 See, for example, Smets [2] or Gordon and Shortliffe [11] for the definition. Informally, 
the frame of discernment for a set S of variables (where all variables have a discrete range of 
values) is the Cartesian product of the set of variable-value pairs for all variables in S. 
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m l ( c  1 ~ d )  = $1, r n l ( O  ) = 1 - s 1 

m 2 ( c  2 ~ d )  = s  2, m 2 ( ®  ) = 1 - s  2 

m . ( c  n ~ d )  = s n ,  m n ( O  ) = 1 - s n 

Figure 1. DS-tree and associated compatibility relations for problem MS. 

where  I a = a, ~ a. T h e  mass  assigned to the f r ame  of  d i scernment  of  
var iable  a will be  indicated as m ( O ( a ) )  or,  when  there  is no ambiguity,  
s imply as m(O) .  F o r  jo int  variables ,  we will indicate a subset  of  the f r ame  
of  d i sce rnment  by a p ropos i t iona l  formula .  Fo r  example ,  consider  the joint  
var iable  (a ,  b) whose  f r ame  of  d i sce rnment  is O((a ,  b)) = {{a = 0, b = 0}, 
{a = 0, b = 1}, {a = 1, b = 0}, {a = 1, b = 1}}. T h e  mass  assigned to the 
subsets  {{a --- 0, b = 0}, {a = 0, b = 1}, {a = 1, b = 1}} will be  indicated as 
m ( ~  a v b), or  as m ( a  ~ b). T h e  mass  assigned to the f r ame  of  discern- 
m e n t  of  the  joint  var iable  (a ,  b)  will b indicated as m ( O ( ( a ,  b))) or, when  
the re  is no ambiguity,  s imply as re(O).  Fol lowing Pear l  [1, p. 418], we call a 
subset  o f  the  f r ame  of  d i sce rnment  such as ( ~  a v b) a compatibility 
relation. [Intuitively, m ( ~  a v b) quantif ies  the constra int  that  a is not  
compat ib le  with ~ b.] 

A DS-presentation is def ined as a triple consist ing of  a DS- t ree ,  a set of  
compat ibi l i ty  relat ions,  and an ass ignment  of  masses  to some  of  the 
compat ibi l i ty  re la t ions  and  their  f r ames  of  d iscernment .  F igure  1 shows a 
DS-p re sen t a t i on  when  values  s 1, s 2 . . . . .  s n are  fixed. DS-presen ta t ions  will 
be  cons idered  as realizing a funct ion f rom the vec tor  of  masses  assigned to 
the leaf  nodes  of  a DS- t r ee  to a be l ief  (simply a mass  for  the nets  that  we 
consider  in this pape r )  for  the roo t  node  (via a process  involving D e m p s t e r ' s  
rule and  s u m m a r i z e d  later) .  A point  in the g raph  of  the funct ion will be  
called a case. In  o the r  words,  a case is an i n p u t - o u t p u t  pair  tha t  repre-  
sents  the po in t  o f  the  funct ion real ized by the net. In a classification 
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system, the input part of the case is an assignment of masses to traits of 
the item to be classified, and the output part of the case is an assignment 
of masses to the possible classifications. T~ through T 4 of Figure 2 are 
examples of cases. We now describe how this models the situation de- 
scribed by Andreassen et al. [3] and summarized in the introduction. The 
output part of a case describes the desired "answer" of the DS-tree when 
"queried" with the evidence encoded as the input part of the same case. 
Typically, there will be a discrepancy between the value of the belief as 
computed by the tree and the belief given as the output part of the case. 
This discrepancy must be eliminated in order  for the DS-tree to work 
correctly. 

Before addressing the task of refinement, we address the more basic 
task of parameter  instantiation (assigning values to the parameters). We 
call this the synthesis task. 

3. INITIAL MASS SYNTHESIS IS NP-HARD 

The problem considered in this section is a problem of synthesis rather 
than a problem of refinement of masses in DS-presentations. 

m l ( c  ~ ~ d )  = sl,  m l ( O  ) = 1 - s l 

m 4 ( c  4 =~ d) = $ 4 ,  m4(O ) = 1 - s 4 

T1: ( ( a , a , a , O ) , a )  

7"2: ( ( b , b , b , O ) , b )  

T3: ( ( a , a , O , a ) , a )  

T4: ( ( b , b , O , b ) , b )  

Figure 2. Instance of MS corresponding to (x l v x2 v x3) & (xt V x 2 v x4). 
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PROBLEM NAME Mass Synthesis (MS). 

PROBLEM INSTANCE A DS-tree and associated compatibility relations as 
given in Figure 1; a set of cases. 

QUESTION Is there an assignment of values to s 1 . . . . .  Sn, such that the 
function realized by the DS-tree satisfies the cases? 

THEOREM 1 MS is NP-hard. 

Proof  One-in-three satisfiability (OTS) (Garey and Johnson [12, p. 
259]) will be transformed into MS. The variant in which no clause in the 
formula contains a negative literal will be used. The generic OTS instance 
is a propositional formula in 3-conjunctive normal form, with no negated 
variables, such as ( x  1 v x 2 v x3) (~L ( x  1 v x 2 v x4). The question is whether 
there is a model (i.e., a satisfying assignment of true or false to each 
variable) for the expression such that each clause has exactly one true 
variable. 

Given a formula E in OTS, the following algorithm produces in time 
polynomial in the size of E an instance of MS such that the question has 
answer yes if and only if E has a model in which only one variable per 
clause is true. 

Let n be the number of distinct propositional variables in E and m the 
number of clauses in E. (n and m can be obtained in polynomial time 
from any reasonable encoding of E.) (Name the variables xl . . . . .  x~ for 
convenience.) 

The number of leaves in the DS-tree of the corresponding MS-instance 
is n. The number of cases in the corresponding MS-instance is 2m. 

