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Abstract

This paper is concerned with graphical criteria
that can be used to solve the problem of identify-
ing casual effects from nonexperimental data in a
causal Bayesian network structure, i.e., a directed
acyclic graph that represents causal relation-
ships. We first review Pearl’s work on this topic
[Pearl, 1995], in which several useful graphical
criteria are presented. Then we present a com-
plete algorithm [Huang and Valtorta, 2006b] for
the identifiability problem. By exploiting the
completeness of this algorithm, we prove that the
three basicdo-calculus rulesthat Pearl presents
are complete, in the sense that, if a causal effect
is identifiable, there exists a sequence of applica-
tions of the rules of the do-calculus that trans-
forms the causal effect formula into a formula
that only includes observational quantities.

1 Introduction

This paper focuses on graphical criteria used to infer the
strength of cause-and-effect relationships from a causal
Bayesian network [Pearl, 1995, Pearl, 2000], which is an
acyclic directed graph representing nonexperimental data
and causal relationships.

In the 1990s, some graphical conditions were given to
show whether the causal effect, that is, the joint response
of any setS of variables to interventions on a setT
of action variables, denoted asPT (S)1, is identifiable
or not. Those results are summarized in [Pearl, 2000].
For example, “back-door” and “front-door” criteria and
do-calculus [Pearl, 1995]; graphical criteria to identify
PT (S) when T is a singleton [Galles and Pearl, 1995];
special graphical conditions under which it is possible

1The notations P (s|do(t)) and P (s|t̂) are used
in [Pearl, 2000], and the notationPt(s) is used
in [Tian and Pearl, 2002b, Tian and Pearl, 2003].

to identify PT (S) [Pearl and Robins, 1995]. Some fur-
ther study can be also found in [Robins, 1997] and
[Kuroki and Miyakawa, 1999]. In all these graphical cri-
teria, Pearl’s three do-calculus (inference) rules are in the
core position. All the other graphical rules can be obtained
from them. Pearl conjectures that they are sufficient for
the identification problem, but the conjecture has remained
opened until now.

In the current decade, Tian and Pearl published a
series of papers related to the identification prob-
lem [Tian and Pearl, 2002a, Tian and Pearl, 2002b,
Tian and Pearl, 2003]. Their new methods combined the
graphical character of causal graph and the algebraic
definition of causal effect. They used both algebraic and
graphical methods to identify causal effects.

Based on their work, Huang and Valtorta proved that Tian
and Pearl’s identify algorithm for semi-Markovian graphs
is complete [Huang and Valtorta, 2006a]. Here, semi-
Markovian graphs are defined as causal graphs in which
each unobservable variable is a root and has exactly two ob-
servable children; semi-Markovian graphs are sometimes
defined differently. It has been shown that a transformation
between general Bayesian networks and semi-Markovian
graphs, defined, e.g., in [Tian and Pearl, 2002b], pre-
serves identifiability [Huang and Valtorta, 2006b].
In [Huang and Valtorta, 2006b], the authors also present
an algorithm on general causal Bayesian networks and
prove that the algorithm is complete, which means a causal
effect is identifiable if and only if the given algorithm runs
successfully and returns an expression that is the target
causal effect in terms of estimable quantities.

We have recently learned that the sufficiency of the three
inference rules (with some minor technical limitations) has
been proved in [Shpitser and Pearl, 2006]. Our indepen-
dently obtained result applies to general causal Bayesian
networks.

In this paper, we review the graphical rules and the com-
plete identify algorithm of [Huang and Valtorta, 2006b].
We consider their relationship and prove that the identify



algorithm can be obtained by using the three inference
rules. Because of the completeness of the identify algo-
rithm, our proof shows that the three inference rules are
sufficient, which confirms Pearl’s conjecture. In the next
section we give out the definitions and notations that we use
in this paper. In section three, we review some graphical
rules for identification problem. We discuss the complete
identify algorithm in section four and prove the sufficiency
of the three inference rules in section five. Conclusions are
included in section six.

2 Definitions and Notations

A causal Bayesian networkconsists of a DAGG over a set
of variablesV = {V1, . . . , Vn}, called acausal graph, and
a probability distribution onV . The interpretation of this
kind of model consists of two parts. One is the probabilistic
interpretation, which says that each variable in the graph is
independent of all its non-descendants given its direct par-
ents; the other is the causal interpretation, which says that
the directed edges inG represent causal influences between
the corresponding variables [Pearl, 2000, Lauritzen, 2001].

