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Abstract

This paper addresses the problem of identifying causal effects
from nonexperimental data in a causal Bayesian network, i.e.,
a directed acyclic graph that represents causal relationships.
The identifiability question asks whether it is possible to com-
pute the probability of some set of (effect) variables given
intervention on another set of (intervention) variables, in the
presence of non-observable (i.e., hidden or latent) variables.
It is well known that the answer to the question depends on
the structure of the causal Bayesian network, the set of ob-
servable variables, the set of effect variables, and the set of
intervention variables. Our work is based on the work of
Tian, Pearl, Huang, and Valtorta (Tian & Pearl 2002a; 2002b;
2003; Huang & Valtorta 2006a) and extends it. We show that
the identify algorithm that Tian and Pearl define and prove
sound for semi-Markovian models can be transfered to gen-
eral causal graphs and is not only sound, but also complete.
This result effectively solves the identifiability question for
causal Bayesian networks that Pearl posed in 1995 (Pearl
1995), by providing a sound and complete algorithm for iden-
tifiability.

Introduction
This paper focuses on the feasibility of inferring the strength
of cause-and-effect relationships from a causal graph (Pearl
1995) (Pearl 2000), which is an acyclic directed graph ex-
pressing nonexperimental data and causal relationships. Be-
cause of the existence of unmeasured variables, the fol-
lowing identifiability questions arise: “Can we assess the
strength of causal effects from nonexperimental data and
causal relationships? And if we can, what is the total causal
effect in terms of estimable quantities?”

The questions just given can partially be answered us-
ing graphical approaches due to Pearl and his collaborators.
More precisely, graphical conditions have been devised to
show whether a causal effect, that is, the joint response of
any set S of variables to interventions on a set T of action
variables, denoted PT (S) is identifiable or not. (Pearl and
Tian used notation P (s|do(t)) and P (s|t̂ ) in (Pearl 2000)
and Pt(s) in (Tian & Pearl 2002b), (Tian & Pearl 2003).)
Those results are summarized in (Pearl 2000). For example,
“back-door” and “front-door” criteria and do-calculus (Pearl
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1995); graphical criteria to identify PT (S) when T is a sin-
gleton (Galles & Pearl 1995); graphical conditions under
which it is possible to identify PT (S) where T and S are,
possibly non-singleton, sets, subject to a special condition
called Q-identifiability (Pearl & Robins 1995).

Recently, Tian and Pearl published a series of papers re-
lated to this topic (Tian & Pearl 2002a; 2002b; 2003). Their
new methods combined the graphical character of causal
graph and the algebraic definition of causal effect. They
used both algebraic and graphical methods to identify causal
effects. The basic idea is, first, to transfer causal graphs to
semi-Markovian graphs (Tian & Pearl 2002b), then to use
Algorithm 2 in (Tian & Pearl 2003) (henceforth, the Identify
algorithm) to calculate the causal effects we want to know.
Here, semi-Markovian graphs are defined as causal graphs
in which each unobservable variable is a root and has ex-
actly two observable children. Semi-Markovian graphs are
sometimes defined differently.

Tian and Pearl’s method was a great contribution to this
study area. But there were still some problems left. First,
even though we believe, as Tian and Pearl do, that the semi-
Markovian models obtained from the transforming Projec-
tion algorithm in (Tian & Pearl 2002b) are equal to the orig-
inal causal graphs, and therefore the causal effects should be
the same in both models, still, to the best of our knowledge,
there was no formal proof for this equivalence. Second, the
completeness question of the Identify algorithm in (Tian &
Pearl 2003) was still open, so that it was unknown whether
a causal effect was identifiable if that Identify algorithm
failed.

Following Tian and Pearl’s work, Huang and Valtorta
(2006a) solved the second question. They showed that the
Identify algorithm 2 Tian and Pearl used on semi-Markovian
models is sound and complete. A similar result was also ob-
tained by Shpitser and Pearl(2006) independently.

In this paper, we focus on general causal graphs directly
and our proofs show, as Tian and Pearl pointed out, that Al-
gorithm 2 in (Tian & Pearl 2003) can also be used in general
causal models, and we prove that the algorithm is sound and
complete.

In the next section we present the definitions and nota-
tions used in this paper. In section three, we repeat some
important lemmas that will be used to support the identify
algorithm. We prove that an algorithm for a special kind
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of identifiability question, called Q[S], is sound and com-
plete in section four. Based on this result, in section five, we
present a version of the identify algorithm that can work on
any causal graph. We also prove that this algorithm is sound
and complete. Conclusions are in section six.

