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Abstract

In this paper we describe an important structure used to model causal the-
ories and a related problem of great interest to semi-empirical scientists. A
causal Bayesian network is a pair consisting of a directed acyclic graph (called
a causal graph) that represents causal relationships and a set of probability ta-
bles, that together with the graph specify the joint probability of the variables
represented as nodes in the graph. We briefly describe the probabilistic seman-
tics of causality proposed by Pearl for this graphical probabilistic model, and
how unobservable variables greatly complicate models and their application.
A common question about causal Bayesian networks is the problem of identify-
ing casual effects from nonexperimental data, which is called the identifability
problem. In the basic version of this problem, a semi-empirical scientist pos-
tulates a set of causal mechanisms and uses them, together with a probability
distribution on the observable set of variables in a domain of interest, to pre-
dict the effect of a manipulation on some variable of interest. We explain this
problem, provide several examples, and direct the readers to recent work that
provides a solution to the problem and some of its extensions. We assume that
the Bayesian network structure is given to us and do not address the problem
of learning it from data and the related statistical inference and testing issues.



1 Motivation

Flash back to the late 1950s. Evidence was mounting that smoking was bad for
one’s health. In particular, some researchers postulated a causal link between
smoking and lung cancer. Such a model could be represented by the graph of
Figure 1.

X Y

Figure 1: A Simple Causal Model Relating Cigarette Smoking and Lung Cancer

The intuitive meaning of the model in Figure 1 is that there is a mechanism
that relates cigarette smoking (node X) and lung cancer (node Y ), in the sense
that the probability of a person getting lung cancer is affected by that person
smoking cigarettes. All that could be observed was a strong correlation be-
tween smoking and lung cancer, but the public health community of the 1950s
suspected that the correlation was a manifestation of a causal link, and that
therefore a manipulation of the smoking variable, namely by making smoking
less pervasive, would lead to a reduction of the incidence of lung cancer in the
population.

X Y

U

Figure 2: R.A. Fisher’s Genotype Model Explaining the Correlation between
Smoking and Lung Cancer

The model of Figure 1, however, was not universally accepted, and in a way
that has a profound impact on the expected value of public health policy efforts
directed at reducing smoking in the general population. The distinguished
British statistician R.A. Fisher suggested that this model was a manifestation
of “an error . . . of an old kind, in arguing from correlation to causation,” and
proposed that the correlation between smoking and lung cancer could be ex-
plained by a genetic predisposition to smoking and lung cancer, as described
in Figure 10. Since the genotype (represented by node U in the figure) was
not observable at the time of Fisher’s work, it appeared impossible to conclude
that reducing smoking would have a positive effect on the prevalence of lung
cancer. (The links from U to X and Y are drawn dashed to emphasize that
U is unobservable.) By accepting Fisher’s model, we would have to conclude
that the effect of smoking on lung cancer is unidentifiable, i.e. it cannot be de-
termined from statistics derived solely from variables that are in the model
and that can be observed (such as X and Y ). Incidentally, studies involving
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identical twins (who presumably would have the same genetic predisposition
to both smoking and lung cancer) were carried out in attempt to identify the
causal effect of smoking on lung cancer, but at least Fisher was unconvinced
that they settled the matter [1].

Even in these very simple models, we can observe two important features
of the causal graphs that we will formalize as causal Bayesian networks in the
remainder of this paper. First, the models relate variables (genotype, smoking,
lung cancer) represented as nodes in a directed acyclic graph through directed
edges or links (such as the edge from smoking to lung cancer) indicating a
causal influence. The links from U to X and Y are drawn dashed to emphasize
that U is unobservable. Second, in the first model, the joint probability of the
variables can be represented by the product of the prior probability of smok-
ing times the conditional probability of lung cancer given smoking. In the sec-
ond model, the joint probability of genotype, smoking, and lung cancer can be
represented by the product of the prior probability of the genotype, times the
conditional probability of smoking given the genotype, times the conditional
probability of the genotype and smoking. This decomposition is allowed by
the fundamental rule of probability in the case of a joint distribution of two
and three variables.