There  are two cases for each clause in E. Let a and b be a pair of 
numbers such that 0 < a < b < 1. Let a generic clause contain the vari- 
ables xi, xj, x k. The input part of the first case for each clause has 
m(c  i) = m(c j )  = m ( c  k) = a ,  and 0 everywhere else. The output part of the 
first case for each clause is a. To obtain the second case for this clause, 
substitute b for a. 

The reader can easily verify that the algorithm just given runs in time 
polynomial in the size of E. 

As an example, Figure 2 shows the instance of MS corresponding to 
E = (x I v x 2 V X3) • (X 1 V X 2 V X4). In the figure, T~ and T 2 correspond 
to the first clause in E, while T 3 and T 4 correspond to the second clause in 
E. 

Now we prove the following statement. An instance of MS built accord- 
ing to the algorithm just given is a yes-instance if and only if the 
corresponding instance of OTS is a yes-instance. The following fact is 
useful. 
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Let [p  + ] denote the p r o b a b i l i s t i c  s u m  operator,  defined as a [p  + ]b 
= a + b - a b .  It is easy to show, on the basis of an observation by Gordon 
and Shortliffe [11, Section 3.3], that the mass of d ,  r e ( d ) ,  can be computed 
as follows4: 

m(d) = m(c~)* s~[p +]--. [p + ]m(c.)* s. 

The details of the computation, which involves projections over different 
frames of discernment and the use of Dempster 's  rule, are left to the 
reader. Here,  m ( d )  is also the Dempster -Shafer  b e l i e f  in d, written 
Bel(d), as defined, for example, by Smets [2]. 

We first prove the " i f  part"  of the statement. If variable xi in the model 
for E is true, set s i to 1. Otherwise, set it to 0. This ensures that exactly 
one of the masses corresponding to each case is 1 and the other two are 0. 
Therefore,  the computed Bel is equal to the mass, and each case is 
satisfied. 

The "only if" part is proved now. Assume that we have a yes-instance of 
MS. It will be shown that in order  for an instance of MS to be a 
yes-instance, it must be that exactly one of the si corresponding to each 
case is 1 and the other two are 0. By assigning true to the variable 
corresponding to this single s i, a model for E is obtained that satisfies the 
"one in three"  condition. Consider a generic pair of cases corresponding to 
a clause in E. We show, by algebraic manipulation, that this pair is 
satisfied if and only if exactly one of the three s~ corresponding to the 
cases is 1 and the other  two are 0. Call the strengths x, y, and z. The pair 
of  cases is satisfied if and only if the following system has a solution: 

a x [  p + ] a y [  p + ] a z  = a ,  b x [  p + ]by[  p + ]b z  = b 

that is, after carrying out the probabilistic sums and dividing each side by 
a, we have 

x + y - a x y  + z - a x z  - a y z  + a 2 x y z  = 1 

x + y - b x y  + z - b x z  - b y z  + b 2 x y z  = 1 

If any two of x, y, and z have value 0, the system has a solution if and only 
if the other  variable has value 1. 

To show that the system has no solution if only one of the three 
variables is 0, subtract the second equation from the first side by side, and 
divide by (b - a): 

x y  + x z  + y z  = ( b + a ) x y z  

This equation has no solution if only one of the three variables is O. 

4 Each m should have a different subscript, which is dropped here for readability, 
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The only case left is that in which the three variables are all positive 
(and, of  course, no greater  than 1). In this case, each of the products xy, 
xz, and yz  is greater  than or equal to xyz: 

xy + xz  + yz  > 2xyz  > ( b + a ) xyz 

and therefore it is impossible that xy + xz + yz  = (b  + a)xyz.  • 

It has been shown that MS is NP-hard. It  is appropriate  to ask if we can 
bound the computat ion f rom above; in particular, is MS in NP? Consider 
the following argument.  We guess the correct value for each mass (if there 
is one, else guess 0) and compute  the mass of d. If  the guessed values have 
short representations,  then the computat ion of re (d)  is do-able in polyno- 
mial time, and the check against cases is possible in polynomial time. 
However,  we have no assurance that when masses exist for sl . . . .  , s n, 
values of sufficiently small representat ion exist, Without further analytic 
results, we must allow for the possibility that some s i has such a long 
representat ion that it cannot even be scanned in polynomial time in the 
length of the problem input. Thus, we can have the best possible upper  
bound on computat ion t ime for sl . . . . .  s~, given the circumstances, if the 
sought values are reasonable.  This is somewhat  of a moot  point anyway; 
the problem would be intractable enough even if it were in NP. A similar 
argument  applies for the other NP-hardness results in this paper.  

4. MASS REFINEMENT IS NP-HARD 

PROBLEM NAME Mass Refinement,  Search Version (MRS). 

PROBLEM INSTANCE A DS-presentat ion with an assignment of values 5 
for s l , . . . ,  s n as in Figure 1; a positive constant e; a set of  cases. 

QUESTION Find an assignment of values to s l , . . . ,  s n each of which is at 
most e away from the given assignment such that the function realized by 
the DS-tree satisfies the cases. 

MRS is NP-hard if the next decision problem is NP-hard. 

PROBLEM NAME Mass Refinement  (MR). 

PROBLEM INSTANCE A DS-presentat ion with an assignment of values 
for s I . . . . .  s~, as in Figure 1; a positive constant e; a set of cases. 

5 These values may be expert-given or otherwise estimated. 
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QUESTION Is there an assignment of values to s~ . . . . .  s, each of which is 
at most e away from the given assignment such that the function realized 
by the DS-tree satisfies the cases? 

THEOREM 2 M R  is N P - h a r d  f o r  a n y  f i r e d  e. 

Proof  OTS (defined in the proof  for problem MS in the previous 
section) will be shown to be reducible to MR. Given a formula E in 
positive 3-conjunctive normal form, the following algorithm produces in 
time polynomial in the size of E an instance of MR such that the question 
has answer yes if and only if E has a model in which only one literal per 
clause is true. Let k = e /2 .  The algorithm is totally analogous to the one 
in the proof for problem MR except that the output of the first case in 
each pair is a * k, and the output of the second case in each pair is b * k. 

