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Abstract

This paper is concerned with graphical criteria
that can be used to solve the problem of identify-
ing casual effects from nonexperimental data in a
causal Bayesian network structure, i.e., a directed
acyclic graph that represents causal relation-
ships. We first review Pearl’s work on this topic
[Pearl, 1995], in which several useful graphical
criteria are presented. Then we present a com-
plete algorithm [Huang and Valtorta, 2006b] for
the identifiability problem. By exploiting the
completeness of this algorithm, we prove that the
three basiao-calculus ruleghat Pearl presents
are complete, in the sense that, if a causal effect
is identifiable, there exists a sequence of applica-
tions of the rules of the do-calculus that trans-
forms the causal effect formula into a formula
that only includes observational quantities.

Introduction

to identify Pr(S) [Pearl and Robins, 1995]. Some fur-
ther study can be also found in [Robins, 1997] and
[Kuroki and Miyakawa, 1999]. In all these graphical cri-
teria, Pearl’'s three do-calculus (inference) rules ardnén t
core position. All the other graphical rules can be obtained
from them. Pearl conjectures that they are sufficient for
the identification problem, but the conjecture has remained
opened until now.

In the current decade, Tian and Pearl published a
series of papers related to the identification prob-
lem [Tian and Pearl, 2002a, Tian and Pearl, 2002b,
Tian and Pearl, 2003]. Their new methods combined the
graphical character of causal graph and the algebraic
definition of causal effect. They used both algebraic and
graphical methods to identify causal effects.

Based on their work, Huang and Valtorta proved that Tian
and Pearl’s identify algorithm for semi-Markovian graphs
is complete [Huang and Valtorta, 2006a]. Here, semi-
Markovian graphs are defined as causal graphs in which
each unobservable variable is a root and has exactly two ob-
servable children; semi-Markovian graphs are sometimes
defined differently. It has been shown that a transformation
between general Bayesian networks and semi-Markovian

This paper focuses on graphical criteria used to infer thgraphs, defined, e.g., in [Tian and Pearl, 2002b], pre-
strength of cause-and-effect relationships from a causalgpes identifiability [Huang and Valtorta, 2006b].

Bayesian network [Pearl, 1995, Pearl, 2000], which is ann [Huang and Valtorta, 2006b], the authors also present
acyclic directed graph representing nonexperimental datgn algorithm on general causal Bayesian networks and
and causal relationships. prove that the algorithm is complete, which means a causal

In the 1990s, some graphical conditions were given to2ffect s identifiable if and only if the given algorithm runs
show whether the causal effect, that is, the joint respons@uccessfully and returns an expression that is the target
of any setS of variables to interventions on a sgt ~ causal effectin terms of estimable quantities.

of action variables, denoted a8 (S)*, is identifiable e have recently learned that the sufficiency of the three
or not. Those results are summarized in [Pearl, 2000]inference rules (with some minor technical limitations$ ha
For example, “back-door” and “front-door” criteria and peen proved in [Shpitser and Pearl, 2006]. Our indepen-

do-calculus [Pearl, 1995]; graphical criteria to identify gently obtained result applies to general causal Bayesian
Pr(S) whenT is a singleton [Galles and Pearl, 1995]; networks.

special graphical conditions under which it is possible _ _ )
In this paper, we review the graphical rules and the com-

plete identify algorithm of [Huang and Valtorta, 2006b].
We consider their relationship and prove that the identify

The notations P(s|do(t)) and P(s|f) are
in [Pearl,2000], and the notationP;(s) is
in [Tian and Pearl, 2002b, Tian and Pearl, 2003].

used
used



algorithm can be obtained by using the three inferences given by:
rules. Because of the completeness of the identify algo- i )
rithm, our proof shows that the three inference rules arep, () = { [Tv,ev\r Pvilpa(Vi)) v consistent W'ﬂit
sufficient, which confirms Pearl’s conjecture. In the next v inconsistent witht
section we give out the definitions and notations that we use @)
in this paper. In section three, we review some graphicaiye note explicitly that the post-intervention distributio
rules for identification problem. We discuss the completept(q,) is a probability distribution.

identify algorithm in section four and prove the sufficiency

of the three inference rules in section five. Conclusions ardVhen all the variables i/ are observable, since all
included in section six P(v;|pa;) can be estimated from nonexperimental data, as

just indicated, all causal effects are computable. But when
some variables i/ are unobservable, things are much

2 Definitions and Notations more complex.

Let V andU stand for the sets of observable and unobserv-
able variables in grap&' respectively, thati¥ = N U U.

