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Abstract

|An experiment in Bayesian model building from a large medical
dataset for Mental Retardation is discussed in this paper. We give a
step by step description of the practical aspects of building a Bayesian
Nctwerk frem a datasct. We cnumecrate and bricfly deseribe the toolg
required, address the preblem of missing valucs in big datascts result|
ing from incomplete clinical findings and elaborate on our solution tq
the problem. We advance some reasons why imputation is a more de-
sirable approach for model building than some other ad hoc methodd
suggcested in literature. In eur cxperiment, the initial Bayesian Net
werk is lcarncd frem a datasct using a machine lecarning program called|
[CB. The network structure and the conditional probabilities are then|
modified under the guidance of a domain expert. We present validad
tion results for the unmodified and modified networks and give somd
suggcestions fer imprevement of the modcl]

*Address for correspondence: mgv@cse.sc.edu.
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1 Introduction

A Targe quantity of non-cxperimental data is generated in Medicine from]
studies of the natural history of disease, case reports and epidemiological
surveys!. If experiments are well-designed, it is comparatively easy to ana-
lyze and interpret the data obtained. But, making sense of non-cxperimental
data 1s a difficult task and involves a huge investment of time, effort and ex-
pertise. However, data collected for one purpose can often be used to answer|
other questions. Federally funded rescarch projects make datascts availabld
after the original study is completed. These datasets often are underutilized.
This typc of data is also referred to as archival data and is basically avail-
able to the investigators in “as is” condition [ZyBa91]. Techniques based onl
Bayesian networks hold great promise in the task of detecting associations
which can be interpreted (with great caution!} as causal relationships using
non-experimental data [PeVe91, Pear00].

We developed a model to answer the question—“What is the risk of
Mental Retardation (MIR) for a particular pregnancy or infant based on in-
formation from the prenatal, perinatal or postuatal period?” We do not
have a diagnostic model in mind. We expect our model to quantify the riskl
of MR outcome, which in the carly prenatal period can be used as a guide-
line for seeking invasive procedures such as aniocentesis for arriving at al
definitive diagnosis and recommendation about the desirability of sustaining
the pregnancy. During infancy the model may be used to screen children
who are at greater risk for MR to plan special educational or environmental

The prevalence of MR is estimated to be about 2.5 per cent of the popu-
lation [Bats93, StSu92]. When the category of borderline mental retardation|
is included in population cstimates, over 16 pereent of children have an 1Q)
score less than 85, one standard deviation below the mean. MR is a devel-
opmental disability with a complex etiology, and the causative factors and
mechanising are not well understood. “Mental Retardation is characterized
by significantly subaverage intellectual functioning” [AAMRY92, p.5]. The
Amecrican Association on Mental Retardation (AAMR) quantifics the iden-

1A similar situation exists in many other fields, both in the social and in the natural
sciences; consider the tremendous amonnt of non-experimental data sent by spacecraft fox]
an example outside the social sciences




tification of people as those scoring below two Standard Deviations (SD) i
a standardized 1@ test [AAMRI2, p.5]. Thesce tests are usually normalized
to a mean of 100 with a SD of 15. Those with scores below 50 are classified
as having severe imental retardation. Scores in the category of 50-69 fall
in the classification of Mild Mental Retardation {MMR). AAMR suggests
inclusion of limitation of adaptive skills for individual diagnosis [AAMR92,
p.6], but many studics have used cognitive tests {IQ scores) for classification
[StSu92, McDe93|.

We shall use I(Q) scores and include the additional category of Borderling
Mental Retardation {BMR, scores falling between one and two standard
deviations). For severe MR a cause can be found in the majority of cases.
In MMR, which forms 85% of MR, a cause cannot be identified in half the

cascs |Bats93].

So here we have a complex web of unknown causal mechanisms, dis-
agreement among experts, controversies (the large literature of nature ver-
sus nurturc) and scerious gaps in the experts” understanding of the ctiological
factors. A Bayesian modeling approach may shed some light on the causal
mechanisins, give us a tool for prediction of MR and open up avenucs forf
early intervention inedical and social.

A companion publication in the developmental disabilities literature [MaMe97]
discusses our model further from a medical pergpective. In this paper, wd
discuss the techiques used 1 model bulding and validation fromn an applied
artificial intelligence perspectivel

2 Model Building Methodology

We refer the reader to [Neap90, Section 5.3] for a precise and thoroughl
definition of Baycsian nctwork and to [Pear88, Char91, SDLC93, CDLS99,
Hens96, Jens01] for extended presentations of related concepts. We only give
a sketch of the definition with a brief example.

