
Building Bayesian Network Models in Medicine: 

the MENTOR Experienc§ 

Subrarnani J\Ianl 
Center for Biomedical Informaticil 

Cniversity of Pittsburgh 
Pittsburgh, PA 152131 

Marco Valtorta' 
Department of Computer Science and Engineering 

University of South Carolina 
Columbia, SC 29208 

BlIZanne J\TcDermottl 
Department of Family and Preventive Medicin� 

University of South Carolina 
Columbia, SC 29208 

September 22, 200� 

IAbstract 

IAn experiment in Bayesian model building from a large rnedica� 
dat.aset. for �'vIental Ret.ardat.ion is discllssed in t.his paper. \:Ve give a 
i:>tep bv i:>tep description of the pra.ctical aspects of building a Ba.vesian 
Nchvork from a dataset. \Vc enumerate and briefly describe the tools! 
required, address the problem of missing values in big datasets rcsult-i 
ing from incomplete clinical findings and elaborate on our solution tr� 
the problem. \\e advance some reasons \\'h)' nnputat.lOIl IS a more <Ie-I 
i:>ira5Ie approach for model building than i:>ome other ad hoc method@ 
suggested in literature. In our experiment; the initial Bayesian :."Jet-I 
,york is learned from a dataset using a machine learning program called! 
cn. The nehvork struct.ure and t.he condit.ional probabilitieR are thed 
modified under the guidance of a domain expert. VVe prei:>ent validaj 
tion resulti:> for the unmodified and modified networki:> and give som§ 
suggestions for improvement of the model.1 

* Address for correspondence: mgv(((cse.sc.edu. 



Keywords and phrases: Bayesian networks, machine learning, artificial 
intelligence in medicinej 

1 Introduction 

A large quantity of non-cxpcrirncntaI data is generated in Medicine fron� 
Htu(hes of the natural hIstory of dIsease, caRe reports and epHienlloioglcal 
surveys!. If experiments are well-designed, it is comparatively easy to ana­
lyze and interpret the data obtained. But, making sense of non-experimental 
data IS a (hfficlllt task and Involves a huge lIlvestrnellt of tune, effort and ex­
pertise. However, data collected for one purpose can often be used to answe� 
other questions. Federally funded research projects make datasets availabkj 
after the onglnal study If! COIllpleted. These dataHetH often are llnderubhzed. 
This type of data is also referred to as archival data and is basically avail­
able to the investigators in "as iH" condition [ZyBa91J. Techniques based or� 
Bayesian networks hold great promise in the task of detecting associationsl 
which can be interpreted (with great caution!) as causal relationships using 
non-experimental data [PeVe91, PearOOj. 

We developed a model to answer the question-"What is the risk of 
Mental Retardation (MR) for a particular pregnancy or infant based on in­
forrnaboll troI11 the prenatal, pennatal or postnatal pennel?" We do not 
have a diagnostic model in mind. We expect our model to quantify the risk! 
of MR outcome, which in the early prenatal period can be used as a guide­
hne for seekIng lllvaSlve procedures finch as anllllocenteslH for arnvIng at � 
definitive diagnosis and recommendation about the desirability of sustaining 
the pregnancy. Dnnng lIlfancy the rnode! rllay be llHed to Hcreen dllldren 
who are at greater risk for MR. to plan special educational or environmental 
InterventlOntiJ 

The prevalence of MR IS est.nnated to be about. 2.5 per cent of the popu­
lation [13ats93, StSu92]. When the category of borderline mental retardati01� 
is included in population estimates, over 16 percent of children have an IQI 
Hcore leHH than 85, one standard deviation below the rllean. MR iH a devel­
opmental disability with a complex etiology, and the causative factors andj 
nlCchanitilnS are not well undertitood. "Mental Retardation is charaderi:zedl 
by significant.ly subaverage intellectual funct.ioning" [AAMR.92, 1'.5]. Th� 
American Association on Mental Retardation (AAMR) quantifies the iden-

1 A similar situation exists in many other fields, both in the social and in the natura� 
sciences; consider the tremendous amonnt of non-experimental data sent bv spacecraft fori 
an example outside the social sciences 



tification of people as those scoring below two Standard Deviations (SD) ill 
a standardi,ed IQ test [AAMR92, p.5]. These tests arc usually normali,e� 
to a mean of 100 wIth a SD of 15. Those wIth scores below 50 are dasslfie<l 
as having severe mental retardation. Scores in the category of 50-69 fall 
in the classification of Mild Mental Retardation (MMR). AAMR suggests 
inclusion of limitation of adaptive skills for individual diagnosis [AAMR92, 
p.6j, but many studies have used cognitive tests (IQ scores) for classificatiOl� 
[StSu92, McDe93]. 

We shall use Ie} scores and include the additional category of I3orderlin<j 
Mental Retardation (BMR, scores falling between one and two standar� 
deviations). For severe MR a callH8 call be fOllud in the rnajority of eases. 
In MMR, which forms 85% of MR, a cause cannot be identified in half th� 
cases [Bats93]. 

So here we have a cOlnplex web of unknown causal rnechalllsIllH, dIS­
agreement among experts, controversies (the large literature of nature ver­
sus nurture) and serious gaps in the experts' understanding of the etiological 
factors. A I3ayesian modeling approach may shed some light on the causal 
nlCchanislns, give us a tool for prediction of MR and open up avenues fOIl 
early intervention Iuedieal and social. 