We useV (G) to show thatV is the variable set of graphG.
If it is clear in the context, we also useV directly. Capi-
tal characters, likeV , are used for variable sets; the lower
characters, likev, stand for the instances of variable setV .
Capital character likeX, Y andVi are also used for single
variable, and their values can bex, y andvi. Normally,
we useF (V ) to denote a function on variable setV . An
instance of this function is denoted asF (V )(V = v), or
F (V )(v), or just F (v). Because all the variables are in
the causal graph, we sometimes use node and node set in-
stead of variable and variable set. We usePa(Vi) to denote
parent node set of nodeVi in graphG andpa(Vi) as an in-
stance of variable setPa(Vi). Ch(Vi) is Vi’s children node
set;ch(Vi) is an instance ofCh(Vi).

Based on the probabilistic interpretation of causal Bayesian
network, we have that the joint probability functionP (v) =
P (v1, . . . , vn) can be factorized as

P (v) =
∏

Vi∈V

P (vi|pa(Vi)) (1)

The causal interpretation of Markovian model enables us to
predict intervention effects. Here, intervention means some
kind of modification of factors in product (1). The simplest
kind of intervention is fixing a subsetT ⊆ V of variables
to some constantst, denoted bydo(T = t) or just do(t),
and then the post-intervention distribution

PT (V )(T = t, V = v) = Pt(v) (2)

is given by:

Pt(v) =

{ ∏

Vi∈V \T P (vi|pa(Vi)) v consistent witht
0 v inconsistent witht

(3)

We note explicitly that the post-intervention distribution
Pt(v) is a probability distribution.

When all the variables inV are observable, since all
P (vi|pai) can be estimated from nonexperimental data, as
just indicated, all causal effects are computable. But when
some variables inV are unobservable, things are much
more complex.

Let N andU stand for the sets of observable and unobserv-
able variables in graphG respectively, that isV = N ∪ U .
The observed probability distributionP (n) = P (N = n),
is a mixture of products:

P (n) =
∑

U

∏

Vi∈N

P (vi|pa(Vi))
∏

Vj∈U

P (vj |pa(Vj)) (4)

The post-intervention distributionPt(n) = PT=t(N = n)
is defined as:

Pt(n) =















∑

U

∏

Vi∈N\T P (vi|pa(Vi))×
∏

Vj∈U P (vj |pa(Vj))

n consistent witht
0 n inconsistent witht

(5)

Sometimes what we want to know is not the post-
intervention distribution for the wholeN , but the post-
intervention distributionPt(s) of an observable variable
subsetS ⊂ N , For those two observable variable setS
andT , Pt(s) = PT=t(S = s) is given by:

Pt(s) =















∑

Vl∈(N\S)\T

∑

U

∏

Vi∈N\T P (vi|pa(Vi))
∏

Vj∈U P (vj |pa(Vj))

s consistent witht
0 s inconsistent witht

(6)

The identifiability question is defined as whether the causal
effect PT (S), that is allPt(s) given by (6), can be deter-
mined uniquely from the distributionP (N = n) given
by (4), and thus independent of the unknown quantities
P (vi|pa(Vi))s, whereVi ∈ U or there are someVj ∈
Pa(Vi), Vj ∈ U .

We give out a formal definition ofidentifiability below,
which follows [Tian and Pearl, 2003].

A Markovian model consists of four elements

M =< N,U,GN∪U , P (vi|pa(Vi)) >

where, (i)N = {N1, . . . , Nm} is a set of observable vari-
ables; (ii) U = {U1, . . . , Un} is a set of unobservable



variables; (iii) G is a directed acyclic graph with nodes
corresponding to the elements ofV = N ∪ U ; and (vi)
P (vi|pa(Vi)), i = 1, . . . ,m + n, is the conditional proba-
bility of variableVi ∈ V given its parentsPa(Vi))in G.

Definition 1 The causal effect of a set of variablesT on a
disjoint set of variablesS is said to be identifiable from
a graphG if all the quantitiesPt(s) can be computed
uniquely from any positive probability of the observed vari-
ables — that is , ifPM1

t (s) = PM2
t (s) for every pair of

modelsM1 andM2 with PM1(n) = PM2(n) > 0 and
G(M1) = G(M2).

This definition means that, given the causal graphG, the
quantityPt(s) can be determined from the observed distri-
butionP (n) alone.

Normally, when we talk aboutS andT , we think they are
both observable variable subsets ofN and mutually dis-
joint. So,s is always consistent witht in Equation 6.

We are sometimes interested in the causal effect on a set
of observable variablesS due to all other observable vari-
ables. In this case, keeping the convention thatN stands
for the set of all observable variables,T = N\S. For con-
venience and for uniformity with [Tian and Pearl, 2002b],
we define

Q[S] = PN\S(S) (7)

and interpret this equation as stating thatQ[S] is the causal
effect ofN\S onS.