A Bayesian network consists of a dirccted acyclic graph (DAG), prion
marginal probability tables for the nodes in the DAG that have no parents,
and conditional probability tables for the nodes in the DAG given their
parcnts. The network and the probability tables define a joint probability
distribution on all variables corresponding to the nodes, with the defining
property that the conditional probability of any variable v given any sct of
variables that includes only the parents of v and any subset of nodes that
are not descendant of v is equal to the conditional probability of v given only]
its parcnts. From this property, it follows that the joint probability of thd




variables in a Bayesian network decomposes in a multiplicative fashion: more|
preciscly, if V' is the sct of the nodes in the DAG, the following cquality (the]
chain rule for Bayesian networks) holds: P(V) = ey P(v | parents(v)).
In turn, this decomposition allows for very eflicient computation of marginal
posterior probabilities upon observation of evidence]

As an example, the graph in Figure 1 models a small portion of the
mental retardation domain. We do not claim that this model is accurate orf
sensible: it is provided only for the sake of illustration. At the depth of un-
derstanding required for the example, the names of the variables should be
considered sclf-cxplanatory. Recall that a Bayesian network is composed of
two parts: an acyclic directed graph and the numerical specification of con-
ditional and prior probability tables. Three features of Bayesian networks
arc worth mentioning.

First, the directed graph constrains the possible joint probability dis-
tributions represented by a DBayesian network. For example, in any distri]
bution consistent with the graph of Figure 1, Chld_Ravn {the 1@ scorc of
the child) is conditionally independent of Fam_Inc (Family Income) given|
Mom_Age_Birth (the age of the mother at birth) and Mom_Smoke (whethen
the mother smokes); also, P_Morm (the 1@ score of the mother) is condition-
ally independent of any subset of the other variables given Mom_Smoke.

Sccondly, the explicit representation of constraints about conditional in-
dependence allows a substantial reduction in the number of parameters to
be estimated. In the example, assume that the possible values of the fivel
variables arc given in Table 1. Then, the joint probability table
P(FarnInc, Morn_Age_Birth, Momn_Smoke, Chld_Reavn, P_Mom) has 2 %
Bx2x4x4=192 entries. It would be very difficult to assess 191 indepen-|
dent parameters®. Howcever, the independence constraints encoded in the
graph permit the factorization
P(Fam_Inc, Mom_Age_Birth, Mom_Smoke, Chld_Revn, P_Mom) =
P(Fam_Inc)xP(Mom_Age_Birth | Fam_Inc)x P(Mom_Smoke | Farn_Inc)
x P(Chld_Ravn | Mom_Age_Birth, Mom_Smoke)x P(P_Mom | Mom_Smoke)]
which reduces the nunber of parameters to be estimated to 1+4424+18+6 =
B1. The second term in the sum corresponds to the conditional probability
table for em Mom_Age_Birth given em Fam_Inc, which is given in Table 2;
notc that there are only four independent parameters to be estimated, sined
the sum of values by coluinn is one. Again, we emnphasize that these nuinberg
are fictitious

Thirdly, the Bayesian network representation allows a substantial (usu-

ZProhabilitics sum to 1, so one of the 192 parameters is dependent on the other 191]
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Figure 1: A Microscopic Model of MR



Fam_Inc >=10000, <10000
Mom_Age_Birth 14-19, 20-34, >=35
Mom_Smoke yes, no
Child_Ravn mild, border, normal, super
P_Mom mild, border, normal, super

Table 1: Values of the Five Micro-Mentor Variables

Fam_Inc
>=10000 | <10000
14-19 0.1 0.3
20-34 0.7 0.6
>=35 0.2 0.1

Table 2: Conditional Probability Tables for Mom_Age_Birth Given Fam_Inc

ally, dramatic) reduction in the time needed to compute marginals for each
variable in the domain. The explicit representation of constraints on inde-
pendence relations is exploited to avoid the computation of the full joint
probability table in the computation of marginals, both prior and condi-
tioned on observations. Space prevents the description of the relevant al-
gorithms. See, e.g., [JensOl, Ch.5] for a discussion of the junction tree
algorithm, the most widely used one.

There are two methods of building a Bayesian network for a particular
application domain. The first method consists of asking the domain expert
to construct the network (DAG) and assign the prior marginal probabilities
for nodes without parents and the conditional probabilities for the other
nodes. The second method consists in building the network from data.
There are several algorithms available to accomplish this learning task—
for example, BIFROST [LaTS93], K2 [CoHe92] and CB [SiVa93, SiVa95].
The marginal and conditional probabilities can also be computed from data.
The models are validated by comparing with the performance of an expert
[SDLC93]. We use a combination of the two strategies—capture the skeleton
network from data using the CB algorithm and refine the DAG with the help
of the expert and published literature. Prior and conditional probabilities



are obtained from data and fine-tuned by the expert.