In the next section we define formally the key notion of causal Bayesian
network. In Section Three, we discuss the concept of intervention and define
an identifiability problem. In Section Four, we present a proof of unidentifi-
ability for a particular causal Bayesian network and use different versions of
smoking-lung cancer causal models to show why the identifiability problem is
interesting and how it can be solved mathematically. The conclusions, which
consists mainly of a survey of the recent literature on the topic, are included in
Section Five.

Disclaimers are in order. We do not claim that any of our specific examples
are reflective of good domain knowledge. We are not interested in validat-
ing or repudiating causal assumptions specific to a domain. We assume that
the domain knowledge is obtained somehow before our analysis. The frame-
work described in this paper is limited to answering the question of whether a
given set of assumptions is sufficient for quantifying causal effects from non-
experimental data.

2 Causal Bayesian Networks

A Bayesian network (BN) is a graphical representation of the joint probability
distribution of a set of discrete variables. The representation consists of a di-
rected acyclic graph (DAG), prior probability tables for the nodes in the DAG
that have no parents and conditional probabilities tables (CPTs) for the nodes
in the DAG given their parents. As an example, consider the network in Fig-
ure 3.

More formally, a Bayesian network is a pair composed of: (1) a multivari-
ate probability distribution over n random variables in the set V = V1, . . . , Vn,
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A

B

A A1, A2

B B1, B2, B3

C C1, C2

D D1,D2,D3,D4

E E1, E2, E3, E4

A1 A2

B1 0.2 0.1
B2 0.6 0.6
B3 0.2 0.3

(a) (b) (c)

Figure 3: (a) Example Bayesian Network, (b) Variable States, and (c) Condi-
tional Probability Table for B Given A.

and (2) a directed acyclic graph (DAG) whose nodes are in one-to-one corre-
spondence with V1, . . . , Vn. (Therefore, for the sake of convenience, we do not
distinguish the nodes of a graph from variables of the distribution.)

Bayesian networks allow specification of the joint probability of a set of
variables of interest in a way that emphasizes the qualitative aspects of the
domain. The defining property of a Bayesian network is that the conditional
probability of any node, given any subset of non-descendants, is equal to the
conditional probability of that same node given the parents alone. The Chain
rule for Bayesian networks [2] follows from the above definition: Let P (Vi |
π(Vi)) be the conditional probability of Vi given its parents. (If there are no
parents for Vi, let this be P (Vi).) If all the probabilities involved are nonzero,
then P (V ) =

∏

v∈V P (v | π(v)).
Three features of Bayesian networks are worth mentioning. First, the di-

rected graph constrains the possible joint probability distributions represented
by a Bayesian network. For example, in any distribution consistent with the
graph of Figure 3, D is conditionally independent of A given B and C. Also, E
is conditionally independent of any subset of the other variables given C.

Second, the explicit representation of constraints about conditional inde-
pendence allows a substantial reduction in the number of parameters to be
estimated. In the example, assume that the possible values of the five variables
are as shown in Figure 3(b). Then, the joint probability table P (A,B,C,D,E)
has 2× 3× 2× 4× 4 = 192 entries. It would be very difficult to assess 191 inde-
pendent parameters. However, the independence constraints encoded in the
graph permit the factorization P (A,B,C,D,E) = P (A)×P (B|A)×P (C|A)×
P (D|B,C)×P (E|C) which reduces the number of parameters to be estimated
to 1 + 4 + 2 + 18 + 6 = 31. The second term in the sum is the table for the
conditional probability of B given A. This probability is shown in Figure 3(c);
note that there are only four independent parameters to be estimated since the
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sum of values by column is one.
Thirdly, the Bayesian network representation allows a substantial (usually,

dramatic) reduction in the time needed to compute marginals for each variable
in the domain. The explicit representation of constraints on independence re-
lations is exploited to avoid the computation of the full joint probability table
in the computation of marginals both prior and conditioned on observations.
Limitation of space prevents the description of the relevant algorithms; see [3]
for a discussion of the justly famous junction tree algorithm.

The most common operation on a Bayesian network is the computation
of marginal probabilities both unconditional and conditioned upon evidence.
Marginal probabilities are also referred as beliefs in the literature [4]. This op-
eration is called probability updating, belief updating, or belief assignment.