The observed probability distributioR(n) = P(N = n),

is a mixture of products:

A causal Bayesian networdonsists of a DAG~ over a set

of variablesV = {V1,...,V,}, called acausal graphand

a probability distribution ori/. The interpretation of this
kind of model consists of two parts. One is the probabilistic
interpretation, which says that each variable in the graph i
independent of all its non-descendants given its direct par P(n) = Z H P(vilpa(Vi)) H P(vjlpa(Vj)) (4)
ents; the other is the causal interpretation, which sayts tha U VieN Vict

the directed edges ifi represent causal influences between ) ) S

the corresponding variables [Pearl, 2000, Lauritzen, 001 The post-intervention distributiof; () = Pr—;(N = n)

is defined as:
We useV (G) to show thall/ is the variable set of grap®.
If it is clear in the context, we also udé directly. Capi- v [v.enyr Plvilpa(V)) x
tal characters, liké/, are used for variable sets; the lower Pyn) = [y, ev P(vjlpa(Vy)) )
characters, like, stand for the instances of variable ¥&t n consistent witht
Capital character likeX, Y andV; are also used for single 0 ninconsistent witht

variable, and their values can be y andv;. Normally,

we useF' (V) to denote a function on variable st An  Sometimes what we want to know is not the post-
instance of this function is denoted a§V')(V = v), or  intervention distribution for the wholéV, but the post-
F(V)(v), or just F(v). Because all the variables are in intervention distributionP;(s) of an observable variable
the causal graph, we sometimes use node and node set isHbsetS C N, For those two observable variable gét
stead of variable and variable set. We i3€'V;) to denote  andT’, P,(s) = Pr—(S = s) is given by:

parent node set of nodé in graphG andpa(V;) as an in-

stance of variable séa(V;). Ch(V;) is V;'s children node 2 viemsnr 2u Hvienyr Pvilpa(Vi))
set;ch(V;) is an instance o h(V;). Pi(s) = [y, ev Plvjlpa(Vy))

de e . . s consistent witht
Based on the probabilistic interpretation of causal Bayesi 0 sinconsistent witht
network, we have that the joint probability functiét{v) = (6)
P(vy,...,v,) can be factorized as

The identifiability question is defined as whether the causal
effect Pr(S), that is all P,(s) given by (6), can be deter-
P(w) =[] Plpa(Vi)) (1)  mined uniquely from the distributio®(N = n) given
VeV by (4), and thus independent of the unknown guantities
P(v;|pa(V;))s, whereV; € U or there are som&; €
Pa(V;),V; €U.
The causal interpretation of Markovian model enables us to ) o o
predict intervention effects. Here, intervention meamsso e give out a formal definition ofdentifiability below,
kind of modification of factors in product (1). The simplest Which follows [Tian and Pearl, 2003].
kind of intervention is fIXII’]g a subsét g V of variables A Markovian model consists of four elements
to some constants denoted bylo(T' = t) or justdo(t),
and then the post-intervention distribution M =< N,U,Gyuu, P(vilpa(V;)) >

where, ()N = {Ny,..., N, } is a set of observable vari-
Pr(V)(T =t,V =v) = P(v) (2) ables; () U = {Uy,...,U,} is a set of unobservable



variables; (iii) G is a directed acyclic graph with nodes We conclude this section by giving several simple graphical
corresponding to the elements Bf = N U U; and (vi)  definitions that will be needed later.
P(vi|lpa(V;)), i = 1,...,m + n, is the conditional proba-

bility of variable V; € V" given its parentsa(V;))in G. For a given set of variableS, we define thedirected un-

observable parent seDUP(C). A nodeV belongs to
DU P(C) if and only if both of these two conditions are
satisfied: i)V is an unobservable node; ii) there is a di-
rected path fronV" to an element of”, and all the internal
nodes on that path are unobservable nodes.