3 T Used in Model C .

We obtained the Child Health and Development Study (CHDS) data set,
which was developed in a study concerning pregnant mothers and their
children [CHDS87]. The children were followed through their teen years
and included numerous questionnaires, physical and psychological exams,
and special tests. The study was conducted by the University of California
at Berkeley and the Kaiser Foundation. It started in 1959 and continued
into the 1980’s, There are approximately 6000 children and 3000 mothers
with IQ scorcs in the data sct. The children were cither 5 years old or 9
years old when their IQs were tested. The IQ) test used for the children was|
the Raven Progressive Matrices Test. The mothers’ 1Qs were also tested,
and the test used was the Peabody Picture Vocabulary Test]

We identified about 50 variables scattered aimong several CHDS fileg
that arc thought to play a rolc in the causal mechanism of MR. Under thd
guidance of the doimain expert this set of fifty variables was reduced to a
set of twenty-three resulting in the datasets described in 3.1. The subject
expert thought that this sct of variables was sufficient to capture the domain
knowledge. Only one child of the mother is included in each of the datasets.
Table 3 contains a list of the twenty-three variables used in the final Bayesian|
network. (The files used in network construction include a twenty-fourth)
variable, MAR_STAT, indicating marital status of the mother, which wag
removed at a late stage.)

3.1 Datasets Used for Network Construction

RAVINGX24 This dataset contains 5985 cases and 24 variables. In thid
datasct many of the IQ scores of mothers arc missing. The percentagel
of missing values 1s 12. This dataset is the total relevant dataset

RAVN2X24 This datasct contains 2212 cascs and 24 variables. The TQ)
scores ol mothers and children are present. There are no missing valueg
for the IQ scores. This is a subset of the RAVN6X24 dataset. with]
all the rows which did not have 1Q scores for the mother and child
removed. The percentage of missing values i1s 4.

RAVNG6X23 This datasct contains 5985 cascs and 23 variables. As only]
about 3000 mothers were given IQ) tests, this dataset was created with-
out the variable P_M@®M (IQ scorc of the mother). This is also a subsct




Variable

What the Variable Represents

MOM_RACE

Mother’s race classified as White (European or White and American Indian or others
considered to be of white stock) or non-White (Mexican, Black, Oriental,

interracial mixture, South-East Asian).

MOMAGE_BR

Mother’s age at time of child’s birth categorized as 14-19 years, 20-34 years, or > 35 years.

Mother’s education categorized as < 12 and did not graduate, high school, graduated

MOM_EDU . )
high school, and >high school (attended college or trade school).
DAD_EDU Father’s education categorized same as mother’s.
Yes if mother had one or more of lung trouble, heart trouble, high blood pressure, kidney trouble,
MOM_DIS convulsions, diabetes, thyroid trouble, anemia, tumors, bacterial disease, measles, chicken pox,
herpes simplex, eclampsia, placenta previa, any type of epilepsy, or malnutrition; no otherwise.
FAM_NC Family income categorized as < $10,000 or > $10,000.
MOM_SMOK Yes if mother smoked during pregnancy; no otherwise.
Mother’s alcoholic drinking level classified as mild (0-6 drinks
MOM_ALC
per week), moderate (7-20), or severe >20).
PREV_STILL Yes if mother previously had a stillbirth; no otherwise.
PN_CARE Yes if mother had prenatal care; no otherwise.
MOM_XRAY Yes if mother had been X-rayed in the year prior to or during the pregnancy; no otherwise.
Period of gestation categorized as premature (< 258 days),
GESTATN
or normal (259-294 days), or postmature (> 295 days)..
Fetal distress classified as yes if there was prolapse of cord, mother had a history of
FET_DIST uterine surgery, there was uterine rupture or fever at or just before delivery,
or there was an abnormal fetal heart rate; no otherwise.
INDUCE_LAB Yes if mother had induced labor; no otherwise.
C_SECTION Yes if delivery was a caesarean section; no if it was vaginal.
CHLD_GEND Gender of child (male or female).
BIRTH.-WT Birth weight categorized as low < 2500 g) or normal (> 2500 g).
RESUSCITN Yes if child had resuscitation; no otherwise.
HEAD_CIRC Normal if head circumference is 20 or 21; abnormal otherwise.
Child anomaly classified as yes if child has cerebral palsy, hypothyroidism, spina bifida,
CHLD_ANOM Down’s syndrome, chromosomal abnormality, anencephaly, hydrocephalus, Turner’s syndrome,
cerbellar ataxia, speech defect, Klinefelter’s syndrome, or convulsions; no otherwise.
Child’s health problem categorized as having a physical problem, having a behavior problem,
CHLD_HPRB ) ) ) )
having both a physical and a behavioral problem, or having no problem.
Child’s cognitive level, measured by the Raven test,
CHLD_RAVN . . . .
categorized as mild MR, borderline MR, normal, or superior.
Mother’s cognitive level, measured by the Peabody test,
P_MOM

categorized as mild MR, borderline MR, normal, or superior.