A companion publication in the developmental disabilities literature [MaMc97] 
discusses our model further from a medical perspective. In this paper, wcj 
dlSCllHH the tedlluqu8H used III rnode! tHuhhng and vahdat IOn trOlll an apphe(� 
artificial intelligence perspectiveJ 

12 Model Building Methodology! 

We refer the reader to [Neap90, Section 5.3] for a precise and thorougl� 
definition of Bayesian network and to [Pear88, Char9L SDLC93, CDLS99, 
iJens96, JensOl] for extended presentations of related concepts. We only giv� 
a sketch of the definition with a brief example. 

A Bayesian network consists of a directed acyclic graph (DAG), priOlj 
marginal probability tables for the nodes in the DAG that have no parents, 
and conditional probability tables for the nodes in the DAG given theilj 
parents. The network and the probability tables define a joint probability 
(iIstnhlltlOIl 011 all vanables COlT8HpOlHiIng to the nodes, WIth the defirllllg 
property that the conditional probability of any variable v given any set of 
vanableH that Iucludes only the parents of v and any Hutmet of nodes that 
are not descendant of v is equal to the conditional probability of v given onlJJ 
its parents. From this property, it follows that the joint probability of thej 



variables in a I3ayesian network decomposes in a multiplicative fashion; mor� 
precisely, if V is the set of the nodes in the DAG, the following equality (thel 
ch(}:in rule for BayeS'ian nel'ilJo'rk8) holds; P(V) = IIuE V P(v I parents(v)). 
In turn, this decomposition allows for very efficient computation of marginal 
pm;tenor probatnhbes upon observatIOn of eVHlence.1 

As an example, the graph in Figure 1 models a small portion of th� 
nlCntal retardation donlain. We do not dainl that thiti lnodcl is accurate OIl 
sensible; it is provided only for the sake of illustration. At the depth of un­
derstanding required for the example. the names of the variables should b<j 
considered self-explanatory. Recall that a Bayesian network is composed of 
two parts: all acychc dU8cted graph and the nllrrH�ncaI specIficatIOn of COll­
ditional and prior probability tables. Three features of I3ayesian networks 
arc worth rllcntioning. 

First, the directed graph constrains the possible joint probability dis­
tnbutlOns represented by a I3ayesJan network. For example, III any dlstn-I 
but ion consistent with the graph of Figure L Chld_Ravn (the IQ score of 
the child) is conditionally independent of FaTfLInc (Family Income) givel� 
lMoTfLAgc-Birth (the age of the mother at birth) and MOTfLSmokc (whethelj 
the mother smokes); also, P_Morr!. (the IQ score of the mother) is condition­
ally independent of any subset of the other variables given Mom Smoke. 

Secondly, the explicit representation of constraints about conditional in­
dependence allows a HutmtanbaI reductIOn In the nUluher of pararneten; tol 
be estimated. In the example, assume that the possible values of the fiv� 
variables are given in Table L Then, the joint probability table 
P(Fmn. Inc, Mmn. Age BiTth, Mmn. Smoke, Chid Ravn, P Mom.) has 2 >J 
� x 2 x 4 x 4 = 192 entries. It would be very difficult to assess 191 indepen-I 
dent paranlCtcrs2. However � the independence constraints encoded in thd 
graph permit the factori"ation 
P(Fam_Inc, M om_Age_Birth, Morn_Smoke, Chld_Ravn, P _Morn) -
P(FmrLInc) xP(Mo'rrLAqe_HiTth I Fam.Jnc) xP(MmrLSmoke I Fo:rrLIncl 
xP(ChllLRavn I MorrLAge_Bir·th,MarrLSmoke) xP(P_Mom I MarrLSmoke)! 
which reduces the number of parameters to be estimated to 1 +4+2+ 18+6 = 

flL The second term in the sum corresponds to the conditional probability 
table for em MonLAge_I3irth given em Fam_Inc. which is given in Table 2; 
note that there arc only four independent parameters to be estimated, sinn1 
the SUIll of values by eolulnn if) OIle. Again, we ernphasize that these 11lllnber� 
are fictitiousJ 

Thirdly, the Bayesian network representation allows a substantial (usu-

2Probabilitics sum to 1) so one of the 192 parameters is dependent on t.he ot.her 1911 



Fam Inc 

Mom Smoke 

Chid Ravn P Mom 

Figure 1: A Microscopic Model of MR 
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>=10000, <10000 
14-19, 20-34, >=35 

yes,no 
mild, border, normal, super 
mild, border,normal, super 

Table 1: Values of the Five Micro-Mentor Variables 

Fam_Inc 
>=10000 <10000 

14-19 0.1 0.3 
20-34 0.7 0.6 

>=35 0.2 0.1 

Table 2: Conditional Probability Tables for Mom_Age_Birth Given Fam_Inc 

ally, dramatic) reduction in the time needed to compute marginals for each 
variable in the domain. The explicit representation of constraints on inde­
pendence relations is exploited to avoid the computation of the full joint 
probability table in the computation of marginals, both prior and condi­
tioned on observations. Space prevents the description of the relevant al­
gorithms. See, e.g., [Jens01, Ch.5] for a discussion of the junction tree 
algorithm, the most widely used one. 