Definition 1 The causal effect of a set of variablEn a
disjoint set of variablesS is said to be identifiable from
a graphG if all the quantitiesP;(s) can be computed
uniquely from any positive probability of the observed vari
ables — that is , ifPM* (s) = PM2(s) for every pair of  For a given observable variable 6t C N, let G de-
modelsM; and My with PM1(n) = PMz2(n) > 0 and note the subgraph off composed only of variables in
G(My) = G(Ms). C U DUP(C) and all the links between variable pairs in
C U DUP(C). Let An(C) be the union of” and the set
This definition means that, given the causal gréghthe  of ancestors of the variables @, and letDe(C) be the
quantity P;(s) can be determined from the observed distri- union of C and the set of descendents of the variables.in
bution P(n) alone. An observable variable sét C N in graphG is called an
ancestral setif it contains all its own observed ancestors,

Normally, when we talk about and7’, we think they are ie.,S = An(S) N N.

both observable variable subsets®fand mutually dis-
joint. So,s is always consistent within Equation 6.

We are sometimes interested in the causal effect on a sg’t Graphical Criteria

of observable variableS due to all other observable vari-

ables. In this case, keeping the convention tNastands In general, to solve the identifiability problem graphigall

for the set of all observable variabl&s,= N\S. For con- there are two things we need to know. The firstis a set of in-

venience and for uniformity with [Tian and Pearl, 2002b], ference rules, which can transfer causal effect expression

we define to equivalent expressions. The second is a sound and com-
QIS] = Pxs(S) @) plete algorithm based on those rl_JIes. Here completg means

that, for any causal effect question, we can use this algo-

and interpret this equation as stating tG46] is the causal rithm to answer it, either by generating a final expression

effect of N\S on S. just involving ordinary conditional probabilities, whiga

assessable by empirical observation, or by reporting that

We define the-component relatioon the unobserved vari- the effect is unidentifiable.

able setU of graphG as follow: for anyU; € U and

U, € U, they are related under the c-component relation ifUsing causal Bayesian network, Pearl gives two graph-
and only if at least one of conditions below is satisfied:  ical criteria to check identifiability, and called them
back-door criterionandfront-door criterion[Pearl, 1993,
Pearl, 1995]. Following these results, in [Pearl, 1995]
(i) U; and U,y are both parents of the same observableand also in his boolCausality [Pearl, 2000], Pearl pro-
node, poses three inference rules (ttle-calculus rulefthat al-

low transformations between sentences concerning inter-
ventions and observations. The aim of such rules is to lead
to a calculus of interventions and observations on causal
Observe that the c-component relationlinis reflexive, = Bayesian networks, so that, whenever possible, sentences
symmetric and transitive, so it defines a partitionldf  that involve interventions and observations may be trans-
Based on this relationship, we can therefore divideto  formed into sentences that involve only observations.|Pear
disjoint and mutually exclusive c-component related parts proves that the threéo-calculus rules are sound and con-
jectures that they are sufficient. We present these three in-

A c-componenbf variable setV’ on graphG consists of . S -
. X ference rules below. We begin by reviewing several defini-
all the unobservable variables belonging to the same c-

component related part @& and all observable variables tions from [Pearl, 2000].

that have an unobservable parent which is a member of thatet X, Y, Z be arbitrary disjoint sets of nodes in a causal
c-component. According to the definition of c-componentgraphG. We denote byG'+ the graph obtained by delet-
relation, it is clear that an observable node can only appeang fromG all arrows pointing to nodes i . Likewise, we

in one c-component. If an observable node has no unobdenote byG x the graph obtained by deleting fra@hall ar-
servable parent, then itself is a c-componentonThere-  rows emerging from nodes i¥. To represent the deletion
fore, the c-components form a partition on all of the vari- of both incoming and outgoing arrows, we use the notation
ables. G,

(i) there is an edge betweén andU.,

(ii) both U; and U, are in the c-component relation with
respect to another nodé& € U.



The expressiorP(y|#, z) = P(y, z|2)/P(z|%) stands for 4 A Sound and Complete Identification

the probability ofY’ = y given thatX is held constant Algorithm

at z and that (under this conditiorJ = = is observed.