Table 3: The variables used in MENTOR.




of the RAVN6X24 dataset with the variable mother’s IQ) deleted. The
percentage of missing values is 10.

All three datasets were used for network construction, as explained in sec-

tion 6.1,

4 Tools for Model Building

The CB algorithm takes as mput a dataset with no missing values and
outputs a Baycsian nctwork structure. The network structure, when aug-
mented with suitable conditional probability tables constitutes a Bayesianl
network, as defined in Section 2 that models the data, in the sense that
the data can be taken to be a sample of the distribution encoded by thd
network. Moreover the network structure output by UB has usually only 4
few edges, because it exploits independence relations among variables well.
The network is therefore appropriate for use by inference algorithms and foi

visual inspection|
The CB algorithm works in two phases. In the first phase, CB uses

bonditional Independence tests (x* tests) for ordering the nodes. In the
second phase, which is based on the K2 algorithm [CoHe92|, CB computes
greedily an approximation to the most likely network structure given the
dataset [SiVa95]. Given a dataset and network, CondProb computes the|
prior marginal and conditional probabilities using the formulas in [CoHe92].
An implementation of CB with a uscr-friendly graphical user interface iy
available by contacting the first author?

HUGIN provides a graphical interface for representing the nodes (do-
main variables) and the directed edges (usually interpretable as causal re-
lationships between the variables). A user-friendly mechanism for naming
the variables, entering the states of the variables and assigning the condi-
tional probabilities 15 also provided. implements the Lauritzen anc
Spiegelhalter method of probability propagation in DAGs [LaSp88], with
somc improvements. The HUGIN shell was developed by Andersen, Olesen,
F.V. Jensen and F. Jensen in Denmark [AOJJ89]|

The IMP program analyzes the given dataset and predicts missing val-
ues. We usc statistical, case matching and randomization methods. A ran-
dom guess is attempted when case matching fails. The method s expected to
succeed in domains where there is good interdependency between variables.

*This_implementation, which includes CondProb, is called Visual CB and is de]
scribed in [Xia, 2002]




Fortunately most real world data and medical data in particular have many
interdependent variables. We have not analyzed the theorctical propertics
of IMT*, but we consider it to be a practical and useful method particularly
for purposes of model building]

CAP-CPN is an application written in C to call Bayesian Networks
using HUGIN®, It provides modules to use the HUGIN-API C library in an|
organized way. CAP-CPN converts an ASCIT datasct to the format required
Wy b or batch validation. It als s functions to perforin simp
statistical tests on the data gathered by sampling the outcome node wher
a batch file containing cases is processed)
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5) andling Missing Value

Real world data contains missing valucs. This is particularly truc of med-
ical datasets. The general practice in the analysis of missing data is deleting
cases (records) with missing data. But when there are numerous variables
such a policy can mcan that most records will have to be disregarded from)|
analysig or many variables will have to be sacrificed. Tt will help if we
can come up with a scheme to predict and assign missing values. To start
with, this strategy will be very uscful for model building and validation from
datasets. We do not discuss the merits and demerits of imputing for datal
analysis here]

We decided against the casy way of making a scparate category for thd
missing values, as done in the original MUNIN system [AWFA87]. We be-
licve that it is not a satisfactory procedure as in most cases it is hard tol
trace a causal pathway between the nussing category of one variable and
the missing category of another variable. Treating missing value as a sep-
aratc catcegory is also likely to create serious problems in computing thd
conditional probabilities from data. For example, assigning the conditional
probability of a variable with 4 states which has 5 parents having 2 states
cach results in a table of 128 entrics. Now if a missing category is included
the table space grows to 1215 entries. And for this example (which is by ng
means an extreme case) we have more than 1000 junk entries. Not only i
the size of the conditional probability table a problem, but we also encounter
semantic difficulties computing conditional probabilities for the occurrences

including missing statcs. Hence it is desirable to come up with a scheme tol
avoid missing categories. Then in the quantitative modeling stage only the

*Another name for Bayesian Networks is Causal Probabilistic Networks; hence thd
second part of the acronym|

Lo



valid categories of the variables in the network and the conditional probabild
ities will have to be entered. Another method which has been used [LaTS93,
page 94] is to assign one of the valid categories to all the missing values of
a particular variable. It may be suitable for variables where the domain ex-
pert can predict with a high probability which category the missing valuey
should have.