As an example, Figure 3 shows the instance of MR corresponding to 
E = (x I V x 2 V x3)  • ( x  1 V x 2 V x4). In the figure, T l and T 2 correspond 
to the first clause in E, and T 3 and T 4 correspond to the second clause 
in E. 

rnl(c  I ~ d )  = s~, m l ( ®  ) = 1 - s 1 

m4(c  4 ~ d) = s4, m4(O ) = 1 -- s 4 

Estimates: s 1 = s  z = s  3 = s  4 = 0  

Tz: ( ( a , a , a , O ) , a k )  

T2: ((b, b, b,0), t,k) 

T3: ( ( a , a , O , a ) , a k )  

T4: ((b,b,O,b),b/,) 

Figure 3. Instance of MR corresponding to (x I v x 2 v x 3) &(x 1 v x 2 v x4). 
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An instance of M R  built according to the algorithm just given is a 
yes-instance if and only if the corresponding instance of OTS is a yes- 
instance. 

The  "if  par t"  is so similar to that of the proof  that MS is NP-hard that it 
will not be detailed. 

The "only if" part  is also analogous. The system to be satisfied is 

ax[ p + ]ay[ p + ]az[ p + ]  = ak,  bx[ p + ]by[ p + ]bz[ p +1 = bk 

that is, after carrying out the probabilistic sums and dividing each side of 
the equation by a and b respectively, we have 

x + y + z - axy - axz - ayz + aZxyz = k 

x + y + z - b x y - b x z - b y z  + b Z x y z = k  

If  any two of the variables have value O, the system has a solution if and 
only if the other  has value k. 

To show that the system has no solution if only one of the three 
variables is O, subtract the second from the first, side by side: 

xy + xz + yz = ( b + a )xyz  

From this point on, the proof  is the same as for MS. • 

5. FORMALIZING LIKELIHOOD SYNTHESIS 

We now consider Bayesian networks, which provide a related but 
alternative approach to belief networks. The relationship between Demp-  
s te r -Shafe r  networks and Bayesian networks is not clear enough for us to 
translate any intractability results directly from one formulation of belief 
networks to the other. 6 We do prove similar intractability results for 
Bayesian networks (from now on, Ba-nets) in this and the following 
sections but in a somewhat  different manner,  because we have no counter- 
part  to this section's L e m m a  1 that applies to Demps t e r -Sha fe r  networks. 
We also suspect that, should the relationship be made entirely precise, the 
translation of arguments  here would be less clear than the direct reproofs. 

As in Section 2, we consider only Ba-nets that are trees (Ba-trees), and 
assume that all variables are two-valued. Call the two values 0 and 1. The 
event corresponding to variable E being 1 will be denoted as e, and the 

6 Lauritzen and Spiegelhalter [13] show that join trees can be used as a representation for 
Bayesian networks as well as DS-nets. Shenoy and Sharer [8] show that the rules for 
traversing a join tree are the same whether one is computing a belief according to 
Dempster-Shafer theory or according to Pearl. Also see Pearl [1, Chapter 9]. 
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event corresponding to variable E being 0 will be denoted as ~ e. The 
prior odds of A are indicated as O ( A )  and defined as O ( A )  = P ( A ) / P (  ~ 
A). The likelihood (ratio) of A I B is indicated as L ( A  f B)  and defined as 
L ( A  I B)  = P ( A  I B ) / P ( A  P ~ B). The posterior odds of A I B are indi- 
cated as O ( A  I B)  and defined as O(A I B)  = P ( A  I B ) / P (  ~ A I B). 

The belief in E, BeI(E), is defined as the (posterior) conditional proba- 
bility of E given all available evidence. For example, in the network of 
Figure 4, BeI(H) is the conditional probability of H given all evidence. By 
"all evidence," we mean the prior probability of H, whether e i or ~ e i 
holds for each i, and the two conditional probabilities P ( E I H )  and 
P ( E I  ~ H )  for each of the links between E~ and H. Alternatively, the 
evidence can consist of the prior odds of H, whether e i or ~ ei holds for 
each i, and the two likelihoods L(el  H )  and L( ~ e J H)  for each of the 
links between E~ and H. Note that there is a (very) simple procedure to 
compute prior probabilities from prior odds, conditional probabilities from 
likelihood ratios, and vice versa. Moreover, there is a (very) simple proce- 
dure to compute the posterior odds of H from BeI(H) and vice versa. 
Therefore, we are at liberty to choose either presentation when we 
examine the computational complexity of operations in Bayesian networks. 
We choose the odds-likelihood ratio presentation for simplicity. 

To define a case for a Bayesian network, we need to recall a distinction 
made by Pearl [1] between tangible and intangible (or virtual) evidence. 
Tangible evidence is direct, categorical evidence for an event. Intangible 
evidence is a summary (in uncertain terms) of evidence bearing on an 
event. For example, there could be tangible evidence that an alarm sounds, 
or there could be an uncertain testimonial of the same event. Pearl argues 
that the uncertain testimonial (and, generally, intangible evidence) can be 
summarized using likelihood ratios. He also proposes [1, pp. 151-152] to 
introduce special events ("dummy nodes") for testimonials and link them 
to the events of interest (e.g., alarm activations) through a link whose 
likelihood ratio is the summary of intangible evidence. With the introduc- 
tion of dummy nodes, intangible evidence is reduced to a special case of 

Figure 4. Ba-tree for Example 1. 
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tangible evidence]  Therefore,  only tangible evidence is considered in this 
section. 

A Ba-presentation is a triple consisting of a Ba-tree, prior odds, and 
likelihood ratios. Ba-presentat ions will be considered as realizing a func- 
tion from a set of  outcomes for the events that are the leaves of  the 
Ba-tree to a belief for the root node. A point in the graph of the function 
is called a case. We do not require a case to indicate the value of don' t  
care variables, as illustrated in the following example. 