There are two methods of building a Bayesian network for a particular 
application domain. The first method consists of asking the domain expert 
to construct the network (DAG) and assign the prior marginal probabilities 
for nodes without parents and the conditional probabilities for the other 
nodes. The second method consists in building the network from data. 
There are several algorithms available to accomplish this learning task­
for example, BIFROST [LaTS93], K2 [CoHe92] and CB [SiVa93, SiVa95]. 
The marginal and conditional probabilities can also be computed from data. 
The models are validated by comparing with the performance of an expert 
[SDLC93]. We use a combination of the two strategies-capture the skeleton 
network from data using the CB algorithm and refine the DAG with the help 
of the expert and published literature. Prior and conditional probabilities 
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are obtained from data and fine-tuned by the expert. 

t3 Datasets Used in Model Construction 

We obtained the Child Health and Development Study (CHDS) data set, 
which was developed in a study concerning pregnant mothers and thei� 
children [CHDS87]. The children were followed through their teen years 
and InclUded nurnerous questIOnnaireS, phYSIcal and psychologIcal exanlS, 
and special tests. The study was conducted by the University of California 
at Berkeley and the Kaiser Foundation. It started in 1959 and continue(� 
mto the 1980·s. There are approxlInately 6000 chlldren and 3000 mothersl 
with IQ scores in the data set. The children were either 5 years old or 9 
years old when their IQs were tested. The IQ test used for the children wasl 
the Raven Progressive Matrices Test. The mothers' IQs were also tested, 
and the test used was the Peabody Picture Vocabulary Testl 

We identified about 50 variables scattered among several CHDS file� 
that are thought to play a role in the causal mechanism of MR. Under th,j 
gUIdance of the dOIHanl expert tIns set of fifty vanables was reduced to � 
set of twenty-three resulting in the datasets described in 3.1. The subject 
expert thought that this set of variables was sufficient to capture the domail� 
knowledge. Only one dnld of the InotIleI' If! nlclllded In each of the datasets. 
Table 3 contains a list of the twenty-three variables used in the final I3ayesiar� 
network. (The files used in network construction include a twenty-fourthl 
variable. MAR STAT, indicating marital status of the mother, which wasl 
removed at a late stage.) 

B.l Datasets Used for Network Construction 

RAVN6X24 Thjs dataset contains 5985 cases aDd 24 variables In tbis 
dataset many of the IQ scores of mothers are missing. The percentagel 
of IIllSSlllg values IS 12. TIllR dataset IS the total relevant dataHet 

RAVN2X24 This dataset contains 2212 cases and 24 variables. The IQI 
fleores of Illothen; and dllidren are preHent. There are no IIlIHHlng vaIlle� 
for the IQ scores. This is a subset of the RAVN6X24 dataset. witl� 
all the rows which did not have IQ scores for the mother and chilcj 
rernoved. The percentage of Illlssing valueR IS 4. 

RAVN6X23 This dataset contains 5985 cases and 23 variables. As onI51 
about 3000 mothers were given IQ tests. this dataset was created with­
out the variable P _MOM (IQ score of the mother). This is also a subset 
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Variable What the Variable Represents 
Mother's race classified as White (European or White and American Indian or others 

MOM_RACE considered to be of white stock) or non-White (Mexican, Black, Oriental, 

interracial mixture, South-East Asian). 

MOMAGE..BR Mother's age at time of child's birth categorized as 14-19 years, 20-34 years, or 2': 35 years. 

MOM�DU 
Mother's education categorized as :S 12 and did not graduate, high school, graduated 

high school, and >high school (attended college or trade school). 

DAD�DU Father's education categorized same as mother's. 

Yes if mother had one or more of lung trouble, heart trouble, high blood pressure, kidney trouble, 

MOM�IS convulsions, diabetes, thyroid trouble, anemia, tumors, bacterial disease, measles, chicken pox, 

herpes simplex, eclampsia, placenta previa, any type of epilepsy, or malnutrition; no otherwise. 

FAM..INC Family income categorized as < $10,000 or 2:: $10,000. 

MOM_SMOK Yes if mother smoked during pregnancy; no otherwise. 

MOM�LC 
Mother's alcoholic drinking level classified as mild (0-6 drinks 

per week), moderate (7-20), or severe >20). 

PREV_STILL Yes if mother previously had a stillbirth; no otherwise. 

PN_CARE Yes if mother had prenatal care; no otherwise. 

MOM�RAY Yes if mother had been X-rayed in the year prior to or during the pregnancy; no otherwise. 

GESTATN 
Period of gestation categorized as premature (:S 258 days), 

or normal (259-294 days), or postmature (2:: 295 days) . .  

Fetal distress classified as yes if there was prolapse of cord, mother had a history of 

FET_DIST uterine surgery, there was uterine rupture or fever at or just before delivery, 

or there was an abnormal fetal heart rate; no otherwise. 

INDUCE..LAB Yes if mother had induced labor; no otherwise. 

C_SECTION Yes if delivery was a caesarean section; no if it was vaginal. 

CHLD_GEND Gender of child (male or female). 

BIRTH_WT Birth weight categorized as low < 2500 g) or normal (2:: 2500 g). 

RESUSCITN Yes if child had resuscitation; no otherwise. 

HEAD_CIRC Normal if head circumference is 20 or 21; abnormal otherwise. 

Child anomaly classified as yes if child has cerebral palsy, hypothyroidism, spina bifid a, 

CHLD�NOM Down's syndrome, chromosomal abnormality, anencephaly, hydrocephalus, Turner's syndrome, 

cerbellar ataxia, speech defect, Klinefelter's syndrome, or convulsions; no otherwise. 

CHLD_HPRB 
Child's health problem categorized as having a physical problem, having a behavior problem, 

having both a physical and a behavioral problem, or having no problem. 