We define thec-component relationon the unobserved vari-
able setU of graphG as follow: for anyU1 ∈ U and
U2 ∈ U , they are related under the c-component relation if
and only if at least one of conditions below is satisfied:

(i) there is an edge betweenU1 andU2,

(ii) U1 and U2 are both parents of the same observable
node,

(iii) both U1 andU2 are in the c-component relation with
respect to another nodeU3 ∈ U .

Observe that the c-component relation inU is reflexive,
symmetric and transitive, so it defines a partition ofU .
Based on this relationship, we can therefore divideU into
disjoint and mutually exclusive c-component related parts.

A c-componentof variable setV on graphG consists of
all the unobservable variables belonging to the same c-
component related part ofU and all observable variables
that have an unobservable parent which is a member of that
c-component. According to the definition of c-component
relation, it is clear that an observable node can only appear
in one c-component. If an observable node has no unob-
servable parent, then itself is a c-component onV . There-
fore, the c-components form a partition on all of the vari-
ables.

We conclude this section by giving several simple graphical
definitions that will be needed later.

For a given set of variablesC, we define thedirected un-
observable parent setDUP (C). A node V belongs to
DUP (C) if and only if both of these two conditions are
satisfied: i)V is an unobservable node; ii) there is a di-
rected path fromV to an element ofC, and all the internal
nodes on that path are unobservable nodes.

For a given observable variable setC ⊆ N , let GC de-
note the subgraph ofG composed only of variables in
C ∪ DUP (C) and all the links between variable pairs in
C ∪ DUP (C). Let An(C) be the union ofC and the set
of ancestors of the variables inC, and letDe(C) be the
union ofC and the set of descendents of the variables inC.
An observable variable setS ⊆ N in graphG is called an
ancestral setif it contains all its own observed ancestors,
i.e.,S = An(S) ∩ N .

3 Graphical Criteria

In general, to solve the identifiability problem graphically,
there are two things we need to know. The first is a set of in-
ference rules, which can transfer causal effect expressions
to equivalent expressions. The second is a sound and com-
plete algorithm based on those rules. Here complete means
that, for any causal effect question, we can use this algo-
rithm to answer it, either by generating a final expression
just involving ordinary conditional probabilities, whichis
assessable by empirical observation, or by reporting that
the effect is unidentifiable.

Using causal Bayesian network, Pearl gives two graph-
ical criteria to check identifiability, and called them
back-door criterionand front-door criterion [Pearl, 1993,
Pearl, 1995]. Following these results, in [Pearl, 1995]
and also in his bookCausality [Pearl, 2000], Pearl pro-
poses three inference rules (thedo-calculus rules) that al-
low transformations between sentences concerning inter-
ventions and observations. The aim of such rules is to lead
to a calculus of interventions and observations on causal
Bayesian networks, so that, whenever possible, sentences
that involve interventions and observations may be trans-
formed into sentences that involve only observations. Pearl
proves that the threedo-calculus rules are sound and con-
jectures that they are sufficient. We present these three in-
ference rules below. We begin by reviewing several defini-
tions from [Pearl, 2000].

Let X, Y , Z be arbitrary disjoint sets of nodes in a causal
graphG. We denote byGX the graph obtained by delet-
ing fromG all arrows pointing to nodes inX. Likewise, we
denote byGX the graph obtained by deleting fromG all ar-
rows emerging from nodes inX. To represent the deletion
of both incoming and outgoing arrows, we use the notation
GXZ .



The expressionP (y|x̂, z) ≡ P (y, z|x̂)/P (z|x̂) stands for
the probability ofY = y given thatX is held constant
at x and that (under this condition)Z = z is observed.
Our notation for this probability isPx(y|z). In this section,
we use Pearl’s notation in [Pearl, 2000] when quoting his
results directly.

Here are the three inference rules of proposed calculus.
Proofs of soundness can be found in [Pearl, 1995].

Theorem (Rules of Do-Calculus) [Pearl, 2000] LetG be
the directed acyclic graph associated with a causal model,
and letP ()̇ stand for the probability distribution induced by
that model. For any disjoint subsets of variablesX,Y ,Z,
andW we have the following rules.

Rule 1 (Insertion/deletion of observations)

P (y|x̂, z, w) = P (y|x̂, w) if(Y ⊥ Z|X,W )GX
(8)

Rule 2 (Action/observation exchange)

P (y|x̂, ẑ, w) = P (y|x̂, z, w) if(Y ⊥ Z|X,W )GXZ
(9)

Rule 3 (Insertion/deletion of actions)

P (y|x̂, ẑ, w) = P (y|x̂, w) if(Y ⊥ Z|X,W )G
X,Z(W )

(10)
whereZ(W ) is the set ofZ-nodes that are not ancestors of
anyW -node inGX .