EXAMPLE 1 (Pearl [1]) a Suppose that a shop has installed a set of n 
burglar alarms. Each burglar alarm consists of a different sensor device 
(e.g., photocell, air pressure sensor) that produces a distinct alarm signal. 
Let H stand for the event that a burglary takes place and E i stand for the 
event that the ith alarm goes off, so that e i indicates that the ith alarm 
goes off and ~ e i indicates that the ith alarm does not go off. This setup 
can be represented by the simple Ba-tree in Figure 4. (Recall that 
Bayesian networks are directed graphs and the direction of the edges is 
determined by causality. 9) The  reliability and sensitivity of alarm k are 
characterized by the conditional probabilities P ( e  k I H )  and P ( e  ~ [ ~ H )  
or, more  succinctly, by L(ek  l H )  = P(ek  l H ) / P ( e k  [ ~ H) .  (Reliability 
and sensitivity are the terms used by Pearl. Related terms used in the 
medical domain are true positive rate, selectivity, and false positive rate.) 

A case for this example consists of  an indication of active and inactive 
alarms and of the corresponding belief in a burglary taking place. For 
instance, suppose that the belief in a burglary taking place when the first 
alarm goes off but the second does not is 0. The corresponding case is 
represented as ((e 1, ~ e2), 0). Note  that, as the belief in a burglary de- 
pends only on the state of  alarms 1 and 2, we are not required to specify 
the state of all other  ("don ' t  care")  alarms. The specification of the state of 
all alarms in this example would require an unreasonably large number  of 
data, even for a moderately  small number  of alarms, because each don' t  
care alarm can be either on or off in a case. 

The situation described in the introduction has been modeled as follows. 
The output part  of  a case describes the desired answer of the Ba-tree when 
queried with the evidence encoded as the input part  of the case. Typically, 

7 This trick works in the Dempster-Shafer case too, as shown (with some technical 
restrictions) by Kyburg [14, Section 7], and, of course, in MYCIN-style rule bases. 

8 This example is adapted from Section 2.1.3 of Pearl [1]. 
9 We do not take a position here for or against the "true" causal nature of the links. As in 

[1], the term "causality" is used here in a very broad sense. 
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there will be a discrepancy between the value of the belief computed by 
the tree and the belief given as the output part of the case. This discrep- 
ancy must be eliminated in order for the Ba-tree to work correctly. We 
consider a different definition of case in Section 8. 

6. LIKELIHOOD SYNTHESIS IS NP-HARD 

With reference to the situation described in Figure 4, Pearl [1, Section 
2.1.3], exploiting the conditional independence relation expressed by the 
BA-tree, shows that 

O(HI_E)  = O( H [ E ~ , . . . , E  n) = O( H ) I I L (  E k [ H ) ,  

where E i is either e i or ~ e i. For notational convenience, define Lil = 
L(ei  [ H )  (the ith positive likelihood) and Lio = L(  ~ ei [ H )  (the ith nega- 
tive likelihood). 

Recall that O ( H  I E)  is the output of the Ba-presentation and is easily 
converted to belief. 

The properties that cause the synthesis and refinement of likelihoods to 
be NP-hard are related to the fact that positive and negative likelihoods 
cannot be set independently. (Ironically, builders of expert systems have 
criticized this lack of independence as a requirement that "does violence 
to intuition" (Duda et al. [15], p. 1077]). This situation is summarized in the 
lemma that follows. We use only the first property in most proofs. The 
other property is used for problems LSO and LRO, in Section 9. 

LEMMA 1 
(i) I f  L/O = O, then Lil > 1. I f  Lil = O, then Lio > 1. 
(ii) I f  Lio and Lil are both nonzero, either (1) they are both equal to 1, 

or (2) one is greater than 1 and the other is less than 1. 

Proof Property l is proved first. The proof consists of the application 
of the definition of likelihood ratio. 

If L/0 = 0, then P ( ~  e i l H ) =  0, because the numerator of L/0 is 
P ( ~  e i [H) .  But then p ( e i l H )  = 1, and since this is the numerator of 
Lil,Li t > 1. 

Similarly, if L' l = O, then P(ei[ H)  = O, because the numerator of L/O is 
P(ei[ H).  But then P ( ~  ell H)  -- 1, and since this is the numerator of L/0, 
L '0> 1. 

A proof of property 2 is given by Duda et al. [15, p. 1077] and is not 
repeated. (See also Tanimoto [16, Section 7.4.1] and O'Leary [17].) • 
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PROBLEM NAME Likelihood Synthesis (LS). 

135 

PROBLEM INSTANCE A Ba-tree as given in Figure 5 with the associated 
prior odds; a set of cases. 

QUESTION Is there an assignment of likelihood ratios to the links of the 
Ba-tree such that the function realized by the Ba-presentation satisfies the 
cases? 

THEOREM 3 L S  is N P - h a r d .  

Proof  3-Conjunctive normal form satisfiability (3SAT) (Garey and 
Johnson [12, p. 259]) will be transformed to LS. 

Given a formula F in 3-conjunctive normal form, the following algo- 
rithm produces in time polynomial in the size of F an instance of LS such 
that the question has answer yes if and only if F has a model. Let n be the 
number of distinct propositional variables in F, and m the number of 
clauses in F. (Name the variables xl . . . .  , x n for convenience.) 

The number of leaves in the Ba-tree of the corresponding LS instance is 
n. The number of cases in the corresponding LS instance is m. The prior 
odds are any positive constant (o > 0). 

A case is built for each clause c i = (l i l  v li2 v Ii3) as follows. Each case 
has output O ( H  L_E) = 0. The input is built as follows: 

If lij = x i j  (i.e., lij is a positive literal), then ~ eij .  

If lij = ,~ xi j  (i.e., lij is a negative literal), then eij .  

O ( H )  = o  

Figure 5. Ba-tree and associated prior odds for problem LS. 