We developed and implemented an algorithm(IMP) for predicting and
imputing mssing values. The accuracy of IMD? can be validated using
datasets across domains. Datasets without any missing values were used
for validation. By random number gencration a fixed percentage {say ten
percent) of data values are assigned missing, thus obtaining a dataset on|
which IMP 1s run to impute missing values. The output dataset i1s com-
pared with the original dataset. Our validation tests using LED, ALARM]
and S@YBIEAN which are simall to large artificial datasets used for Ma-
chine Learning research and available from the University of California at
the Irvine Machine Learning repository [MuAh94] gave a mean accuracy of
80% over ten runs. The range was from 67% to 95%.

Another possibility is to imputce a datasct using the algorithm. This im-
puted dataset has no missing values. Now we assign missing values (we canl
assign the same percentage of missing values originally present) generating
random numibers, imputing and comparing with the dataset we created orig-
inally by imputing. This technique, called custornized wvalidation, gives thel
predictive accuracy for the particilar dataset in question with its given per-
centage of missing values. [Even though this takes into account the size and
other peculiarities of the dataset for validation purposes, 1t may introducd
a small error for the estimate as we are using IMP twice for validation.

Our datascts were imputed using IMP. For our datascts RAVN2X24,
RAVN6X23, and RAVN6X24, we obtained an accuracy of 79%, 82% and
83% respectively. The accuracy of the imputed values were judged by thd
technique of customized validation.

6 Network Generation and Refinement

6.1 Network Generation

The CB algorithm was run on the three imputed datasets described in Sec-
tion 3.1 for generating the nefworks. The dafasets were randomly parti-
tioned into two—a major part and a minor part. The bigger partition was
used for constructing the nctwork and the smaller part was sct apart forf
validation. For RAVN2X2d4, we used the first 2000 cases for generating the|

L1



Variable

‘ Parents

MOM_RACE

MOM_AGE_AT_BIRTH

MAR_STAT, MOM_EDU,

FAM_INC, PREV_STILLBRTH

MAR_STAT

MOM_EDU MOM_RACE

DAD_EDU MOM_EDU?, P_.MOM!

MOM_DIS MOM_AGE_AT_BIRTH

FAM_INC MOM_EDU

MOM_SMOKE MOM_RACE, MOM_EDU,
MOM_ALC, PN_CARE?

MOM_ALC FAM_INC

PREV_STILLBRTH

PN_CARE

MOM_XRAY MOM_DIS, C.SECTION

GESTATN MOM_RACE, FET _DIST

FET_DIST INDUCE_LAB!, C_.SECTION!, RESUSCITN!

INDUCE_LAB

C_SECTION

CHLD_GEND CHLD_HPROB!

BIRTH_WT PN_CARE, GESTATN

RESUSCITN MOM_RACE?

HEAD_CIRC MAR_STAT, INDUCE_LAB?, CHLD_ANOM

CHLD_ANOM

CHLD_HPROB CHLD_ANOM

CHLD_RAVN MOM_EDU, CHLD_ANOM

P_MOM MOM_RACE, MOM_EDU

Table 4: RAVN2X24 NETWORK

! Violates law of chronology

% Goes against commonsense

3 Violates domain rules
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Variable

Parents

MOM_RACE

MAR_STATT, MOM_EDU!, DAD_EDUZ,

MOM_SMOKET, MOM_ALC!, C_SECTION!

MOM_AGE_AT_BIRTH

MAR_STAT, FAM_INC, PREV_STILLBRTH

MAR_STAT
MOM_EDU MOM_AGE_AT _BIRTH?, FAM_INC
DAD_EDU
MOM_DIS MOM_RACE, MOM_AGE_AT _BIRTH, MAR_STAT?
FAM_INC MAR_STAT
MOM_SMOKE MOM_EDU, MOM_ALC, BIRTH_.WT
MOM_ALC FAM_INC, MOM_AGE_AT _BIRTH
PREV_STILLBRTH
PN_CARE
MOM_XRAY MOM_RACE?, MOM_DIS, C.SECTION
GESTATN MOM_AGE_AT_BIRTH, PREV_STILLBRTH,
PN_CARE
FET_DIST PN_CARE, GESTATN,
INDUCE_LAB!, CSECTIONT,
INDUCE_LAB PREV_STILLBRTH
C_SECTION
CHLD_GEND CHLD_HPROB!
BIRTH_WT PN_CARE, GESTATN
RESUSCITN MOM_RACE?, MAR_STAT?, FET_DIST
HEAD_CIRC MAR_STAT, CHLD_ANOM
CHLD_ANOM
CHLD_HPROB MAR_STAT, HEAD_CIRC
CHLD_RAVN FAM_INC

Table 5: RAVN6X23 NETWORK

! Violates law of chronology
% Goes against commonsense

3 Violates domain rules

13




Variable

‘ Parents

MOM_RACE

MAR_STATT, MOM_EDU?, DAD_EDUZ,

MOM_SMOKE!, C_ SECTION?, RESUSCITN!