In [Pearl, 2000], the author shows that both his back-
door and front-door criteria can be obtained from these
three rules. In [Galles and Pearl, 1995], the authors give
out a graphical criterion to identify the causal effect be-
tween a singleton variableX and a set of variablesY .
Their algorithm works in time polynomial on the num-
ber of variables in the graph. This result is also showed
in [Pearl, 2000]2. In [Pearl and Robins, 1995], the authors
extend the results of [Galles and Pearl, 1995] to the case
whereT stands for a compound action, consisting of sev-
eral atomic interventions that are implemented either con-
currently or sequentially. They establish a graphical crite-
rion for recognizing when the effect ofX on Y is identi-
fiable and, in case the diagram satisfies this criterion, they
provide a closed-form expression for the distribution of an
outcome variableS under the plan defined by the com-
pound action settingT = t. Following Pearl and Robins’
work, [Kuroki and Miyakawa, 1999] present an extension
of the front door criterion.

All the criteria cited above are based the three inference
rules. Therefore, the proof of sufficiency of the three rules
that is provided in this paper paves the road for proofs of
sufficiency of other graphical algorithms in this area.

2We explicitly note that the algorithm given in Section 4.3.1
of [Pearl, 2000], while inspired by the do-calculus, is not com-
plete, as shown in [Tian and Pearl, 2003].

4 A Sound and Complete Identification
Algorithm

In this section we present a complete identification algo-
rithm.

For a given model (causal Bayesian network) with graph
G, We begin with removing all unobservable nodes
that have no observable descendants. From the def-
initions in section two, it is easy to prove that this
transformation does not change the identifiability of the
model [Huang and Valtorta, 2006a].

Below are two lemmas proved by Tian and Pearl
in [Tian and Pearl, 2002b].

Lemma 1 Let W ⊆ C ⊆ N . If W is an ancestral set in
GC , then

∑

Vi∈C\W

Q[C] = Q[W ] (11)

Lemma 2 Let H ⊆ N , and we have c-components
H ′

1, . . . ,H
′
n in the sub graphGH , Hi = H ′

i ∩ H, 1 6

i 6 n, then

(i) Q[H] can be decomposed as

Q[H] =
n

∏

i=1

Q[Hi] (12)

(ii) EachQ[Hi] is computable fromQ[H], in the following
way. Letk be the number of variables inH, and let a
topological order of variables inH beVh1

< . . . < Vhk
in

GH . LetH(j) = {Vh1
, . . . , Vhj

} be the set of variables in
H ordered beforeVhj

( includingVhj
), j = 1, . . . , k, and

H(0) = φ. Then eachQ[Hi],i = 1, . . . , n, is given by

Q[Hi] =
∏

{j|Vhj
∈Hi}

Q[H(j)]

Q[H(j−1)]
(13)

where eachQ[H(j)], j = 0, 1, . . . , k, is given by

Q[H(j)] =
∑

h\h(j)

Q[H] (14)

Assume thatN(G) is partitioned intoN1, . . . , Nk in G,
where eachNi belongs to a c-component, and that we have
c-componentsS′

1, . . . , S
′
l in graphGS , Sj = S′

j ∩ S, 1 6

j 6 l. Based on lemma 2, for any model on graphG, we
have

Q[S] =
l

∏

j=1

Q[Sj ] (15)

Because eachSj ,j = 1, . . . , l, which is a c-component in
GS , is a subgraph ofG, it must be included in oneNj ,
Nj ∈ {N1, . . . , Nk}.



The rest of this section is devoted to three algorithms.

Algorithm Computing Q[S]

INPUT: S ⊆ N

OUTPUT: Expression forQ[S] or FAIL

Let N(G) be partitioned intoN1, . . . , Nk, each of them
belonging to a c-components inG, and S be partitioned
into S1, . . . , Sl, each of them belonging to a c-components
in GS , andSj ⊆ Nj . We can

i) Compute eachQ[Nj ] with lemma 2

ii) Compute eachQ[Sj ] with Identify algorithm below with
C = Sj ,T = Nj ,Q = Q[Nj ]

iii) If in ii), we get Fail as return value of Identify algorithm
of anySj , thenQ[S] is unidentifiable in graphG; elseQ[S]

is identifiable and equal to
∏l

j=1 Q[Sj ] (by lemma 2)

Algorithm Identify ( C,T ,Q)

INPUT: C ⊆ T ⊆ N , Q = Q[T ], GT and GC are both
composed of one single c-component

OUTPUT: Expression forQ[C] in terms ofQ or FAIL

LetA = An(C)GT
∩ T

i) If A = C, outputQ[C], which is equal to
∑

T\C Q[T ] by
lemma 1

ii) Else if A = T , output FAIL

iii) Else (if C ⊂ A ⊂ T )

1. ComputeQ[A] =
∑

T\A Q[T ] with lemma 1

2. Assume that inGA, C is contained in a c-component
T ′

1, T1 = T ′
1 ∩ A.