136 Marco Valtorta and Donald W. Loveland 

A s  an example ,  F igure  6 shows the ins tance  o f  LS c o r r e s p o n d i n g  to 
F = ( ~ x  1 v ~ x  2 V x  3) & (x  I v ~ x  2 x/ ~ x 4 ) .  Case T l c o r r e s p o n d s  to 
the  first c lause  in F ,  and  case  T 2 c o r r e s p o n d s  to the  second  c lause  in F .  ~° 

A n  ins tance  o f  LS bui l t  accord ing  to the  a lgo r i thm just  given a yes- in-  
s tance  if and  only  if  the  c o r r e s p o n d i n g  ins tance  of  3 S A T  is a yes- ins tance .  

The  " i f  p a r t "  is p roved  first. Le t  k be a posi t ive  cons tant ,  k > 1. 
C o n s i d e r  the  gene r i c  var iab le  x i that  is false in the  model .  Set  Li~ = 0 and  
L'  0 = k. C o n s i d e r  the  gener ic  var iab le  x~ tha t  is t rue  in the  model .  Set  
L '  1 = k and  L'0 = 0. I f  E has a mode l ,  then  each  c lause  o f  E is t rue  in the  
model .  C o n s i d e r  case T, c o r r e s p o n d i n g  to c lause  c i with l i tera ls  lil, li2, li3. 
In o r d e r  for  the  c lause  to be  t rue,  at  leas t  one  o f  the  l i terals  mus t  be  true.  
Say tha t  the  l i tera l  is lij. T h e r e  are  two poss ib le  s i tuat ions:  

l .  lij is a posi t ive  l i teral .  Then  xij is t rue  in the  mode l .  T h e n  L~ is 0 in 
the  c o r r e s p o n d i n g  ins tance  o f  LS. Tes t  T~ is satisfied.  

2. lij is a nega t ive  l i teral .  Then  xij is false in the  mode l .  Then  U (  is 0 in 
the  c o r r e s p o n d i n g  ins tance  o f  LS. Tes t  T~ is satisfied.  

Since  all c lauses  a re  t rue,  all tests  a re  satisfied,  and  t he r e fo re  the  LS 
ins tance  is a yes- ins tance .  

T h e  "on ly  if" pa r t  is p roved  now. A s s u m e  that  LS is a yes - ins tance  and  
t h e r e f o r e  has  a sat isfying a s s ignmen t  o f  va lues  to the  l ike l ihoods  for  each  

O ( H )  = o, where o is positive 

TI: ( (e l ,  e 2, ~ e3) ,0)  

7"2: ( ( ~  el, eZ, e4),O) 

Figure 6. Instance of LS corresponding to F = ( ~  x I v ~ x 2 V x 3) & (x I v ~ x 2 
V ~ X4).  

10 Note that, as discussed at the end of Example 1, in case 1, O(H I_E) is the product of the 
likelihood of E 4 being either e 4 or ~ e 4 times O(H)* L~ * L] * L30. However, since the 
probability that E 4 is either e 4 o r  ~ e 4 i s  l, we can just write O ( H I E )  = 
O(H)* L~ * ~112, Do.r3 Clearly, this argument applies to all cases considered in this proof and 
in other proofs of this paper. 
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case. Construct an interpretation for F as follows. Consider case T~. In 
order for T i to be satisfied, at least one of the corresponding likelihoods 
must have value 0. There are two possibilities. 

1. Assume that this is L!i. Then assign false to xij. 
2. Assume that this is L~. Then assign true to xij. 

Lemma 1 guarantees that it is impossible for any pair of complementary 
likelihoods L~ and L~ to both be 0. However, there may be some 
complementary likelihoods Lkl and Lk0 that are both nonzero in the 
solution of the yes-instance of LS. In this case, assign true or false, 
arbitrarily, to variable xk, because it must be that one of the other 
likelihoods corresponding to T~ is 0. Note that the assignment of true and 
false just defined is an interpretation, because it is impossible for a 
variable in F to be assigned both true and false at the same time. 

We now show that the interpretation just defined is a model and 
therefore the 3SAT instance is a yes-instance. Consider each clause ci of 
F in isolation. The corresponding case T, is satisfied because LS is a 
yes-instance. In order for the test to be satisfied, one of the corresponding 
likelihoods must be 0. First, assume that this likelihood is U~. By construc- 
tion of T~ from ci, c i is true if x~j is false. But this is exactly what has been 
assigned to xi j  in the model of the 3SAT instance, according to the rules 
stated in the previous paragraphs. The case in which the likelihood is L~i is 
analogous and will not be shown. Since each of the clauses of F is true in 
the interpretation, F is true in the interpretation, and therefore the 
interpretation is a model for F. • 

Like all NP-hardness results, Theorem 3 does not exclude the possibility 
that many or even most of the problem instances in LS are readily 
computable. To show that the complexity of a class of problems is high is 
to show that some bad members exist; this usually happens at "extreme" 
points. (As an analogy, consider that the undecidability of the predicate 
calculus does not say that you can't establish the validity of most formulas 
of real interest.) In our proof, we use problem instances in which likeli- 
hoods are zero. This does not seem unnatural, because the net structure is 
extremely simple. In fact, the structure is so simple that the class would 
likely not be suspect until after Theorem 3 is proved. We also emphasize 
that in theorems proved in subsequent sections of this paper we study 
problems with restrictions on allowable instances. For example, we do not 
need any likelihoods to be 0 in the proofs concerning synthesis and 
refinement in classification (LSO and LRO, Section 8). The more theoreti- 
cally oriented reader may be able to use the techniques in our proofs to 
show results for problems with different, but similar, restrictions. Also, we 
study refinement, approximate solutions, and percentage error in later 
sections. 
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The problem of synthesis of likelihoods and prior odds will also be 
shown to be NP-hard. 

PROBLEM NAME Likelihood and Prior Odds Synthesis (LPS). 