Our notation for this probability i#; (y|2). In this section, |n this section we present a complete identification algo-
we use Pearl’s notation in [Pearl, 2000] when quoting hisrithm.

results directly.
Y For a given model (causal Bayesian network) with graph

Here are the three inference rules of proposed calculugy, \We begin with removing all unobservable nodes
Proofs of soundness can be found in [Pearl, 1995]. that have no observable descendants. From the def-

Theorem (Rules of Do-Calculys[Pearl, 2000] Let( be initions in ;ection two, it is easy t.o prpye.t'hat this
the directed acyclic graph associated with a causal modeﬂansformatlon does not change the identifiability of the
and letP() stand for the probability distribution induced by model [Huang and Valtorta, 2006a].

that model. For any disjoint subsets of variableg”, 7, Below are two lemmas proved by Tian and Pearl
andW we have the following rules. in [Tian and Pearl, 2002b].

Rule 1 (Insertion/deletion of observations) Lemmal LetW C C C N. If W is an ancestral set in

P(yli, z,w) = P(yli,w) if (Y LZ|X,W)e, (8) Corthen S = o) a
Rule 2 (Action/observation exchange) Vieeaw
. . ) Lemma?2 Let H C N, and we have c-components
P(y|, 2, w) = P(y|&, z,w) if (Y L Z|X, W)ey, (9) Hi,...,H] inthe sub graphGy, H; = H/ N H, 1 <
i < n, then

Rule 3 (Insertion/deletion of actions) (i) Q[H] can be decomposed as

P(y|z, z,w) = P(y|z,w) if(Y L Z|X, W)GY,W n
(10 QH] = [ olH) (12)
whereZ (W) is the set ofZ-nodes that are not ancestors of i=1
anyW-node inG.
i (i) Each Q[H;] is computable frond)[H], in the following
In [Pearl, 2000], the author shows that both his back-

au ] way. Letk be the number of variables i#/, and let a
door and front-door criteria can be obtained from thesecopological order of variables it beV, < <V in
L <. .

three rules. In [Galles and Pearl, 1995], the authors giV%H' LetHY) = {Vi,....,V,.} be the set of variables in
out a graphical criterion to identify the causal effect be- ;; ordered beford/, _1’( inc;Iuding Vi) j=1,....k and
tween a singleton variabl& and a set of variable¥'. ©) _ ! Lo
Their algorithm works in time polynomial on the num- H") = ¢. Then eactQ[H;],i = 1,...,n, is given by

ber of variables in the graph. This result is also showed Q[HW]

in [Pearl, 2000]. In [Pearl and Robins, 1995], the authors QU = H m (13)
extend the results of [Galles and Pearl, 1995] to the case {4IVh; €H:}

whereT stands for a compound action, consisting of sev-

eral atomic interventions that are implemented either conwhere eaciQ[H(j>],j =0,1,...,k, is given by

currently or sequentially. They establish a graphicakerit
rion for recognizing when the effect of onY is identi- ,
fiable and, in case the diagram satisfies this criterion, they Q[H(])} - Z Q]
provide a closed-form expression for the distribution of an PARE)
outcome variableS under the plan defined by the com-
pound action setting’ = ¢. Following Pearl and Robins’
work, [Kuroki and Miyakawa, 1999] present an extension
of the front door criterion.

(14)

Assume thatV(G) is partitioned intoNy, ..., Ny in G,
where eachV; belongs to a c-component, and that we have
c-componentssy, ..., Sy in graphGs, S; = S; N S, 1 <
j < 1. Based on lemma 2, for any model on graghwe
All the criteria cited above are based the three inferencéave
rules. Therefore, the proof of sufficiency of the three rules

l
that is provided in this paper paves the road for proofs of QIS = 1:[1 QLS;] (15)
sufficiency of other graphical algorithms in this area. 7=

2\We explicitly note that the algorithm given in Section 4.3.1 Because eachi;,j = 1,...,l, which is a c-component in

of [Pearl, 2000], while inspired by the do-calculus, is not com- G's, IS @ subgraph oz, it must be included in onev;,
plete, as shown in [Tian and Pearl, 2003]. N; € {N1,..., Ny}



The rest of this section is devoted to three algorithms.
Algorithm Computing Q[S]