CHLD_RAVN 
Child's cognitive level, measured by the Raven test, 

categorized as mild MR, borderline MR, normal, or superior. 

P_MOM 
Mother's cognitive level, measured by the Peabody test, 

categorized as mild MR, borderline MR, normal, or superior. 

Table 3: The variables used in MENTOR. 
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of the RAVN6X24 dataset with the variable mother's IQ deleted. Th� 
percentage of missing values is 10. 

All three dataHetH were llsed for network construction, as explained in sec­
tjon 6 1 

f1 Tools for Model Buildingj 

The CB algorIthm takes as Input a dataset wIth uo rnlsslllg values an(� 
outputti a Bayct;ian network titructurc. The network structurc� when aug­
mented with suitable conditional probability tables constitutes a Bayesiarj 
network. as defined in Section 2 that models the data, in the sense that 
the data can be taken to be a sample of the distribution encoded by th,j 
network. Moreover the network Htructure output by CB liaR llsually only ® 
few edges. because it exploits independence relations among variables well. 
The network is therefore appropriate for use by inference algorithms and fOlj 
visual inspeetion� 

The CI3 algorithm works in two phases. In the first phase, CI3 usesl 
ponditional Independence tests (X2 tests) j()r ordering the nodes. In th� 
second phase, which is based on the K2 algorithm [CoHe92], CI3 computesl 
greedily an approximation to the most likely network structure given th,j 
dataset [SiVa95]. Given a dataset and network, CondProb computes th� 
prior marginal and conditional probabilities using the formulas in [CoHe92]. 
An implementation of eB with a user-friendly graphical user interface i� 
available by contacting the first author:] j 

HUGIN provides a graphical interface for representing the nodes (do­
main variables) and the directed edges (usually interpretable as causal re­
lationships between the variables). A user-friendly mechanism for namin� 
the variables, entering the states of the variables and assigning the condi­
tIOnal probatnhbes IS also prOVIded. HOGIN nnpleIllentH the LanDtzen an(� 
�piegelhalter method of probability propagation in DAGs [LaSp88]. witlj 
some improvements. The HUGIN sheIl was developed by Andersen, Olesen, 
F.V. Jensen and F. Jensen in Denmark [AOJJ89]j 

The IMP program analyzes the given dataset and predicts Illlssmg val­
ues. We usc statistical, case nlatching and randOlnization rllcthods. A ran­
dOIn guess IS atternpted when ease rnatdllng farIs. The rnethod IS expected tol 
succeed in dOlnains where there is good interdependency between variables. 

''''This implementation. \vhich includes CondProb, is called Visual CB a.nd is de-I 
scribed in [Xia, 2002] 
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Fortunately most real world data and medIcal data m partIcular have man,)l 
interdependent variables. We have not analyzed the theoretical propertie� 
of IMP, hut we consIder It to be a practIcal and llHe±uI rnethod parbcularl51 
for purposes of model buildingi 

CAP-CPN " an apphcatlOn wntten m C to call BayesIan Networks 
using HUGIN4. It provides modules to use the HUGIN-API C library in m� 
organized way. CAP-CPN converts an ASCII dataset to the format requirei1 
by HOGIN for batch vahdatlOn. It also prov"les tunctlOns to perform sllnpIij 
statistIcal tests on the data gathered by samplmg the outcome node wherj 
a batch file containing cases is processed.1 

15 Handling Missing Value� 

Real world data contains missing values. This is particularly true of med­
Ical datasets. The general practIce In the analysIs of IIllSSlllg data IS delebngj 
cases (records) with missing data. I3ut when there are numerous variable� 
such a policy can mean that most records will have to be disregarded froll� 
analys" or many vanables wIll have to be sacnticed. It wIll help d wij 
can COlne up wIth a scherne to predIct and assIgn rnlsslng values. To start 
with, this strategy will be very useful for model building and validation froll� 
datasets. We do not (hscuss the rnents and dernents of nIlputIllg for dat31 
analysIs here� 

We decided against the easy way of making a separate category for th'l 
missing values, as done in the original MUNIN system [AWFAS7]. We be­
lieve that it it; not a satisfactory procedure as in nrost cases it is hard tol 
trace a cauHaI pathway between the Illlsslng category of one vanable an(� 
the missing category of another variable. Treating missing value as a sep­
arate category is also likely to create serious problems in computing th'l 
eonchtlOnal prohatnhbes fr'orn data. For exarnple, aHfnglung the eonciItlOnal 
probability of a variable with 4 states which has 5 parents having 2 states 
each results in a table of 128 entries. Now if a missing category is included ,I 
the table space grows to 1215 entries. And f()r this example (which is by r"j 
means an extreme case) we have more than 1000 junk entries. Not only i� 
the size of the conditional probability table a problem, but we also encounterl 
Hernanbe (iIffieulbeH eornpubllg eonciItlOnal prohatnhbeH for the oeeurreneesl 
including missing states. Hence it is desirable to come up with a scheme tol 
avoid rnissillg eategorieH. Then in the quantitative rnodelillg stage only th� 

4 Another nallle for Bavesian �d\vorks is Causal Probabilistic Kehvorks: hence thd 
second part of the acronYlll� 



valid categories of the variables in the network and the conditional probabil-I 
ities will have to be entered. Another method which has been used [LaTS93, 
page 94] is to aHHign nIle of the valid categories to all the rnissillg values of 
a particular variable. It may be suitable for variables where the domain ex­
pert can predict with a high probability which category the missing vallle� 
should have. 