PROBLEM INSTANCE A Ba-tree as given in Figure 4; a set of cases. 

QUESTION Is there an assignment of likelihood ratios to the links of the 
Ba-tree and of odds to node H such that the function realized by the 
Ba-presentation satisfies the cases? 

THEOREM 4 LPS is NP-hard. 

Proof  

Proof  (sketch) Adapt  the proof  that LS is NP-hard as follows: 
1. The tree of the instance of  LS corresponding to the generic instance 

of 3SAT has n + 1 leaves (instead of n). 
2. Cases are built as before, ignoring the (n + 1)th leaf, except for the 

additional case ((e "+ 1), p), where p is any positive constant. 
The new case ensures that in any solution to an LPS instance corre- 

sponding to a 3SAT instance O ( H )  = o, where o is a positive constant. 
Therefore,  the modified proof  that LS is NP-hard is a proof  that LPS is 
NP-hard. • 

7. APPROXIMATIONS 

This section presents two problems that arise from attempts to define 
meaningful approximate solutions to the refinement of numerical parame- 
ters. Both problems deal with DS-trees. The two corresponding problems 
for Ba-trees are also NP-hard. 

PROBLEM NAME Approximate Mass Synthesis (AMS). 

PROBLEM INSTANCE As for problem MS in Section 3. 

QUESTION Find an assignment to s~ . . . .  , s n strictly within 0.5 of the 
correct assignment, where the correct assignment is the assignment such 
that the function realized by the DS-presentation satisfies the cases. 

THEOREM 5 A M S  is NP-hard. 

Proof  (sketch) Consider a variant of problem MS with the possible 
values of s I . . . . .  sn restricted to the set {0,1}. It is easy to show, by 
adapting the proof  of Theorem 1, that the variant is still NP-hard. 
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If AMS were tractable, problem MS with instances having masses 
restricted to {0, 1} would be tractable. But this contradicts the variant of 
Theorem 1 just mentioned.  • 

PROBLEM NAME Noisy Mass Refinement  (NMR). 

PROBLEM INSTANCE A DS-tree and associated compatibility relations as 
given in Figure 1; an assignment of  values for s 1 . . . .  , sn; a positive constant 
e; a positive constant k less than 100; a set of cases. 

QUESTION Is there an assignment of  values to s 1 . . . .  , s n each of which is 
at most e away from the given ones such that the function satisfies k %  of 
the cases? 

THEOREM 6 N M R  is NP-hard. 

Proof  (sketch) Consider a generic M R  instance with m -  m k / l O 0  
cases (for arbitrary m). 11 Consider the instance of N M R  with m cases built 
as follows. The N M R  instance is identical to the M R  instance except that 
it has m cases, m - m k / l O 0  of the cases are as for the M R  instance, 
while each of the remaining m k / l O 0  cases is a copy of the first case of the 
M R  instance. By this reduction, if N M R  were tractable, MR would be 
tractable. But this contradicts Theorem 2. • 

8. CLASSIFIERS 

In applications in which the task (as defined, e.g., by Breuker  et al. [18]; 
cf. Karbach et al. [19]) of  the expert system using the belief network is to 
classify, the user is concerned with the relative ranking (rather than the 
exact values) of beliefs associated with the terminal nodes 12 of a DS-net  or 
a Ba-net. Cooper  [4, Section 5.4 and 5.5] and Valtorta [5] provide addi- 
tional motivation and techniques. 

The corresponding refinement problems are NP-hard. We present the 
problem for Ba-nets; it is easy to show that the analogous problems for 
DS-nets are also NP-hard. 

In the first problem, we redefine the function computed by the network 
as follows. The Ba-net classifies the input part  of a case to be of class 1 if 
the computed  odds of the net is less than or equal to 1. The Ba-net 
classifies the input part  of  a case to be of class 2 if the computed belief in 
the output node is greater  than 1. Correspondingly, we change the defini- 

11 Round rnk/lO0 to the nearest integer. 
12 When suitably defined, in the obvious way. 
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tion of the output part of a case to be the specification of a class, that is, 
either "class 1" or "class 2." Note that the problem given below is stated 
identically to problem LS. The problems differ only because they use a 
different definition of case. 

PROBLEM NAME Likelihood Synthesis, Ordered Output (LSO). 

PROBLEM INSTANCE A Ba-tree as given in Figure 5 with the associated 
prior odds, a set of cases. 

QUESTION Is there an assignment of likelihood ratios to the links of the 
Ba-tree such that the function realized by the Ba-presentation satisfies the 
cases? 

THEOREM 7 LSO is NP-hard. 

This result is proved by the same technique as for problem LRO, which 
follows. 

PROBLEM NAME Likelihood Refinement, Ordered Output (LRO). 

PROBLEM INSTANCE A Ba-tree as given in Figure 5 with the associated 
prior odds; an assignment of values for L~ . . . . .  L'~; a positive constant e; a 
set of  cases. 

QUESTION Is there an assignment of values to L~ . . . . .  L'~ each of  which 
is at most e away from the given ones such that the function realized by 
the Ba-presentation satisfies the cases? 

THEOREM 8 LRO is NP-hard. 

Proof  Monotone 3-conjunctive normal form satisfiability (MSAT) 
(Garey and Johnson [12, p. 259]) will be transformed to LRO. The generic 
MSAT instance is a formula in conjunctive normal form, where each 
clause contains only three positive (positive clause), or three negated 
(negative clause) variables [e.g., (x 1 v x 2 V x3)  • ( ~  x 1 V x ~- x 2 V ~ x 2 )  ]. 

The question is whether there is a model for the formula. 
Given an MSAT formula F, the following algorithm produces in time 

polynomial in the size of F an instance of  LRO such that the question has 
answer yes if and only if F has a model. Let n be the number of distinct 
propositional variables in F and m the number of clauses in F. (Name the 
variables X l , . . . ,  x n for convenience.) 