INPUT: S C N

OUTPUT: Expression fo€[S] or FAIL

Let N(G) be partitioned intoNy, ..., Ny, each of them
belonging to a c-components @, and .S be partitioned

into Sy, . ..,.S;, each of them belonging to a c-components

inGg,andS; C N;. We can
i) Compute eacld)[V;] with lemma 2

ii) Compute eachf)[S,] with Identify algorithm below with
C=5;T=N;Q = Q[Nj]

iii) If in i), we get Fail as return value of Identify algoim
of anysS;, then@[S] is unidentifiable in grapld; elseQ[S]
is identifiable and equal tﬂgzl Q[S;] (by lemma 2)

Algorithm Identify ( C,T,Q)

INPUT:C C T C N, Q = Q[T], Gr and G¢ are both
composed of one single c-component

OUTPUT: Expression fo€)[C] in terms of@ or FAIL
LetA = An(C)g, NT

i) If A= C, outputQ[C], which is equal td> -, - Q[T] by
lemma 1

ii) Else if A = T, output FAIL
ii)Else (ifC c AcCT)

1. ComputeQ[A] = > 7\ 4 Q[T] with lemma 1

2. Assume that g4, C' is contained in a c-component
T, Ty =T/ NA.

3. Compute)[T1] from Q[A] with lemma 2
4. Output IdentifyC,T1,Q[T1])

To computePr(S), we can rewrite it as:

P(s)= Y  Pm\t)y= > QIN\T] (16)

N\(TUS) N\(TUS)

Let D = An(S)gy» N N. D is an ancestral set
in graphGn\7r. Lemma 1 allows us to conclude that
2 n(rup) QIN\T] = Q[D]. Therefore, we have:

P(s)=3)_ > QIN\I]=) QD] (17
D\S N\(TUD) D\S
Algorithm Computing Pr(S)
INPUT: two disjoint observable variable sefsT ¢ N
OUTPUT: the expression faPr(.S) or FAIL

. LetD = An(S)g ., N N

1 Gn\T

2. Use the Computin@[.S] algorithm to computé)[D]
3. If the algorithm returns FAIL, then output FAIL
4

. Else, output’r(S) = > p\ 5 Q[D]
The authors, in [Huang and Valtorta, 2006b], prove that:

Theorem 1 The above algorithm for computingr(S) is
sound and complete.

Note that the soundness of the algorithms above can be ob-
tained from lemma 1, 2 and standard probability manipula-
tions. We will exploit this property in the next section.

5 Completeness of the Three Inference
Rules of Pearl’'s Do-Calculus

In this section, we prove the three inference rules are com-
plete. As already mentioned, the soundness of the three
rules is proved in [Pearl, 1995]. Here we just need to prove

their sufficiency.

Note that the sound and complete algorithm for computing
Pr(S) in the last section is obtained by using lemma 1 and
lemma 2. If we can show that lemma 1 and lemma 2 can
be obtained through just using the three inference rules and
standard probability manipulations, then the sufficientty o
the three rules is proved.

We begin with the following observation:

Lemma 3 If any of the three rules can be used on a model
with graphG, it can also be used on a model that is ob-
tained by removing all unobservable nodes that have no
observable descendants.

Proof. This follows from the well-known result that barren
nodes can be removed without changing the d-separation
relation for the other nodes [Shachter, 1988].

We also have:
Lemma 4 Rule 1 follows from rule 2 and rule 3.

Proof. Since removing an edge can only d-separate more
nodes in a Bayesian network, the conditions for the ap-
plication of rules 2 and 3 are satisfied if the condition
for rule 1 is satisfied. We can replace the application of
rule 1 by the application of rule 2 followed by the appli-
cation of rule 3. In detail, by applying rule 2, we have
that P(y|Z, z,w) = P(y|z, 2, w). By applying rule 3, we
have thatP(y|z, 2, w) = P(y|Z,w). So,P(y|%,z,w) =
P(y|z,w), which is the result of applying rule L]

We now show that lemma 1 and lemma 2 can be obtained

through just using rule 2, rule 3 and standard probabil-
ity manipulations. For convenience, we defin@ =



Vi, Vo, ..., VY andVy™ = {V4, Vs, ...,V }. Here,V;,  thattopologicallyX is beforeX; in graphG ¢, which could
1 < i < m can be any variable or variable set; in the casenot be true. So, that kind of path does not exist.
of sets, the comma should be understood as the union o