3. ComputeQ[T1] fromQ[A] with lemma 2

4. Output Identify(C,T1,Q[T1])

To computePT (S), we can rewrite it as:

Pt(s) =
∑

N\(T∪S)

Pt(n\t) =
∑

N\(T∪S)

Q[N\T ] (16)

Let D = An(S)GN\T
∩ N . D is an ancestral set

in graph GN\T . Lemma 1 allows us to conclude that
∑

N\(T∪D) Q[N\T ] = Q[D]. Therefore, we have:

Pt(s) =
∑

D\S

∑

N\(T∪D)

Q[N\T ] =
∑

D\S

Q[D] (17)

Algorithm Computing PT (S)

INPUT: two disjoint observable variable setsS, T ⊂ N

OUTPUT: the expression forPT (S) or FAIL

1. LetD = An(S)GN\T
∩ N

2. Use the ComputingQ[S] algorithm to computeQ[D]

3. If the algorithm returns FAIL, then output FAIL

4. Else, outputPT (S) =
∑

D\S Q[D]

The authors, in [Huang and Valtorta, 2006b], prove that:

Theorem 1 The above algorithm for computingPT (S) is
sound and complete.

Note that the soundness of the algorithms above can be ob-
tained from lemma 1, 2 and standard probability manipula-
tions. We will exploit this property in the next section.

5 Completeness of the Three Inference
Rules of Pearl’s Do-Calculus

In this section, we prove the three inference rules are com-
plete. As already mentioned, the soundness of the three
rules is proved in [Pearl, 1995]. Here we just need to prove
their sufficiency.

Note that the sound and complete algorithm for computing
PT (S) in the last section is obtained by using lemma 1 and
lemma 2. If we can show that lemma 1 and lemma 2 can
be obtained through just using the three inference rules and
standard probability manipulations, then the sufficiency of
the three rules is proved.

We begin with the following observation:

Lemma 3 If any of the three rules can be used on a model
with graphG, it can also be used on a model that is ob-
tained by removing all unobservable nodes that have no
observable descendants.

Proof: This follows from the well-known result that barren
nodes can be removed without changing the d-separation
relation for the other nodes [Shachter, 1986].�

We also have:

Lemma 4 Rule 1 follows from rule 2 and rule 3.

Proof: Since removing an edge can only d-separate more
nodes in a Bayesian network, the conditions for the ap-
plication of rules 2 and 3 are satisfied if the condition
for rule 1 is satisfied. We can replace the application of
rule 1 by the application of rule 2 followed by the appli-
cation of rule 3. In detail, by applying rule 2, we have
thatP (y|x̂, z, w) = P (y|x̂, ẑ, w). By applying rule 3, we
have thatP (y|x̂, ẑ, w) = P (y|x̂, w). So,P (y|x̂, z, w) =
P (y|x̂, w), which is the result of applying rule 1.�

We now show that lemma 1 and lemma 2 can be obtained
through just using rule 2, rule 3 and standard probabil-
ity manipulations. For convenience, we defineV m

1 =



{V1, V2, . . . , Vm} andV̂ m
1 = {V̂1, V̂2, . . . , V̂m}. Here,Vi,

1 6 i 6 m can be any variable or variable set; in the case
of sets, the comma should be understood as the union op-
erator.

Lemma 5 Lemma 1 follows from rule 3.

Proof: We recall the definition of ancestral set. An observ-
able variable setS ⊆ N in graphG is called anances-
tral set if it contains all its own observed ancestors, i.e.,
S = An(S) ∩ N . BecauseG is a DAG, GC , which in-
clude all nodes inC ∪ DUP (C), is a DAG also. IfW is
an ancestral set inGC , then there is a topological order of
nodes inGC that starts with all the nodes inW and contin-
ues with the other nodes. IfW = N , the lemma is trivially
true. Otherwise, consider the first node, sayX, in the topo-
logical order just described and that is inC but not inW .
So, what we need to prove is: IfW ⊂ N , nodeX ∈ N\W ,
C = W ∪ {X}, andW is an ancestral set inGC , then