The number of leaves in the Ba-tree of the corresponding LRO instance 
is n. The number of cases is m. The prior odds are set to 1. The given 
assignment for each of  the positive likelihood ratios is 1 + e /2 .  The given 
assignment for each of the negative likelihood ratios is 1 - e / 2 .  
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The following case (a positive case) is built for each positive clause 
(x  i v xj v Xk): ((e i, e i, ek), class 2) 

Similarly, the following case (a negative case) is built for each negative 
c l a u s e ( ~ x  i v  ~ xj v ~ x k ) : ( ( ~ e  i, ~ e j, ~ ek), class 2). 

As an example, Figure 7 shows part of the LRO instance corresponding 
to F = ( x ~  v x  2 v x  3) & ( ~ x ~  v ~ x  2V ~x4) .  Case T 1 corresponds to 
the first clause in F, and case T 2 corresponds to the second clause in F. 
The assignment of values to the positive and negative likelihood ratios is 
not given in Figure 7. 

An instance of LRO built according to the algorithm just given is a 
yes-instance if and only if the corresponding instance of MSAT is a 
yes-instance. 

The "if  part" is proved first. Let g = e /2 .  l e t  h = 1 + g and k = 1 - 
g / 8 .  Note that h > 1, 0 < k < 1, and hkk  > 1 and that h and k are within 
e of the values 1 + e / 2  and 1 - e / 2 ,  the given assignments of the problem 
specification. Assume that the MSAT instance is a yes-instance. Since the 
MSAT instance is a yes-instance, it has a model. Consider the generic 
variable x i that is true in the model. Set L'~ = h and L~ = k. Similarly, 
consider the generic variable xi that is false in the model. Set L~ = h and 
L~ = k. These assignments are consistent with the definition of positive 
and negative likelihood and with the restriction that likelihood ratios be 
within e of the ones originally assigned. 

Consider the generic clause, which is true in the model. The correspond- 
ing test is satisfied by the setting of likelihoods just given, because the 
computed output  is equal to either ohhh or ohhk  or ohkk,  and each of 
these terms is greater than 1, by definition of h and k. Therefore,  all the 
tests are satisfied, and the LRO instance is a yes-instance. 

O ( H )  = 

/'1: ((e l, e 2, eS), class 2) 

/'2: (( ~ e 1, ~ e 2, ~ e4), class 2) 

Figure 7. Part of the instance of LRO corresponding to F = (x~ v x 2 v x 3) & 
( ~ x l v  ~ x  2 v  ~x4). 
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The "only if" part is proved now. Assume that the LRO instance is a 
yes-instance. Therefore,  each of the tests is satisfied. Build an interpreta- 
tion for the corresonding MSAT instance as follows: 

Set x i to true if both L '  1 > 1 and 0 < L' 0 < 1. 

Set xi to false if both L' 0 > ! and 0 < L' 1 < 1. 

Set x i to true if both L' 0 = 1 and L' l = 1. 

Because all the cases built by the transformation algorithm have output 
"class 2," we can ignore the situation in which the ith positive or negative 
likelihood is 0. Therefore,  by I~mma  1, the three cases considered just 
above are exhaustive, and an interpretation has indeed been built. It will 
next be shown that the interpretation satisfies the MSAT instance and is 
therefore a model for it. 

Consider the generic positive case ((e i, e j, ek), class 2). In order for it to 
be satisfied, it must be that at least one of the ith, j th,  and kth positive 
likelihoods is greater than 1. But in this situation the interpretation 
described in the previous paragraph has at least one of x i, xj, x k set to 
true. Therefore,  the positive clause corresponding to the generic positive 
test is true. 

Similarly, consider the generic negative case (( ~ e i, ~ e J, ~ ek), class 2). 
In order  for it to be satisfied, it must be that at least one of the ith, j th,  
and kth negative likelihoods is greater than 1. But in this situation the 
interpretation described in the previous paragraph has at least one of 
x i, x j ,  x k set to false. Therefore,  the negative clause corresponding to the 
generic negative test is true. 

Finally, since there exists a one-to-one correspondence between all cases 
in the LRO instance and corresponding clauses in the MSAT instance, and 
all of the cases are satisfied, then all of the clauses are true and the MSAT 
instance is a yes-instance. • 

For  the next problem, the output part of a case is again an indication of 
a class. However, now we have a net architecture different from a tree; we 
consider a multiple-output net. In particular, in place of a root node, we 
may have many output or t e r m i n a l  nodes. Terminal nodes are labeled by 
class number. We say that the Ba-net c l a s s i f i e s  a case input as being of 
class i if the computed belief for the terminal node labeled i is at least as 
high as the belief for the other terminal nodes. We consider explicitly this 
different network, because there is much interest in applying belief net- 
works to situations in which a decision among multiple competing hypothe- 
ses must be made. The fact that we need only slightly modify a previous 
proof  to obtain the following result helps show the robustness of this class 
of results. 
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O( H1) = o 

O(H2) = p  

Figure 8. Ba-net and associated prior odds for problem LSM. 

PROBLEM NAME Likelihood Synthesis, Multiple Outputs (LSM). 

PROBLEM INSTANCE A Ba-net as given in Figure 8, with the associated 
prior odds, and labels on the terminal nodes; a set of cases. 

QUESTION Is there an assignment of likelihood ratios to the links of the 
Ba-net such that the Ba-net correctly classifies all cases? 

THEOREM 9 L S M  is NP-hard.  

Proof  (sketch) Change the proof  that LS is NP-hard as follows: 
1. Change the output of each case to 2. 
2. Set p = 0. 
Observe that O ( H  z I E )  = O, because O ( H  2) = p and p has been set to 

0. Further observe that each of the other  new cases is satisfied if and only 
if the belief in the node labeled 1 is 0 and therefore if and only if each of 
the cases in the proof  that LS is NP-hard is satisfied. Therefore,  a proof  
that LSM is NP-hard has been obtained. • 

9. RELATED WORK 

The main reference on the algorithmic complexity of computations in 
belief networks is Cooper 's  work [4]. The relationship between that paper 
and ours is discussed in Sections 1 and 10. Other work on the complexity 
of computation in belief networks includes that of Orponen [20] and 
Provan [21]. 