MOM_AGE_AT_BIRTH

MAR_STAT, FAM_INC, PREV_STILLBRTH

MAR_STAT

MOM_EDU MOM_AGE_AT_BIRTH?, FAM_INC

DAD_EDU

MOM_DIS MOM_AGE_AT_BIRTH, MAR_STAT?,
MOM_EDU, HEAD_CIRC?

FAM_INC MAR_STAT

MOM_SMOKE MOM_EDU, MOM_ALC, BIRTH_.WT

MOM_ALC FAM_INC, MOM_AGE_AT_BIRTH

PREV_STILLBRTH

PN_CARE

MOM_XRAY MOM_DIS, C.SECTION

GESTATN MOM_AGE_AT_BIRTH, PREV_STILLBRTH,
PN_CARE

FET_DIST GESTATN, INDUCE_LAB!,
C_SECTION!, RESUSCITN!

INDUCE_LAB PREV_STILLBRTH

C_SECTION

CHLD_GEND RESUSCITN?

BIRTH_WT PN_CARE, GESTATN

RESUSCITN MAR_STAT?, PN_.CARE, GESTATN

HEAD_CIRC MAR_STAT, CHLD_ANOM

CHLD_ANOM

CHLD_HPROB MOM_RACE, MAR_STAT, HEAD_CIRC, P_.MOM

CHLD_RAVN FAM_INC

P_MOM MOM_RACE, MOM_AGE_AT _BIRTH, MOM_EDU

Table 6: RAVN6X24 NETWORK

! Violates law of chronology

2 Goes against commonsense

3 Violates domain rules

14




network and for the other two, the first 5000. The network generated fron
the RAVNEX24 datasct is shown in Figure 2. The networks obtained ard
given in tables 4, 5, and 6.

6.2 Network Refinement

We defined three rules to characterize the inadequacies of the generated|

retworks

Rule of Chronology FEvents occurring later in time cannot be the parents
of earlier incidents. For instance a child health problem cannot be the parent

of matcrnal discasc!

Rule of Common Sense The directed edges of the network should not
go against comrnon sense. For instance, Father’s education cannot be
cause of Mother’s race.

Domain Rule This rule has been referred as the Rule of Biologicel Pleu-
Isebility in the medical and biological science literature. This rule states that
a causal explanation is tenable in termms of existing knowledge level about thel
variables involved. This level is what we obtain from an intelligent review
of the relevant literature. The directed edges should not violate established
domain rules. For example, pre-natal care cannot be put down as a cause
of matcrnal smoking. Mausner and Kramer strike a note of caution here:
“The development of biological knowledge often introduces new factors that
previous studies have not taken into account. In the existing studies, the
major causal factors mmay have been missed because their importance was
not appreciated.” [MaKr85, p.187]. This point is well taken and if there i
a strong case, such a directed edge should be investigated further. But for
our nctwork construction purposcs, if an cdge clearly violated cstablished
domain constraints, it was removed. The directed edges of the network il
Figurce 2 arc given in Table 6 with annotations describing examples of ruley
that are broken. So also new edges were incorporated to capture the knowl-
edge of the known domain causal mechanisms. The variable MAR_STAT)
was rcmoved as the expert felt that it was not playing a uscful role in repre-
senting domain relations. See Tables 4, 5 and 6 for examples of rules that
are broken. The expert refined network is a synthesis and refinement of the|
three raw networks. The expert-modified network is shown in Figure 3.

185
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6.3 Refinement of Conditional Probabilities

The prior marginal and conditional probabilities were computed using the
program CondProb. For nodes without parents prior marginal probabilitiey
of the various states calculated from the RAVN6X24 dataset were assigned.
For the nodes with one or more parents, the conditional probabilities calcu-
lated using the same dataset was assigued. The Conditional Probabilitiey
of the outcome variable CHLD RAVN (See paragraph 3) were refined by
the expert. There were many possible instantiations that were not repre-
sented in the dataset RAVNGX24. A reasonable conditional probability was
assigned by the expert for these. For the raw nefworks probabilities were
assigned from the RAVN2X24 dataset using the program CondProb.