∑

X

Q[C] = Q[W ] (18)

Recall that for anyS ⊂ N , by definitionQ[S] = PN\S(S).
So, equation 18 can be rewritten as

∑

X

PN\C(C) = PN\W (W ) (19)

AssumeW = {X1, . . . ,Xk} = Xk
1 , Y = N\(W ∪{X}),

where, unlikeX, Y is a variable set here. Equation 19
becomes

∑

X

PY (Xk
1 ,X) = PY,X(Xk

1 ) (20)

Using the graphical language Pearl used, what we want to
prove is

∑

X

P (Xk
1 ,X|Ŷ ) = P (Xk

1 |Ŷ , X̂) (21)

We know that
∑

X P (Xk
1 ,X|Ŷ ) =

∑

X P (X|Xk
1 , Ŷ )P (Xk

1 |Ŷ )

= (
∑

X P (X|Xk
1 , Ŷ ))P (Xk

1 |Ŷ )
(22)

Now, we use rule 3 of the do-calculus. Note that we can
apply this rule, because forP (Xk

1 |Ŷ ), we have

({Xk
1 } ⊥ X|Y )GY ,X

(23)

This is because in graphGY ,X , if there is a d-connected
path fromX to a nodeXi, 1 6 i 6 k, that path could
not include any node inY , becauseY nodes can only be
divergent nodes andY is given. If that path just goes from
X through some unobservable nodes toXi, it would mean

that topologicallyX is beforeXi in graphGC , which could
not be true. So, that kind of path does not exist.

Using rule 3 we obtain

P (Xk
1 |Ŷ ) = P (Xk

1 |Ŷ , X̂) (24)

So, what we need to prove is just

∑

X

P (X|Xk
1 , Ŷ )) = 1 (25)

This is obvious, sincePy is a probability distribution.�

Lemma 6 Lemma 2 follows from rule 2 and rules 3.

Proof: WhenH just includes one observable variable, (i)
and (ii) in lemma 2 are clearly true.

Assume (i) and (ii) are still true for any observable variable
setH ⊂ N , where the size ofH is less than or equal to
integerk.

Consider an arbitrary observable variable setE of sizek +
1, and assume variableX ∈ E is topologically after all
the variables inH = E\{X} in graphG. AssumeH ∪
DUP (H) can be divided into c-componentH ′

1, . . . ,H
′
n in

graphGH , andHi = H ′
i ∩ H,1 6 i 6 n. Let Y =

N\E. Also assumeX andH1,H2, . . . ,Hm, 0 6 m 6 n
construct a c-component in graphGE . (If m = 0, thenX
is a c-component by itself.)

Since the size ofH is k, we have the inductive hypothesis

Q[H] =

n
∏

i=1

Q[Hi] (26)

which means:

P (H|Ŷ , X̂) =
∏n

i=1 P (Hi|Ĥ
i−1
1 , Ĥn

i+1, Ŷ , X̂) (27)

What we want to prove is that (i) and (ii) are still true for
E.

For (i), we want to prove

P (H,X|Ŷ ) = P (Hm
1 ,X|Ĥn

m+1, Ŷ )×
∏n

j=m+1 P (Hj |Ĥ
j−1
1 , Ĥn

j+1, Ŷ , X̂)
(28)

Note that we have

P (H,X|Ŷ ) = P (X|H, Ŷ )P (H|Ŷ ) (29)

We know that, in graphGY ,X , (H ⊥ {X}|Y ). This is
because if there is a d-connected path fromX to any node
of H in GY ,X , that path could not include any node inY ,
sinceY nodes can only be divergent nodes. Then that path
must go fromX to one node ofH, and this is impossible
because we assumeX is topologically after all nodes inH.



Based on rule 3, we have

P (H|Ŷ ) = P (H|X̂, Ŷ ) (30)

Then 29 can be rewritten as

P (H,X|Ŷ ) = P (X|H, Ŷ )P (H|X̂, Ŷ ) =

P (X|H, Ŷ ) ×
∏m

j=1 P (Hj |Ĥ
j−1
1 , Ĥn

j+1, Ŷ , X̂)×
∏n

j=m+1 P (Hj |Ĥ
j−1
1 , Ĥn

j+1, Ŷ , X̂)
(31)

Based on the induction assumption, we have

∏m

j=1 P (Hj |Ĥ
j−1
1 , Ĥn

j+1, Ŷ , X̂) = P (Hm
1 |Ĥn

m+1, Ŷ , X̂)
(32)

Just as before, we know that in graphGY,Hn
m+1,X ,

({Hm
1 } ⊥ {X}|{Y,Hn

m+1}). This is because if there
is a d-connected path fromX to any node ofHn

m+1 in
GY,Hn

m+1,X , that path could not go through any node in

Y , for all Y nodes can only be divergent nodes. Then that
path must go fromX to one node ofH. This is impossible
because we assumeX is topologically after all nodes inH.