We developed and implemented an algorithm(IMP) for predicting an� 
lIllpnbng IIllSSlllg values. The accuracy of IMP call be vahdated llsIng 
datasets across domams. Datasets wIthout any l1nssmg values were used] 
for validation. By random number generation a fixed percentage ( say tel� 
percent) of data valueR are aHHigned Iuissing, thuH obtaining a dataHet or� 
wInch IMP IS run to Impute 111lssmg values. The output dataset IS com­
pared with the original dataset. Our validation tests using LED, ALARMI 
and SOYBEAN which are small to large artificial datasets used f()r Ma­
chine Learning research and available from the University of California at 
the Irvine Machine Learning repository [MuAh94j gave a mean accuracy of 
SO% over ten runs. The range was from 67% to 95%. 

Another possibility is to impute a dataset using the algorithm. This im­
puted dataHet has no rnissillg values. Now we assign rllissing values (we ear� 
assign the same percentage of missing values originally present) generating! 
randanl nunlbcrs, iInputing and cOlnparing with the dataset we created orig­
inally by irnputillg. ThiH technique, called c'IJ,stornized v(}J'ifiaf'/;on, giveR th� 
predictive accuracy for the particular dataset in question with its given per­
centage of missing values. Even though this takes into account the si,e an� 
other pecllhanbeH of the ciataHet for valIdatIOn purposes, It rllay Introdncij 
a small error for the estimate as we are using IMP twice for validation. 

Our datasets were imputed using IMP. For our datasets RAVN2X24, 
RAVN6X23, and RAVN6X24, we obtained an accuracy of 79%, 82% an� 
�3% respectively. The accuracy of the imputed values were judged by th,1 
teehrnq1l8 of cnstolIllzed vahdatIOn. 

(; Network Generation and Refinement 

6.1 Network Generation 

The cn algorithm was run on the three imputed datasets described in Sec­
bon 3.1 for generatIng the networks. The datasets were randornly partI­
tIOned mto two-a major part and a l1nnor part. 'I he bIgger partitIOn wasl 
used for constructing the network and the smaller part was set apart fOlj 
validat.ion. For RAVN2X24, we used the first 2000 cases f()r generating th� 
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I Variable I Parents 

MOM_RACE 
MOM_AGE_AT _BIRTH MAR_STAT, MOM_EDU, 

FAM_INC, PREY _STILLBRTH 
MAR_STAT 
MOM_EDU MOM_RACE 
DAD_EDU MOM_EDU2, P _MOMI 
MOM_DIS MOM_AGE_AT _BIRTH 
FAM_INC MOM_EDU 
MOM_SMOKE MOM_RACE, MOM_EDU, 

MOM_ALC, PN _CARE:! 
MOM_ALC FAM_INC 
PREY _STILLBRTH 
PN_CARE 
MOM_XRAY MOM_DIS, C_SECTION 
GESTATN MOM_RACE, FET -.DIST 
FET_DIST INDUCE_LAB 1 , C_SECTION1, RESUSCITN1 
INDUCE_LAB 
C_SECTION 
CHLD_GEND CHLD_HPROB1 
BIRTH_WT PN_CARE, GESTATN 
RESUSCITN MOM_RACE2 
HEAD_CIRC MAR_STAT, INDUCE_LAB3, CHLD_ANOM 
CHLD_ANOM 
CHLD_HPROB CHLD_ANOM 
CHLD_RAVN MOM_EDU, CHLD_ANOM 
P_MOM MOM_RACE, MOM_EDU 

Table 4: RAVN2X24 NETWORK 

1 Violates law of chronology 
2 Goes against commonsense 
3 Violates domain rules 
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I Variable I Parents 

MOM_RACE MAR_STATl, MOM_EDU1, DAD_EDU:l, 
MOM_SMOKEI, MOM_ALCI, C_SECTION I 

MOM_AGE_AT _BIRTH MAR_STAT, FAM_INC, PREV_STILLBRTH 
MAR_STAT 
MOM_EDU MOM_AGE_AT _BIRTH:l, FAM_INC 
DAD_EDU 
MOM_DIS MOM_RACE, MOM_AGE_AT _BIRTH, MAR_STAT:l 
FAM_INC MAR_STAT 
MOM_SMOKE MOM_EDU, MOM_ALC, BIRTH_WT 
MOM_ALC FAM_INC, MOM_AGE_AT _BIRTH 
PREY _STILLBRTH 
PN_CARE 
MOM_XRAY MOM_RACE:l, MOM_DIS, C_SECTION 
GESTATN MOM_AGE_AT _BIRTH, PREY _STILLBRTH, 

PN_CARE 
FET_DIST PN_CARE, GESTATN, 

INDUCE_LABI, C_SECTION I, 
INDUCE_LAB PREY _STILLBRTH 
C_SECTION 
CHLD_GEND CHLD_HPROB1 
BIRTH_WT PN_CARE, GESTATN 
RESUSCITN MOM_RACE2, MAR_STAT2, FET _DIST 
HEAD_CIRC MAR_STAT, CHLD_ANOM 
CHLD_ANOM 
CHLD_HPROB MAR_STAT, HEAD_CIRC 
CHLD_RAVN FAM_INC 

Table 5: RAVN6X23 NETWORK 

1 Violates law of chronology 
2 Goes against commonsense 
3 Violates domain rules 
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I Variable I Parents 