FUsing rule 3 we obtain
erator.

kix\ k¥ %
Lemma 5 Lemma 1 follows from rule 3. PXTY) = P(X{JY, X) (24)

Proof. We recall the definition of ancestral set. An observ-S0, what we need to prove is just

able variable se6 C N in graphG is called anances- A

tral set if it contains all its own observed ancestors, i.e., Y PX[XFY) =1 (25)
S = An(S) N N. Becausd’ is a DAG, G¢, which in- X

clude all nodes irC' U DUP(C)), is a DAG also. IfiV is

an ancestral set ii, then there is a topological order of This is obvious, sincé, is a probability distribution]
nodes inG ¢ that starts with all the nodes I and contin-

ues with the other nodes. W = N, the lemmais trivially ~Lemma 6 Lemma 2 follows from rule 2 and rules 3.
true. Otherwise, consider the first node, $ayin the topo-

logical order just described and that isGhbut not in’.  Proof. WhenH just includes one observable variable, (i)
So, what we need to prove is:Wif ¢ N, nodeX € N\W,  and(ii)inlemma 2 are clearly true.

C =W U {X}, andiW is an ancestral set ific, then Assume (i) and (ii) are still true for any observable varéabl

setH C N, where the size off is less than or equal to
Z Q[C] = QW] (18) integerk.
X
Consider an arbitrary observable variable Beif sizek +
Recall that for anys C N, by definitionQ[S] = P s(S). 1, and assume variabl® € E is topologically after all

So, equation 18 can be rewritten as the variables ind = E\{X} in graphG. AssumeH U
DU P(H) can be divided into c-componeHt;, ..., H, in

ZPN\C(C) = Py (W) (19) graphGy, andH; = HiNH,1 < i < n. LetY =

5% N\E. Also assumeX andHy, Ho, ..., H,,,0 < m < n

construct a c-component in graghe. (If m = 0, thenX
AssumelW = {X1,..., X} = XF, Y = N\(WU{X}), is a c-component by itself.)
where, unlikeX, Y is a variable set here. Equation 19 sjnce the size off is k, we have the inductive hypothesis

becomes . .
Py (X7, X) =P X7 20 n
2 Pr(X5.X) = Prix(Xh) (20) aim =TTl 06

;Jrsé)l\r;g it:e graphical language Pearl used, what we want tevhich means:

A A A % X = /,.L N 3 1_1 g n y X 27
S P& = Py X) @y PET =l PURIHT Hia Y X0 @)
X What we want to prove is that (i) and (ii) are still true for
E.
We know that _
. . . For (i), we want to prove
Yox P(XF, X|Y) =Y P(X|XT,Y)P(X]|Y)

= (X x P(XIXE V) P(XEY) P(H,X|V) = P(H" X|Hj\, V)% g
(22) [ POH,|H{™ HP Y, X)
Now, we use rule 3 of the do-calculus. Note that we CaN\ote that we have
apply this rule, because fd?(X¥|Y"), we have
P(H,X|Y) = P(X|H,Y)P(H|Y) (29)

{ X1} L X]Y) (23)

Gy x
We know that, in graptGy <, (H L {X}[Y). Thisis

This is because in grapiy +, if there is a d-connected because if there is a d-connected path fr&¥nto any node

path from X to a nodeX;, 1 < i <k, that path could of H in Gy ¥, that path could not include any nodeln

not include any node iy, becaus&” nodes can only be sinceY nodes can only be divergent nodes. Then that path

divergent nodes and is given. If that path just goes from must go fromX to one node ofif, and this is impossible

X through some unobservable nodesXig it would mean  because we assunigis topologically after all nodes if/.