With rule 3, we have

P (Hm
1 |Ĥn

m+1, Ŷ , X̂) = P (Hm
1 |Ĥn

m+1, Ŷ ) (33)

We now show that(X ⊥ {Hn
m+1}|Y,Hm

1 ) in graph
GY ,Hn

m+1
. If there is a d-connected path fromX to a node

Z in {Hn
m+1} in GY ,Hn

m+1
, that path could not go through

any node inY ; assumeZ ′ is the nearest observable node to
Z on that path,Z ′ ∈ {Hm

1 }. If there are some unobserv-
able nodes on that path betweenZ andZ ′, thenZ andZ ′

belong to the some c-component, (becauseZ ′ can only be
a convergent node on that path and the path gets intoZ),
which is impossible; a link fromZ to Z ′ is impossible be-
cause all links exiting fromZ are removed, and a link from
Z ′ to Z would not open the connection betweenZ ′ andZ,
becauseZ ′ is known. So,Z ′ does not exist. If there are
some unobservable nodes betweenX andZ, thenX and
Z belong to the same c-component in graphGE (because
there must be a divergent unobservable node path between
them, otherwise,X is topologically beforeZ), but this is
impossible becauseZ is in {Hn

m+1}. A link from X to Z
is also impossible, because we assumeX is topologically
after all nodes inH. So,X andZ are d-separated.

Based on rule 2, we have

P (X|H, Ŷ ) = P (X|Hm
1 ,Hn

m+1, Ŷ ) =

P (X|Hm
1 , Ĥn

m+1, Ŷ )
(34)

Putting 31, 32, 33, and 34 together, we have:

P (H,X|Ŷ ) =

P (X|H, Ŷ )
∏m

j=1 P (Hj |Ĥ
j−1
1 , Ĥn

j+1, Ŷ , X̂)×
∏n

j=m+1 P (Hj |Ĥ
j−1
1 , Ĥn

j+1, Ŷ , X̂) =

P (X|Hm
1 , Ĥn

m+1, Ŷ ) × P (Hm
1 |Ĥn

m+1, Ŷ )×
∏n

j=m+1 P (Hj |Ĥ
j−1
1 , Ĥn

j+1, Ŷ , X̂) =

P (Hm
1 ,X|Ĥn

m+1, Ŷ )×
∏n

j=m+1 P (Hj |Ĥ
j−1
1 , Ĥn

j+1, Ŷ , X̂)

(35)

Now let us consider the second part of this lemma.

From lemma 1, we have

Q[H] =
∑

X

Q(H,X) =
∑

X

Q[E] (36)

Our inductive assumption is thatH satisfies (ii), where
H(j) = {Vh1

, . . . , Vhj
} is the set of variables inH ordered

beforeVhj
(includingVhj

). Then eachQ[Hi],i = 1, . . . , n,
is given by

Q[Hi] =
∏

{j|Vhj
∈Hi}

Q[H(j)]

Q[H(j−1)]
(37)

where eachQ[H(j)], j = 0, 1, . . . , k, is given by

Q[H(j)] =
∑

h\h(j)

Q[H] (38)

From equation 36, we have

Q[E(j)] =
∑

{h,x}\h(j)

Q[E] =
∑

h\h(j)

Q[H] = Q[H(j)]

(39)
From (i) we have

Q[E] = Q[E(k+1)] = Q[Hm
1 ,X]

n
∏

i=m+1

Q[Hi] (40)

We have

Q[Hm
1 ,X] = Q[E(k+1)]/

n
∏

i=m+1

Q[Hi] (41)

The chain decomposition allows us to write

Q[Ek+1] =

k+1
∏

j=0

Q[E(j)]/Q[E(j−1)] (42)

and for eachm + 1 6 i 6 n,

Q[Hi] =
∏

{j|Vhj
∈Hi}

Q[H(j)]

Q[H(j−1)]
=

∏

{j|Vhj
∈Hi}

Q[E(j)]

Q[E(j−1)]

(43)



So, equation 41 can be rewritten as

Q[Hm
1 ,X] = Q[E(k+1)]/

∏n

i=m+1 Q[Hi] =
∏

{j|Vhj
∈Hm

1 ,X}
Q[E(j)]

Q[E(j−1)]

(44)

�

Putting the lemmas in this section together, we have

Theorem 2 The three inference rules, together with stan-
dard probability manipulations, are complete for determin-
ing identifiability of all effects ofPT (S).