MOM_RACE MAR_STATl, MOM_EDU1, DAD_EDU:l, 
MOM_SMOKEl, C_SECTION l, RESUSCITN 1 

MOM_AGE_AT _BIRTH MAR_STAT, FAM_INC, PREY _STILLBRTH 
MAR_STAT 
MOM_EDU MOM_AGE_AT _BIRTH2, FAM_INC 
DAD_EDU 
MOM_DIS MOM_AGE_AT _BIRTH, MAR_STAT:l, 

MOM_EDU, HEAD_CIRC:l 
FAM_INC MAR_STAT 
MOM_SMOKE MOM_EDU, MOM_ALC, BIRTH_WT 
MOM_ALC FAM_INC, MOM_AGE_AT _BIRTH 
PREY _STILLBRTH 
PN_CARE 
MOM_XRAY MOM_DIS, C_SECTION 
GESTATN MOM_AGE_AT _BIRTH, PREY _STILLBRTH, 

PN_CARE 
FET_DIST GESTATN, INDUCE_LAB I, 

C_SECTIONl, RESUSCITNl 
INDUCE_LAB PREY _STILLBRTH 
C_SECTION 
CHLD_GEND RESUSCITN2 
BIRTH_WT PN_CARE, GESTATN 
RESUSCITN MAR_STAT:l, PN_CARE, GESTATN 
HEAD_CIRC MAR_STAT, CHLD_ANOM 
CHLD_ANOM 
CHLD_HPROB MOM_RACE, MAR_STAT, HEAD_CIRC, P _MOM 
CHLD_RAVN FAM_INC 
P_MOM MOM_RACE, MOM_AGE_AT _BIRTH, MOM_EDU 

Table 6: RAVN6X24 NETWORK 

1 Violates law of chronology 
2 Goes against commonsense 
3 Violates domain rules 
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network and for the other two, the first 5000. The network generated fronj 
the RAVN6X24 dataset is shown in Figure 2. The networks obtained anj 
given ill tables 4, 5, and 6. 

11.2 Network Refinement 

We defined three rules to characteri7.e the inadequacies of the generatedl 
lletworks 

Rule of Chronology Events occurnng later 1Il tune cannot be the parentsl 
of earlier incidents. For instance a child health problem cannot be the parent 
of rnatcrnal diticascJ 

Rule of Common Sense The directed edges of the network should not 
go against eOIIlIllOll sense. For iUHtance, Father'H education canllot be aj 
cause of Mother's race. 

Domain Rule This rule has been referred as the Rule of Biological Plau1 

I,ibility in the medical and biological science literature. This rule states that 
a causal explanation is tenable in terms of existing knowledge level about th� 
variables involved. This level is what we obtain from an intelligent review! 
of the relevant lIterature. The ,ilrected edges should not VIOlate establIshe,l 
domam rules. For example, pre-natal care cannot be put down as a causel 
of rnatcrnal snloking. Mausncr and Krarncr strike a note of caution here: 
"The developrnellt of bIOlogIcal knowledge often Iutroduces new factors that 
prevlOUS studies have not taken mto account. In the eXlstmg studies, th� 
nlajor causal factors lnay have been nlisscd because their iInportancc wasl 
not appreciated." [MaKr85, 1'.1871. This point is well taken and if there i� 
a strong case, such a directed edge should be investigated further. nut fo� 
our network construction purposes, if an edge dearly violated establishec1 
domain constraints, it was removed. The directed edges of the network ilj 
Figure 2 arc given in Table 6 with annotations describing examples of rule� 
that are broken. So abo Hew edgeR were llicorporated to capture the knowl­
edge of the known domain causal mechanisms. The variable MAR. STATI 
was removed as the expert felt that it was not playing a useful role in repre­
RentIng dOIllalIl relatIOns. See TableR 4, 5 and 6 for exarnpleR of ruleR that 
are broken. The expert refined network is a synthesis and refinement of th� 
three raw networks. The expert-modified network is shown in Figure 3. 

Hl 



Figure 2: Network Generated by CB from RAVN6X24 Dataset 
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Figure 3: Network Modified by the Expert 
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6.3 Refinement of Conditional Probabilities 

The pnor marglllal and condltlOnal probablhtJes were computed uSlllg th� 
program CondProb. For nodes without parents prior marginal probabilitie� 
of the various states ealeulated from the RAVN6X24 dataset were assigned. 
For the nodes wIth one or more parents, the condltlOnal probablhtles calcu­
lated using the same dataset was assigned. The Conditional Probabilitie� 
of the outcome variable CHLD_RAVN (See paragraph 3) were refined b.)j 
the expert. There were many possIble lIlstantJatlOns that were not repre­
sented in the dataset IlAVN6X24. A reasonable conditional probability wasl 
assIgned by the expert for these. For the raw networks proballlhtJes wer� 
assigned from the RAVN2X24 dataset using the program CondProb. 