Based on rule 3, we have

. . P(H,X|Y) = 4
. Hj:m+1 P(AHj‘H{A H]n+1aY X)
Then 29 can be rewritten as p(nX|H1 ’H;zH?Y)lX P(H" |Hm+1,Y)>< (35)
: , - [ s PULIH] Y HY LY X) =
P(H,X[Y)=P(X|HY)P(H|X,Y) = P(H" ,X\H,’;LJFUY)X
" ri—1 frn o n n A
P(X|H, ) <TI0, f(H G HE LY X) % 1y PCHG | H{TY HE LY, X)
Hg_m+1 (H |HJ H_7+17Y7X)

] ) } (31)  Now let us consider the second part of this lemma.
Based on the induction assumption, we have
From lemma 1, we have

" P(H;|H]TU HP,LYLX H™ Y, X
[ P(H;|H{ HYyy ) = P(H{"|H}, (32)) OlH] = ZQ(H,X) _ ZQ[E] (36)
Just as before, we know that in graphiypzw— .,
({H7} L {X}{Y,H%,.}). Thisis because |f there Our inductive assumption is thdf satisfies (i), where
is a d-connected path fronX to any node ofH”.,, in  HY = {Vi,,..., Vi, } isthe setof variables iff ordered
Gy x» that path could not go through any node in beforeV, (mcludmth ). Theneacl®Q[H;]i =1,...,n
Y, forall Y nodes can only be divergent nodes. Then thafS 9Ven by
path must go fromX to one node of{. This is impossible Q[H( )]
because we assuniéis topologically after all nodes ifl. Q[H;) = H QUHG- 1)] (37)
With rule 3, we have {31Vh; €Hi}
R where eactQ[H9)], j = 0,1,...,k, is given by
(Hl ‘ ’rrL-‘,—l?Y?X) (Hl ‘ TVL+17Y) (33)

H(J) Z QIH (38)

We now show thatX L {H;  ,}|Y,H") in graph B\

Gy g» - Ifthere is a d-connected path fraf to a node
) m+1

. . From equation 36, we have
Zin{H}  ,}in G?HZ;H' that path could not go through

any node inY’; assumeZ’ is the nearest observable node to QIEV] = Z QE] = Z Q[H] = Q[HY)
Z on that pathZ’ € {H"}. If there are some unobserv- {h,a}\h®) R\h()
able nodes on that path betwe#rand Z’, thenZ and Z’ (39)

belong to the some c-component, (becafiéean only be  From (i) we have
a convergent node on that path and the path gets4ito

which is impossible; a link fron¥ to Z’ is impossible be- Q[E] = QIE®+V] = Q[HT", X H Q[H;] (40)
cause all links exiting fron¥ are removed, and a link from

i=m-+1
Z' to Z would not open the connection betweghand 7, !
becauseZ’ is known. So0,Z’ does not exist. If there are We have
some unobservable nodes betweérand Z, then X and
Z belong to the same c-component in grapp (because QIH", X] = (k+1) H Q[H. (41)
there must be a divergent unobservable node path between immt1

them, otherwiseX is topologically beforeZ), but this is _ N )

impossible becausg is in {H7.,,}. Alink from X to Z The chain decomposition allows us to write

is also impossible, because we assukhés topologically 1

after all nodes ir{. So,X andZ are d-separated. QIE"1] = H QIED]/Q[EU—D] (42)
7=0

Based on rule 2, we have

and for eachn + 1 < i < n,

P(X|H7}A/) (X‘Hl ’ +1>Y) =
m 7 " (34) 0 H(a) QIEV)
P(X|H", m+1ay) Q[H;) = H [ ] - H %
, QHU-V] QEV-Y]
{41V, €Hi} {41V, €Hi}
Putting 31, 32, 33, and 34 together, we have: (43)



So, equation 41 can be rewritten as joint interventions.Journal of the Japan Statistical So-

iety, 29(2):105-117.
QUH, X] = QIE®D] /T,y QUEL] = ciety, 29(2)

L L(”l] (44)  [Lauritzen, 2001] Lauritzen, S. (2001). Causal inference
UIVi; €. X3 QIEG-1] from graphical models. In Barndorff-Nielsen, O. and
O Klueppelberg, C., editor&Gomplex Stochastic Systems

) o . pages 63—-107. Chapman and Hall, London.
Putting the lemmas in this section together, we have

[Pearl, 1993] Pearl, J. (1993). Graphical models, causal-
Theorem 2 The three inference rUleS, together with stan- |ty, and intervention. comments on: ‘Linear Dependen_
dard probability manipulations, are complete for determin  ¢jes Represented by Chain Graphs’ by D. Cox and N.
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