A link between two nodes in a Bayesian network is often interpreted as
a causal link. However, this is not necessarily the case. When each link in
a Bayesian network is causal, then the Bayesian network is called a causal
Bayesian network or Markovian model. Markovian models are popular graphical
models for encoding distributional and causal relationships. To summarize, a
Markovian model consists of a DAG G over a set of variables V = {V1, . . . , Vn},
called a causal graph and a probability distribution over V , which has some con-
straints on it that will be specified precisely below. We use V (G) to indicate
that V is the variable set of graph G. If it is clear in the context, we also use
V directly. The interpretation of such kind of model consists of two parts. The
probability distribution must satisfy two constraints. The first one is that each
variable in the graph is independent of all its non-descendants given its direct
parents. The second one is that the directed edges in G represent causal in-
fluences between the corresponding variables. A Markovian model for which
only the first constraint holds is called a Bayesian network, and its DAG is called
a Bayesian network structure. This explains why Markovian models are also
called causal Bayesian networks. As far as the second condition is concerned,
some authors prefer to consider equation 3 (below) as definitional; others take
equation 3 as following from more general considerations about causal links,
and in particular the account of causality that requires that, when a variable is
set, the parents of that variable be disconnected from it. A full discussion of
this is beyond the scope of this paper, but see [5] and [6].

In this paper, capital letters, like V , are used for variable sets; lower-case
letters, like v, stand for the instances of variable set V . Capital letters like X ,
Y and Vi are also used for single variables, and their values can be x, y and
vi. Normally, we use F (V ) to denote a function on variable set V . An instance
of this function is denoted as F (V )(V = v), or F (V )(v), or just F (v). Each
variable is in one-to-one correspondence to one node in the causal graph.

We use Pa(Vi) to denote parent node set of variable Vi in graph G and
pa(Vi) as an instance of Pa(Vi). Ch(Vi) is Vi’s children node set; ch(Vi) is an
instance of Ch(Vi).

Based on the probabilistic interpretation, we get that the joint probability
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function P (v) = P (v1, . . . , vn) can be factorized as

P (v) =
∏

Vi∈V

P (vi|pa(Vi)) (1)

From the joint probability, all marginal prior and posterior probabilities can
be obtained, by marginalizing and conditioning. The notion of conditional
probability is a well-defined and accepted one. The conditional probability of
an event S given an event D is defined as

P (S | D) =
P (S,D)

P (D)

This definition is actually an axiom of probability, which can be shown to
hold in all useful interpretation of probability, including the subjective Bayesian
one [2]. It is a tenet of applied Bayesian reasoning that beliefs are updated by
conditioning when new knowledge is gained. There are, however, two kinds
of updating in causal Bayesian networks, viz. updating by conditioning (also
known as updating by observation) and updating by intervention.

Updating by conditioning is well defined and understood, both in principle
and algorithmically [7] [8]. There are free and commercial software packages,
like Hugin1, that perform update by conditioning on Bayesian network in a
very efficient manner in most practical cases. In the next section, we explain
updating by intervention.

3 Interventions and the Identifiability Problem

The causal interpretation of Markovian model enables us to predict interven-
tion effects. Here, intervention means some kind of modification of factors in
product (1). The simplest kind of intervention is fixing a subset T ⊆ V of
variables to some constants t, denoted by do(T = t) or just do(t). Then, the
post-intervention distribution

PT (V )(T = t, V = v) = Pt(v) (2)

is given by:

Pt(v) = P (v|do(t)) =

{ ∏

Vi∈V \T P (vi|pa(Vi)) v consistent with t

0 v inconsistent with t
(3)

To stress the distinction between observation and intervention, we present a
simple example based on the sneezing model of Figure 4, originally presented
in [9], in which wiping one’s nose (W) is caused by sneezing (S), which in turn
is caused by either a cold (C) or hay fever (F), or both. To complete this causal
Bayesian network, we give the probabilities in Table 1 and P (Cold) = (.2, .8),
P (HayFever) = (.1, .9), and P (WipingOne′sNose | Sneezing = y) = .9.
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Sneezing

Wiping One's Nose

Hay FeverCold

Figure 4: A Causal Graph for Sneezing

H
C y n
y .9 .8
n .7 .1

Table 1: Table for P (Sneezing = y | Cold,HayFever)
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Figure 5: Initial Marginal Probabilities for the Sneezing Model

We use this causal graph to compare the notions of observation and inter-
vention. The initial probabilities for the four variables are shown in Figure 5.
Suppose that it is observed that sneezing occurs. The probabilities of each vari-
able in the network are updated as shown in Figure 6.