17 Validation of the Model 

17.1 Validation by the expert 

As ours is a rHodel f< __ u" risk aHH8ssrnellt and risk prediction of rnelltal retarda­
tion, it is different from a classification or diagnostic problem. In a typical 
diagnostic approach we consider a set of differential diagnoses and the at­
tempt is to assign probabilities to them and order them on that basis. hj 
risk assessment we are interested in the change in magnitude of a particulaJj 
category of interest even though it may still occupy a low position in <111 
ordering of the variable levels. We have a prior probability of 5.6% for mildj 
and 12.4% for borderline MIl. Hence if the risk of both mild and borderline 
doubles, still we get a combined probability of only 36%. That leaves � 
probability of 64% for normal and superior. Most of the actual cases fro111 
the dataset with mild or borderline MIl give a >50% probability for normal 
Olltcome This js becallse tlJeT€ are wore JlOnnal outcome cases wjth similar 
instantiations of variables than outcomes that result in mental retardation. 
Hence we decided first on a strategy of validation by comparing with thel 
expert. We generated rune caBeR WIth lllHtanbatlOIl for a subset of vanables. 
We ran these cases on the model and computed the probablhtles. 'I he ex­
pert was asked to score the results as agree or disagree. The expert was il1 
agreement with the model's assessment in eight out of nine cases used fo� 
validation. Three of the cases are depicted in Table 7, while the conditional 
probabilities of the values of CHLD_RAVN f(lr those cases are shown ilj 
'IBille 81 



Variable 
Case 1 Case 2 Case 3 

Variable Value Variable Value Variable Value 

MOM-RACE non-White White White 
MOMAGKBR 14-19 � 35 

MOM_EDU � 12 > high school � 12 
DAD_EDU < 12 > high school high school 
MOM_DIS no 
FAM_INC < $10, 000 < $10, 000 

MOM_SMOK yes 
MOM_ALC moderate 

PRE V_STILL 

PN_CARE yes 
MOM-.XRAY yes 

GESTATN normal normal premature 
F ET-.DIST no yes 

INDUCE-LAB 

C_SECTION 

CHLD_GEND 

BIRTH_WT low normal low 
RESUSCITN 

HEAD_CIRC abnormal 
CHLD_ANOM no 
CHILD_HPRB both 
CHLD_RAVN 

P_MOM normal superior borderline 

Table 7: Generated values for three cases. 

Value of Case 1 Case 2 Case 3 

CHLD_RAVN and Posterior Posterior Posterior 

Prior Probability Probability Probability Probability 

mild MR (.056) .101 .010 .200 
borderline MR (.124) .300 .040 .400 
normal (.731) .559 .690 .380 
superior (.089) .040 .260 .200 

Table 8: Posterior probabilities for three cases. 
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7.2 Validation using RAVN2X24 

7.2.1 Risk Means of Cases and Controls 

All the cases in the dataset RAVN2X24(unimputed) were run through the 
models-the expert network, and the two raw networks that have twenty­
four variables (raw2x24net and raw6x24net) using CAP-CPN. The results 
showing the relative risk for controls (children with normal outcome) and 
cases (children with mild or borderline MR) are given in Table 9 for the 
three nets. 

A t-test procedure was performed to assess the statistical significance 
of the predicted risks. The Prob>ITI was 0.0001, 0.0000 and 0.1878 for 
the expert net, raw2x24net and raw6x24net respectively. This shows that 
there is significant difference in the mean risk scores between the cases and 
controls for the expert net and raw2x24net (P<0.05). Note that there are 
fewer violations of the rules described in Section 6.2 for raw2x24net (9) than 
for raw6x24net (14). The performance of the expert net was the best of the 
three based on the mean risks. 

7.2.2 Evaluation using a risk threshold 

In the initialized state, the expert network gives a resting MR risk of 0.18 if 
the risks for mild and borderline retardation are added together, as shown 
in Figure 4. (Recall from the Introduction that the prevalence of mental 
retardation, mild mental retardation, and borderline mental retardation is 
much larger than that of mental retardation alone, which is 0.025.) 

If we take twice the resting state risk as our threshold for significant 
risk, our threshold can be set at the value of 0.36. Using this threshold 

expert net raw2x24net raw6x24net 
Level Controls Cases Controls Cases Controls Cases 

n=1863 n=349 n=1863 n=349 n=1863 n=349 
mean risk mean risk mean risk 

Mild MR 0.05 0.07 0.02 0.02 0.02 0.02 
Borderline MR 0.11 0.14 0.14 0.16 0.14 0.15 
Mild + Border 0.16 0.21 0.16 0.18 0.16 0.17 

Table 9: Mean Risk of MR predicted for cases and controls by the three nets 
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Expert Network 

Figure 4: Initial probabilities III the expert network. 
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Expert Network 
MOM EDU-4 

100.0 

mild i4-----------i border nonnal 

CHLD ANOM-21 

INDUCE LAB-IS 

100.0 

RESUSCITN-19 

yes lOO.O ====� 

Figure 5: Probabilities III the expert network for a high risk case. 
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we find that twenty nine per cent of cases are flagged correctly. This also 
results in eighteen per cent of controls being flagged as significant risk for 
MR. (Figure 5 shows the increase in risk of MR for an example case with 
some known risk factors.) These results are contained in Table 10, which 
also presents the same type of results for raw2x24net, whose resting MR risk 
is 0.16. (The results for raw6x24 are very poor.) 

We considered using n-fold cross-validation to estimate the error rates of 
our methods, but we did not employ it, because it can be applied only to 
the raw networks. In n-fold cross-validation, the cases are divided into n 
(typically, ten) groups of roughly equal size. All except one of the groups are 
used in learning, while the group that is left out is used to estimate an error 
rate. This process is carried out n times, each time leaving out a different 
group, and the overall error rate for the learning algorithm is the average of 
the n error rates [WeKu91]. Since the expert modified network was crafted 
from the three raw networks by removing and adding edges to reflect domain 
knowledge and the conditional probabilities were also modified by the expert, 
cross-validation cannot be used to compare the performance of the raw and 
refined networks. 