Theorem 2 confirms Pearl’s conjecture that the three rules
are sufficient.

6 Conclusion

In this paper, we prove that the do-calculus method
of [Pearl, 1995] is complete, in the sense that, if a causal
effect is identifiable, there exists a sequence of applications
of the rules of the do-calculus that transforms the causal ef-
fect formula into one that only includes observational quan-
tities.

In fact the constructive proofs in the fifth section do not just
show us those rules are complete, but they also provide a
formal recursive algorithms to do calculation with rule 2
and 3 when we need lemma 1 or 2. Together with the algo-
rithm we gave in section four, we obtain a formal procedure
to solve the identifiability problem and compute causal ef-
fects with graphical rules 2 and 3. Clearly, this procedure is
complete too. We are not claiming that the procedure just
outlined is guided by the structure of the causal graph in a
way that would be easy to understand for a causal modeler:
this remains an issue to be studied further.

References

[Galles and Pearl, 1995] Galles, D. and Pearl, J. (1995).
Testing identifiability of causal effects. InProceedings
of UAI-95, pages 185–195.

[Huang and Valtorta, 2006a] Huang, Y. and Valtorta,
M. (2006a). On the completeness of an identi-
fiability algorithm for semi-Markovian models.
Technical report, University of South Carolina
Department of Computer Science. Available at
http://www.cse.sc.edu/ mgv/reports/tr2006-001.pdf.

[Huang and Valtorta, 2006b] Huang, Y. and Valtorta, M.
(2006b). A study of identifiability in causal Bayesian
network. Technical report, University of South Car-
olina Department of Computer Science. Available at
http://www.cse.sc.edu/ mgv/reports/tr2006-002.pdf.

[Kuroki and Miyakawa, 1999] Kuroki, M. and Miyakawa,
M. (1999). Identifiability criteria for causal effects of

joint interventions.Journal of the Japan Statistical So-
ciety, 29(2):105–117.

[Lauritzen, 2001] Lauritzen, S. (2001). Causal inference
from graphical models. In Barndorff-Nielsen, O. and
Klueppelberg, C., editors,Complex Stochastic Systems,
pages 63–107. Chapman and Hall, London.

[Pearl, 1993] Pearl, J. (1993). Graphical models, causal-
ity, and intervention. comments on: ‘Linear Dependen-
cies Represented by Chain Graphs’ by D. Cox and N.
Wermuth, and ‘Bayesian Analysis in Expert Systems’
by D.J. Spiegelhalter, A.P. Dawid, S.L. Lauritzen, and
R.G. Cowell. In Statistical Science, Vol. 8, 266-269.

[Pearl, 1995] Pearl, J. (1995). Causal diagrams for empir-
ical research.Biometrika, 82:669–710.

[Pearl, 2000] Pearl, J. (2000).Causality: Models, Reason-
ing, and Inference. Cambridge University Press, New
York.

[Pearl and Robins, 1995] Pearl, J. and Robins, J. M.
(1995). Probabilistic evaluation of sequential plans from
causal models with hidden variables. InProceedings of
UAI-95, pages 444–453.

[Robins, 1997] Robins, J. M. (1997). Causal inference
from complex longitudinal data. In Berkane, M., editor,
Latent Variable Modeling with Applications to Causal-
ity, Volume 120 of Lecture Notes in Statistics, pages 69–
117. SpringerVerlag, New York.

[Shachter, 1986] Shachter, R. D. (1986). Evaluating influ-
ence diagrams.Operations Research, 34(6):871–882.

[Shpitser and Pearl, 2006] Shpitser, I. and Pearl, J. (2006).
Identification of joint interventional distributions in
recursive semi-Markovian causal models. Techni-
cal report, Cognitive Systems Laboratory, Univer-
sity of California at Los Angeles. Available at
http://ftp.cs.ucla.edu/pub/statser/r327.pdf.

[Tian and Pearl, 2002a] Tian, J. and Pearl, J. (2002a). A
general identification condition for causal effects. In
Proceedings of the Eighteenth National Conference on
Artificial Intelligence (AAAI-02), pages 567–573.

[Tian and Pearl, 2002b] Tian, J. and Pearl, J. (2002b). On
the testable implications of causal models with hidden
variables. InProceedings of UAI-02, pages 519–527.

[Tian and Pearl, 2003] Tian, J. and Pearl, J. (2003). On the
identification of causal effects, Technical report 290-L.
Technical report, Cognitive Systems Laboratory, Uni-
versity of California at Los Angeles. Extended version
available at http://www.cs.iastate.edu/ jtian/r290-L.pdf.