Suppose now that we intervene and force sneezing. The connections be-
tween node Sneezing and its parents are cut, as indicated in the model of Fig-
ure 7. Unlike the situation in which sneezing is observed, the posterior proba-
bilities of Cold and Hay Fever are unchanged.

We call interventions of the simple kind described so far in this section,
which consist in fixing a subset of variables to some constants, crisp interven-
tions. Referring to the sneezing causal graph, a simple example is setting the
variable Sneezing to the value true (i.e., forcing sneezing to occur), by the ad-
ministration of a perfectly effective sneezing powder. More complicated inter-
ventions can be described using the intervention graph or augmented model [10],
in the way originally described in [11] and [12]. The intervention graph is
formed by adding a parent to each node representing a variable where inter-
vention is contemplated. The brief discussion here follows the excellent pre-
sentation of [6, Section 3.3.2] very closely. The interested reader should consult
that reference for more detail.

The effect of a crisp intervention do(Xi = xi) can be encoded by adding to
G a link Fi → Xi, where Fi is a new variable taking values in {do(xi), idle},
xi ranges over the domain of Xi, and idle represents no intervention. The new
parent set of Xi in the augmented network is Pa′(Xi) = Pa(Xi) ∪ {Fi}, and it
is related to Xi by the conditional probability.

1http://www.hugin.com/
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Figure 6: Marginal Probabilities for the Sneezing Causal Bayesian Network,
after Updating by Conditioning on the Evidence of Sneezing

Figure 7: The Sneezing Causal Graph, after a Crisp Intervention that Forces
Sneezing to Occur
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Figure 8: Intervention Graph

P (xi|pa′(Xi)) =







P (xi|pa(Xi) if Fi = idle
0 if Fi = do(x′

i) and xi 6= x′
i

1 if Fi = do(x′
i) and xi = x′

i

(4)

The effect of the intervention do(x′
i) is to transform the original probability

function P (X1, . . . ,Xn) into a new probability function PXi=x′

i
(Xi, . . . ,Xn),

given by

PXi=x′

i
(X1, . . . ,Xn) = P ′(X1, . . . ,Xn|Fi = do(x′

i)) (5)

where P ′ is the distribution specified by the augmented network G′ =
G ∪ {Fi → Xi} and (4), with an arbitrary prior distribution on Fi. In general,
by adding a hypothetical intervention link Fi → Xi to multiple nodes in G,
we can construct an augmented probability function P ′(x1, . . . , xn;Fi, . . . , Fn),
which allows for interventions beyond the setting of a subset of variable to con-
stants. For a simple example related to the causal graph of Figure 4, imagine
administering an imperfectly effective sneezing power, which causes sneezing
with probability p. This would be modeled by setting the prior probability of
the value true for the forcing variable FSneezing in the model of Figure 9 to p.

In many cases, an empirical scientist faces the following question: Can we
estimate the post-intervention distribution under crisp intervention from non-
experimental data? When all the variables in the model are observable, the
answer for the question above is positive. But when some variables in V are
unobservable, things are much more complex, and the answer may be either
positive or negative, depending on the structure of the causal Bayesian net-
work and the relative location of observable and unobservable variables. We
give a detailed proof of unindentifiability for the key example of Figure 10 in
the next section.
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Figure 9: An Intervention Graph for the Sneezing Model of Figure 4

4 An Unidentifiable Model

A simple example of unidentifiable model is R.A. Fisher’s genotype model of
the relation between smoking and lung cancer [12], which we briefly discussed
in the first section of this paper. R.A. Fisher suggested that the observed corre-
lation between smoking(X) and lung cancer(Y ) can be explained by some sort
of carcinogenic genotype(U ) that involves inborn craving for nicotine.