Belief neworks are a kind of knowledge base. There  is a substantial body 
of literature dealing with the refinement of (truth-functional) rule bases, 
another kind of knowledge base that is historically prevalent in expert 
systems. The Sixth International Workshop no Machine Learning included 
a track on knowledge base refinement and theory revision. See the pro- 
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ceedings for contributions (Segre [22]). In particular, it has been shown 
that automatic refinement of rule bases from cases is NP-hard (Valtorta 
[5]). 

Synthesis of numerical parameters in rule bases is somewhat analogous 
to training in neural networks. Indeed, there are apparently similar results 
of intractability (see Judd [23, 24], Blum and Rivest [25], and Lin and 
Vitter [26]). However, the functions used in neural networks to process 
weights are different from those used in rule bases or belief networks (see 
Fu [27], Valtorta [5]). Laskey [28] proposes to use a kind of neural network 
(the Boltzmann machine) to "adjust conditional probabilities on the links 
of a Bayes network." 

One would expect parameter  refinement to fit cases ("memorization") to 
be related to and at least as hard as refining parameters to deal with new 
situations ("generalization"). Chapter 7 of Judd's monograph on the com- 
plexity of  neural network design [29] is an excellent explanation of the 
"memorizat ion" versus "generalization" issue. Much of that explanation is 
applicable to rule bases and belief networks and explains better than we 
could in a limited space why we do not address generalization directly in 
this paper. 

An alternative to direct refinement of numerical parameters in Ba-nets 
is the introduction of "dummy nodes" representing unknown events whose 
only purpose is to account for the failure of a Ba-net with given numerical 
parameters.  ~3 (For example, the failure of the Ba-net in Figure 4 to 
compute the correct belief in H could be attributed to the influence of an 
unknown event linked to H rather than to errors in the likelihood ratios in 
the network. The numerical parameters related to the unknown event 
could be computed using cases.) It is conjectured that this kind of refine- 
ment with limited changes in the structure of the belief network is also 
NP-hard, an interesting conjecture that we are not prepared to address in 
this paper. The arguments in this paper are based on fixed network 
structure. 

10. CONCLUSION 

A major technical contribution of this paper is the proof  that refinement 
of (Dempster -Shafer  and Bayesian) belief networks from cases is NP-hard. 
Two points regarding this result deserve amplification for their potential 

13 Judea Pearl showed one of us this technique and noted its apparent complexity in August 
1989. Spiegelhalter and Lauritzen consider a related technique in a recent manuscript. 
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impact on the practice of expert system construction and will be addressed 
now. 

The networks used in the problem instance of MS, MR, and LS (and, in 
fact, of  all the other  problems with the exception of LSM) are trees. They 
are much simpler than the nets used by Cooper [4] in proving that the 
computation of beliefs in belief networks is NP-hard. Even more strongly, 
it is well known (e.g., Kong [30], Pearl [1], Lauritzen and Spiegelhalter [13], 
Shenoy and Shafer [8]) that the computation of beliefs in trees TM is 
tractable. Therefore,  a developer could be faced with the unpleasant 
situation in which the belief network is nicely structured for efficient 
computation of beliefs, but acquisition of the parameters (e.g., likelihood 
ratios, masses) for the calculation is extremely difficult, and this holds even 
if good estimates of the parameters are available. 

Synthesis of numerical parameters in knowledge bases, be they rule 
bases or belief networks, is a kind of refinement of knowledge bases: the 
numerical estimates of the parameters are not available although the 
structure of the knowledge base is. This situation is particularly interesting. 
The structure of the knowledge base can be determined by answering 
relatively simple questions about independence of events. Therefore,  the 
knowledge engineer should believe more strongly in the (qualitative) 
network structure than in the values of the numerical parameters, ~5 and it 
is natural to use an expert to obtain the knowledge structure and initial 
guesses. These considerations suggest a methodology for the construction 
of knowledge-based systems that use belief networks. At the heart of this 
methodology is a propose-and-fit cycle. In this cycle, after interviewing an 
expert, the designer proposes a structure for the belief network. The 
network parameters are set or adjusted to fit selected test cases. If 
parameters can be set to fit the cases, the development is complete. If they 
cannot, the designer must consult the expert further until a new (qualita- 
tive) network structure is proposed. Another  attempt is made to set the 
parameters to fit the cases, and so on. Our results indicate that it is 
difficult to automate the "fit" step of  this methodology. 

In this paper, we have not assumed that an expert who can give the 
correct probability for any set of (input) evidence is on call. Instead, we 
have assumed (more realistically, according to MUNIN designers 16) that 

14 The same is true for some kinds of graphs that are not trees. 
15 This is related to the argument (Wilkins and Buchanan [31], Valtorta [32], Andreassen et 

al. [3], Lauritzen and Spiegelhalter [13]) that the structure of the knowledge base should be 
changed only if the numerical parameters cannot be set in such a way that the knowledge 
base performs correctly. 

~6 Stig Andersen, personal communication, November 1989. 
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an arbitrary collection of cases is determined a priori. These may come 
from an expert, a textbook, a database, or some other source. As an 
example of alternative methods for refinement, consider the use of a type 
of  oracle. If an expert is available after construction of the knowledge 
base, the expert could be used as an oracle to facilitate knowledge base 
refinement. In this mode, the expert would be queried with specially 
focused questions allowing the synthesis or refinement of specific masses 
or likelihoods. A result in the setting in which the oracle is on call 
concerning rule bases (Valtorta [32, Chapters 4 and 7; 33]) indicates that 
automatic synthesis or refinement in certain belief networks that are trees 
is do-able in polynomial time and suggests that it is intractable for graphs. 
More remains to be done along this line of work. 
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