7.2.3 Validation Using a Separate Data Set 

The National Collaborative Perinatal Project (NCPP), of the National Insti­
tute of Neurological and Communicative Disorders and Strokes, developed a 
data set containing information on pregnancies between 1959 and 1974 and 
8 years of follow-up for live-born children. For each case in the data set, 
the values of all 22 variables except CHLD_RAVN (child's cognitive level as 
measured by the Raven test) were entered, and the conditional probabilities 

Risk Threshold expert net raw2x24net 
for MR Controls Cases Controls Cases 
{ Mild + Border} n=1863 n=349 n=1863 n=349 
Resting Value 434 (23%) 122 (35%) 901 (48%) 240 (69%) 
1.5 x Resting Value 370 (20%) 111 (32%) 242 (13%) 73 (21%) 
2 x Resting Value 342 (18%) 101 (29%) 9 «1%) 5 (1%) 

Table 10: Cases flagged for different risk thresholds 
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Cognitive A vg. Probability for A vg. Probability for 

Level Controls (n = 13019) Subjects (n = 3598) 
Mild MR .06 .09 
Borderline MR .12 .16 
Mild or Borderline MR .18 .25 

Table 11: Average probabilities, as determined by MENTOR, of having 
mental retardation for controls (children identified as having normal cogni­
tive functioning at age 8) and subjects (children identified as having mild 
or borderline MR at age 8). 

of each of the four values of CHLD_RAVN were computed. Table 11 shows 
the average values of P(CHLD_RAVN = mildMR I d) and P(CHLD_RAVN 

= borderlineMR I d), where d is the set of values of the other 22 variables, 
for both the controls (children in the study with normal cognitive function 
at age 8) and the subjects (children in the study with mild or borderline 
MR at age 8). 

8 Discussion and Future Work 

8.1 Discussion 

The validation results are significant but not dramatic. We feel that this 
is due to the incomplete state of knowledge of the etiological factors of 
MR. This results in datasets where some of the relevant variables (not yet 
recognized as contributory or causative) have not been collected. Hence our 
model is constrained by the state of domain knowledge existing at this point 
in time. 

Throughout the development of MENTOR, we emphasized the causal 
interpretation of the links. While this is not in any way necessary, it seemed 
to be a good decision for two reasons. First, there is widespread belief that 
ordering variables in a causal direction simplifies modeling, or, as Russell 
and Norvig put it, "If we stick to a causal model, we end up specifying fewer 
numbers, and the numbers will often be easier to come up with" [RuNo95, 
p.443]. Second, it is easier to involve the expert in validating the edges if 
the model is causal. 

Still, there is a serious problem with a causal interpretation in the case 
of MENTOR. It is quite likely that there are many hidden (unmeasured 
or even unknown) variables playing a role in the causal pathway of MR. 
Despite this, we attempted to build a DAG model and assign to it a causal 
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mterpretatlOn. 'lIns IS clearly suspect. 'I here are two possIble approaches 
to dealing with this problem. The first is to attempt to discover hidden 
variables using a dat.a analysis t.echnique, such as TETRAD [SpirOO, Ch.2] 
that purports to discover such variables. A second approach is to explicitly! 
rnodel correlatiollH that have uo causal interpretation by llHing undirecte(� 
links as in chain graphs (graphical models that include both directed ancJI 
undirected links). It is commonly (and somewhat simplistically) bclieve� 
t.hat. t.he undirect.ed links can be used t.o Illodel associat.iona!. non-causally! 
interpretable information, while the directed links are used to model th� 
causally interpretable information [LaRiOl]. For our research we did not 
address thjs jsslle tJJrther 

8.2 Future Work 

The networks generated from the different datasets using the CB algorithn� 
had many nodes t.hat. violat.ed t.he 'f"Il.!e of chm'fl.ology. A facilit.y for input.t.ing 
the chronological order can be incorporated. Likewise, if some rules could b<j 
incorporated in the network generation stage to take cafe of dOlnain-spccifiq 
constraints, directed edgeR violating dOTnain Tu,Ze8 would be avoided. In otherl 
words, the ordering of nodes built by the first phase of the cn algorithn� 
would be forced to be consistent with ChTOTl,O[Oq'11 and dOTnain ruleR. Anotlierj 
mechamsm to mcorporate these rules 1Il the network generatlOn phase would] 
be to set appropriate priors on the network structures. which would favorl 
net.works compat.ible wit.h t.he rules. This is a more drast.ic change t.o t.h� 
current approach, in that the scoring metric used by cn assumes priori 
equivalence of all network structures. (Other metrics, while forgoing priOlj 
equivalence, are also insensitive to dOIllain peculiarities.) 

In some cases, the values of variables in the original dataset have beel� 
discretized. In many cases (e.g., for head circumference), this has beel� 
done acconhng to accepted practIce III eplderrllology. StIlI, It rnay be lIl­
teresting to challenge accepted wisdom and attempt different ways of dis­
erebzlllg vanable rangeH, for exalnple by UHlllg a deelHlOn tree bUlhhng algo­
rithm [MoC099]. (We observe, incidentally, that the variable FAM-.INC, 
which represents fanlily incorne, was already norrnali:zed in the original 
dat.aset..) 

F'maIIy, smce there are many vanables 111 the Mental R.etardatlOn do­
main, it may be advantageous to attempt attribute selection [ProSi96]' an� 
llHe only a HubHet of vanableH. 
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