X Y

U

Figure 10: R.A. Fisher’s Genotype Model Explaining the Correlation between
Smoking and Lung Cancer (Figure 2, repeated here for the reader’s conve-
nience)

The carcinogenic genotype is presented by Fisher as a concept that has not
been observed in nature, and it is therefore modeled as an unobservable vari-
able. Intuitively, the effect of smoking on lung cancer is unidentifiable because
we are not sure whether the observed response (lung cancer) is due to our ac-
tion (smoking) or to the confounder event (genotype) that triggers the action
and simultaneously causes the response.

Formally, we show that the effect of smoking on lung cancer is unidenti-
fiable in the following way. We show that, with a given observational distri-
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bution P (x, y), it is possible to find two different causal Bayesian networks M1

and M2 that share the graph of Figure 10, and such that PM1(x, y) = PM2(x, y).
As an extreme example, we can construct two drastically different models fol-
lowing the explanation that smoking is the cause of lung cancer (the part a
in Figure 11) or carcinogenic genotype is the only cause of this fatal disease
(the part b in Figure 11). Both of them satisfy the graph in Figure 10. That is,
Figure 10 generalizes both graphs in Figure 11, or, equivalently, the graphs in
Figure 11 are special cases of the graph in Figure 10.

X Y

U U

X Y

a b

Figure 11: Different Models Compatible with the Model of Figure 10

Our question about the smoking and lung cancer model of Figure 10 is: If
we intervene on variable X , which means we control the smoking behavior, is
unexperimental observational knowledge about smoking and lung-cancer (i.e.,
P (x, y)) sufficient to determine the probability of lung cancer? Mathematically,
this problem can be explained as a question on the Markovian model of Figure
10: If we know P (x, y), which is the joint probability on observable variables
X,Y , can we calculate Px(y) for all (x, y)? Unfortunately, the answer to this
question is negative.

The fact is that it is possible to create a model compatible with Figure 11 part
a and another model compatible with Figure 11 part b, both of them satisfying
P (x, y), but with different Px(y). We cannot get the same Px(y) from these two
models because for the first model, the intervention will change the probability
of lung cancer but if the second model is correct, the behavior of smoking has
no effect on lung cancer at all.

We now carry out the calculations in detail to show that the effect of smok-
ing on lung cancer is unidentifiable for the causal Bayesian network of Fig-
ure 10. All variables are binary, and their states are denoted as 0 and 1. For
variable U , we assume P (U = 0) = P (U = 1) = 1/2. The conditional probabil-
ity tables of variable X and Y in model M1 are defined as below:

x u PM1(x|u)
0 0 0.6
0 1 0.4

(6)
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y x u PM1(y|x, u)
0 0 0 0.7
0 0 1 0.2
0 1 0 0.2
0 1 1 0.7

(7)

The conditional probability tables of variable X and Y in model M2 are
defined as:

x u PM2(x|u)
0 0 0.7
0 1 0.3

(8)

y x u PM2(y|x, u)
0 0 0 0.65
0 0 1 0.15
0 1 0 0.15
0 1 1 0.65

(9)

Note that, since P (X,Y ) =
∑

U P (Y |x,U)P (X|U)P (U), for both models
M1 and M2, we obtain:

y x PMi(y, x)
0 0 0.25
0 0 0.25
0 1 0.25
0 1 0.25

(10)

We also have PX(Y ) =
∑

U P (Y |X,U)P (U) for both two models, and for

M1, PM1

X=0
(Y = 0) = 0.45, but for M2, we have PM2

X=0
(Y = 0) = 0.40.

We conclude that PX(Y ) is unidentifiable in this causal graph.
We emphasize, again, that the models we use are not intended to be correct

representation of domain knowledge: we use them simply to illustrate how
they can be used in representing causal modeling assumptions, which have dif-
ferent bearing on the identifiability of causal effects. In that spirit, we conclude
the section by describing two more models that may match some researchers’
understanding of the relation between smoking and lung cancer.

U

X Z Y

Figure 12: Smoking (X) Affects Lung Cancer (Y) through Tar Deposits (X)
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It is observed that smoking causes tar deposit on lung. So, with the evi-
dence that genotype may cause lung cancer and smoking behavior, a researcher
may establish a causal model about smoking (X) and lung cancer (Y ) with tar
(Z). See Figure 12. Incidentally, R.A. Fisher himself seems to hint at such a
model [1]. This causal graph assumes that smoking cigarettes has no effect on
the production of lung cancer except as mediated through tar deposits and
genotype has no effect on the amount of tar in the lungs except indirectly
through cigarette smoking.