7 Validati f the Model

7.1 Validation by the expert

As ours is a model for risk assessment and risk prediction of mental retarda-
tion, it is different from a classification or diagnostic problem. In a typical
diagnostic approach we consider a set of differential diagnoses and the at-
tempt is to assign probabilities to them and order them on that basis. Iyl
risk assessinent we are interested in the change in magnitude of a particula
category of interest cven though it may still occupy a low position in an|
ordering of the variable levels. We have a prior probability of 5.6% for mild
and 12.4% for borderline MR. Henee if the risk of both mild and borderline
doubles, still we get a combined probability of only 36%. That leaves
probability of 64% for normal and superior. Most of the actual cases from
the datasct with mild or borderline MRR give a >50% probability for normal

~ ' i . - v “ ~

instantiations of variables than outcoimnes that result in mental retardation.
Henee we decided first on a strategy of validation by comparing with thd
expert. We generated nine cases with instantiation for a subset of variables.
We ran these cases on the model and computed the probabilities. The ex-
pert was asked to score the results as agree or disagree. The expert was i
agreement with the model’s assessment in eight out of nine cases used for
validation. Three of the cases arce depicted in Table 7. while the conditional
probabilities of the values of CHLD _RAVN for those cases are shown i

Table 8]
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Variable Case 1 Case 2 Case 3
Variable Value Variable Value Variable Value
MOM_RACE non-White White White
MOMAGE_BR 14-19 > 35
MOM_EDU <12 > high school <12
DAD_EDU <12 > high school high school
MOM_DIS no
FAM_INC < $10,000 < $10,000
MOM_SMOK yes
MOM_ALC moderate
PREV _STILL
PN_CARE yes
MOM_XRAY yes
GESTATN normal normal premature
FET_DIST no yes
INDUCE_LAB
C_SECTION
CHLD_GEND
BIRTH.WT low normal low
RESUSCITN
HEAD_CIRC abnormal
CHLD_ANOM no
CHILD_HPRB both
CHLD_RAVN
P_MOM normal superior borderline
Table 7: Generated values for three cases.

Value of Case 1 Case 2 Case 3
CHLD_RAVN and Posterior Posterior Posterior
Prior Probability Probability Probability Probability

mild MR (.056) .101 .010 .200
borderline MR (.124) .300 .040 400
normal (.731) .559 .690 .380
superior (.089) .040 .260 .200

Table 8: Posterior probabilities for three cases.
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7.2 Validation using RAVIN2X24
7.2.1 Risk Means of Cases and Controls

All the cases in the dataset RAVN2X24(unimputed) were run through the
models—the expert network, and the two raw networks that have twenty-
four variables (raw2x24net and raw6x24net) using CAP-CPN. The results
showing the relative risk for controls (children with normal outcome) and
cases (children with mild or borderline MR) are given in Table 9 for the
three nets.

A t-test procedure was performed to assess the statistical significance
of the predicted risks. The Prob>|T| was 0.0001, 0.0000 and 0.1878 for
the expert net, raw2x24net and raw6x24net respectively. This shows that
there is significant difference in the mean risk scores between the cases and
controls for the expert net and raw2x24net (P<0.05). Note that there are
fewer violations of the rules described in Section 6.2 for raw2x24net (9) than
for raw6x24net (14). The performance of the expert net was the best of the
three based on the mean risks.

7.2.2 Evaluation using a risk threshold

In the initialized state, the expert network gives a resting MR risk of 0.18 if
the risks for mild and borderline retardation are added together, as shown
in Figure 4. (Recall from the Introduction that the prevalence of mental
retardation, mild mental retardation, and borderline mental retardation is
much larger than that of mental retardation alone, which is 0.025.)

If we take twice the resting state risk as our threshold for significant
risk, our threshold can be set at the value of 0.36. Using this threshold

expert net raw2x24net rawbx24net
Level Controls | Cases || Controls | Cases || Controls | Cases
n=1863 | n=349 | n=1863 | n=349 || n=1863 | n=349
mean risk mean risk mean risk
Mild MR 0.05 0.07 0.02 0.02 0.02 0.02
Borderline MR 0.11 0.14 0.14 0.16 0.14 0.15
Mild + Border 0.16 0.21 0.16 0.18 0.16 0.17

Table 9: Mean Risk of MR predicted for cases and controls by the three nets
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we find that twenty nine per cent of cases are flagged correctly. This also
results in eighteen per cent of controls being flagged as significant risk for
MR. (Figure 5 shows the increase in risk of MR for an example case with
some known risk factors.) These results are contained in Table 10, which
also presents the same type of results for raw2x24net, whose resting MR risk
is 0.16. (The results for raw6x24 are very poor.)

We considered using n-fold cross-validation to estimate the error rates of
our methods, but we did not employ it, because it can be applied only to
the raw networks. In n-fold cross-validation, the cases are divided into n
(typically, ten) groups of roughly equal size. All except one of the groups are
used in learning, while the group that is left out is used to estimate an error
rate. This process is carried out n times, each time leaving out a different
group, and the overall error rate for the learning algorithm is the average of
the n error rates [WeKu91]. Since the expert modified network was crafted
from the three raw networks by removing and adding edges to reflect domain
knowledge and the conditional probabilities were also modified by the expert,
cross-validation cannot be used to compare the performance of the raw and
refined networks.

7.2.3 Validation Using a Separate Data Set

The National Collaborative Perinatal Project (NCPP), of the National Insti-
tute of Neurological and Communicative Disorders and Strokes, developed a
data set containing information on pregnancies between 1959 and 1974 and
8 years of follow-up for live-born children. For each case in the data set,
the values of all 22 variables except CHLD_RAVN (child’s cognitive level as
measured by the Raven test) were entered, and the conditional probabilities

Risk Threshold expert net raw2x24net

for MR Controls Cases Controls Cases
(Mild + Border) n=1863 n=349 n=1863 n=349
Resting Value 434 (23%) | 122 (35%) | 901 (48%) | 240 (69%)
1.5 x Resting Value | 370 (20%) | 111 (32%) || 242 (13%) | 73 (21%)
2 x Resting Value | 342 (18%) | 101 (29%) | 9 (<1%) 5 (1%)

Table 10: Cases flagged for different risk thresholds
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Cognitive Avg. Probability for Avg. Probability for

Level Controls (n = 13019) Subjects (n = 3598)
Mild MR .06 .09
Borderline MR 12 .16
Mild or Borderline MR, .18 .25

Table 11: Average probabilities, as determined by MENTOR, of having
mental retardation for controls (children identified as having normal cogni-
tive functioning at age 8) and subjects (children identified as having mild
or borderline MR at age 8).

of each of the four values of CHLD_RAVN were computed. Table 11 shows
the average values of P(CHLD_.RAVN = mildMR | d) and P(CHLD_RAVN
= borderlineMR | d), where d is the set of values of the other 22 variables,
for both the controls (children in the study with normal cognitive function
at age 8) and the subjects (children in the study with mild or borderline
MR at age 8).

8 Discussion and Future Work

8.1 Discussion

The validation results are significant but not dramatic. We feel that this
is due to the incomplete state of knowledge of the etiological factors of
MR. This results in datasets where some of the relevant variables (not yet
recognized as contributory or causative) have not been collected. Hence our
model is constrained by the state of domain knowledge existing at this point
in time.

Throughout the development of MENTOR, we emphasized the causal
interpretation of the links. While this is not in any way necessary, it seemed
to be a good decision for two reasons. First, there is widespread belief that
ordering variables in a causal direction simplifies modeling, or, as Russell
and Norvig put it, “If we stick to a causal model, we end up specifying fewer
numbers, and the numbers will often be easier to come up with” [RuNo95,
p.443]. Second, it is easier to involve the expert in validating the edges if
the model is causal.

Still, there is a serious problem with a causal interpretation in the case
of MENTOR. It is quite likely that there are many hidden (unmeasured
or even unknown) variables playing a role in the causal pathway of MR.
Despite this, we attempted to build a DAG model and assign to it a causal
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interpretation. This 1s clearly suspect. There are two possible approaches
to dcaling with this problem. The first is to attempt to discover hidden
variables using a data analysis technique, such as TETRAD [Spir(0, Ch.2]
that purports to discover such variables. A second approach is to explicitly]
model correlations that have no causal interpretation by using undirected
links as in chain graphs (graphical models that include both directed and|
undircected links). It is commonly {and somewhat simplistically) believed
that the undirected links can be used to inodel associational, non-causally
interpretable information, while the directed links are used to model the
causally interpretable information [LaRi01]. For our rescarch we did not

8.2 Future Work

The networks generated from the different datascts using the CB algorithm
had many nodes that violated the rule of chronology. A facility for inputting
the chronological order can be incorporated. Likewise, if some rules could be
incorporated in the network genceration stage to take care of domain-specifid
constraints, directed edges violating dornain rules would be avoided. In other]
words, the ordering of nodes built by the first phase of the CB algorithml
would be forced to be counsistent with chronology and dornain rules. Another
mechanism to incorporate these rules in the network generation phase would
be to set appropriate priors on the network structures, which would favor
networks compatible with the rules. This is a more drastic change to the
current approach, in that the scoring metric used by CB assuines prioi
cquivalence of all network structures. {Other metrics, while forgoing prior
equivalence, are also insensitive to dommain peculiarities.)

In some cases. the values of variables in the original dataset have been
discrctized. In many cases {c.g., for head circumference), this has been
done according to accepted practice in epidemiology. SHll, it may be -
teresting to challenge accepted wisdom and attempt different ways of dis-
cretizing variable ranges, for example by using a decision tree building algo-
rithin [MoCo99]. (We observe, incidentally, that the variable FAM_INC,
which represents family income, was alrcady normalized in the original
dataset.

Finally, since there are many variables in the Mental Retardation do-
main, it may be advantageous to attempt attribute sclection [ProSi96], and
use only a subset of variables.
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