Finally, the causal graph of Figure 13 adds to the causal graph of Figure 12
the assumption that the production of tar deposits in the lung (Z) is affected
by pollution (U1), which also affects the propensity towards smoking (X).

X

U

U0

1

Z Y

Figure 13: Air Pollution (U1) Affects Tar Deposits (Z) and the Propensity to
Smoke (X)

The causal effect of smoking on lung cancer (PX(Y )) is identifiable in the
causal graph of Figure 12, but unidentifiable in the causal graph of Figure 13.
We do not attempt to prove this claim in this paper, and refer the reader to the
references given in the next section for the algorithms needed to establish this
claim and, in the case of Figure 12, compute the value of the causal effect.

5 Conclusion

This paper provides an introduction to the problem of inferring the strength of
cause-and-effect relationships from a causal Bayesian network, emphasizing
conceptual foundations and examples. In this concluding section, we provide
a roadmap to the literature where proofs and algorithms are provided.

A causal Bayesian network consists of a causal graph, an acyclic directed
graph expressing causal relationships, and a probability distribution respect-
ing the independence relation encoded by the graph. Because of the existence
of unmeasured variables, the following identifiability questions arise: “Can we
assess the strength of causal effects from nonexperimental data and casual re-
lationships? And if we can, what is the total causal effect in terms of estimable
quantities?”

The questions just given could partially be answered using graphical ap-
proaches due to Pearl and his collaborators. More precisely, graphical con-
ditions have been devised to show whether a causal effect, that is, the joint
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response of any set S of variables to interventions on a set T of action vari-
ables, denoted PT (S) 2 is identifiable or not. Those results are summarized
in [6]. For example, “back-door” and “front-door” criteria and do-calculus [15];
graphical criteria to identify PT (S) when T is a singleton [16]; graphical condi-
tions under which it is possible to identify PT (S) where T and S are, possibly
non-singleton, sets, subject to a special condition called Q-identifiability [17].
Further study can be also found in [18] and [19].

More recently, Tian and Pearl published a series of papers related to this
topic [20, 13, 14]. Their new methods combined the graphical character of
causal graph and the algebraic definition of causal effect. They used both alge-
braic and graphical methods to identify causal effects. The basic idea is, first, to
transfer causal graphs to semi Markovian graphs [13], then to use Algorithm 2
in [14] (the Identify algorithm) to calculate the causal effects we want to know.

Tian and Pearl’s method was a great contribution to this study area. But
there were still some problems left. First, even though we believe, as Tian
and Pearl do, that the semi Markovian models obtained from the transforming
Projection algorithm in [13] are equal to the original causal graphs, and there-
fore the causal effects should be the same in both models, still, to the best of
our knowledge, there was no formal proof for this equivalence. Second, the
completeness question of the Identify algorithm in [14] was still open, so that
it was unknown whether a causal effect was identifiable if that Identify algo-
rithm failed.

In a series of papers, Huang and Valtorta [21, 22, 23] and, independently,
Shpitser and Pearl [24, 25] solved the open questions and several related ones.
In particular, following Tian and Pearl’s work, Huang and Valtorta [21] solved
the second question. They showed that the Identify algorithm Tian and Pearl
used on semi-Markovian models is sound and complete. In [23], they followed
the ideas Tian and Pearl presented in [14], but instead of working on semi-
Markovian models, they focused on general causal graphs directly, and their
proofs showed, that Algorithm 2 in [14] can also be used in general causal mod-
els, and that the algorithm is sound and complete, which means a causal effect
is identifiable if and only if the given algorithm runs successfully and returns
an expression that is the target causal effect in terms of observable quantities.

It is our hope that the reader will be motivated to study, implement, refine,
and apply the algorithmic framework to causal modeling that Pearl pioneered
and that, the authors believe, is ready to be put to the test of deployment in
actual applications.

2Pearl and Tian used notation P (s|do(t)) and P (s|t̂ ) in [6] and Pt(s) in [13], [14].
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