Definitions and Notations
Markovian models are popular graphical models for encod-
ing distributional and causal relationships. A Markovian
model consists of a DAG G over a set of variables V =
{V1, . . . , Vn}, called a causal graph and a probability distri-
bution over V , which has some constraints on it that will be
specified precisely below. We use V (G) to show that V is
the variable set of graph G. If it is clear in the context, we
also use V directly. The interpretation of such kind of model
consists of two parts. The first one says that each variable in
the graph is independent of all its non-descendants given its
direct parents. The second one says that the directed edges
in G represent causal influences between the corresponding
variables. A Markovian model for which only the first con-
straint holds is called a Bayesian network. This explains
why Markovian models are also called causal Bayesian net-
works. A causal Bayesian network in which each hidden
variable is a root node with exactly two observed children is
called a semi-Markovian model.

In this paper, capital characters, like V , are used for vari-
able sets; the lower characters, like v, stand for the instances
of variable set V . Capital character like X , Y and Vi are also
used for single variable, and their values can be x, y and vi.
Normally, we use F (V ) to denote a function on variable set
V . An instance of this function is denoted as F (V )(V = v),
or F (V )(v), or just F (v). Because all the variables are in
the causal graph, we sometimes use node or node set instead
of variable and variable set.

As in most work on Bayesian networks and, more gen-
erally, on directed graphs, we use Pa(Vi) to denote parent
node set of variable Vi in graph G and pa(Vi) to denote an
instance of Pa(Vi). Ch(Vi) is Vi’s children node set; ch(Vi)
is an instance of Ch(Vi).

Based on the probabilistic interpretation, we get that the
joint probability function P (v) = P (v1, . . . , vn) can be fac-
torized as

P (v) =
∏

Vi∈V

P (vi|pa(Vi)) (1)

The causal interpretation of Markovian model enables us
to predict the intervention effects. Here, intervention means
some kind of modification of factors in product (1). The
simplest kind of intervention is fixing a subset T ⊆ V of
variables to some constants t, denoted by do(T = t) or just
do(t), and then the post-intervention distribution

PT (V )(T = t, V = v) = Pt(v) (2)

is given by:

Pt(v) =
{ ∏

Vi∈V \T P (vi|pa(Vi)) v consistent with t
0 v inconsistent with t

(3)
We note explicitly that the post-intervention distribution
Pt(v) is a probability distribution.

When all the variables in V are observable, since all
P (vi|pa(Vi)) can be estimated from nonexperimental data,
as just indicated, all causal effects are computable. But when
some variables in V are unobservable, things are much more
complex.

Let N(G) and U(G) (or simply N and U when the graph
is clear from the context) stand for the sets of observable
and unobservable variables in graph G respectively, that is
V = N ∪ U . The observed probability distribution P (n) =
P (N = n), is a mixture of products:

P (n) =
∑

U

∏

Vi∈N

P (vi|pa(Vi))
∏

Vj∈U

P (vj |pa(Vj)) (4)

The post-intervention distribution Pt(n) is defined as:

Pt(n) =






∑
U

∏
Vi∈N\T P (vi|pa(Vi))×∏

Vj∈U P (vj |pa(Vj))
n consistent with t

0 n inconsistent with t

(5)

Sometimes what we want to know is not the post-
intervention distribution for the whole N , but the post-
intervention distribution Pt(s) of an observable variable
subset S ⊂ N . For those two observable variable set S
and T , Pt(s) is given by:

Pt(s) =






∑
Vl∈(N\S)\T

∑
U

∏
Vi∈N\T P (vi|pa(Vi))×∏

Vj∈U P (vj |pa(Vj))
s consistent with t

0 s inconsistent with t
(6)

We give out a formal definition of identifiability below,
which follows (Tian & Pearl 2003).

A Markovian model consists of four elements

M =< N,U,GN∪U , P (vi|pa(Vi)) >

where, (i) N is a set of observable variables; (ii) U is a set
of unobservable variables; (iii) G is a directed acyclic graph
with nodes corresponding to the elements of V = N ∪ U ;
and (vi) P (vi|pa(Vi)), is the conditional probability of vari-
able Vi ∈ V given its parents Pa(Vi))in G.

Definition 1 The causal effect of a set of variables T on a
disjoint set of variables S is said to be identifiable from a
graph G if all the quantities Pt(s) can be computed uniquely
from any positive probability of the observed variables —
that is, if PM1

t (s) = PM2
t (s) for every pair of models M1

and M2 with PM1(n) = PM2(n) > 0 and G(M1) =
G(M2).

This definition captures the intuition that, given the causal
graph G, in an identifiable model, the quantity Pt(s) can be
determined from the observed distribution P (n) alone.

Normally, when we use S and T , we think they are both
observable variable subsets of N and mutually disjoint. So,
s is always consistent with t in 6.

We are sometimes interested in the causal effect on a set of
observable variables S due to all other observable variables.
In this case, keeping the convention that N stands for the
set of all observable variables and T stands for the set of
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variables whose effect we want to compute, T = N\S, for
convenience and for uniformity with (Tian & Pearl 2002b),
we define

Q[S] = PN\S(S) (7)

and interpret this equation as stating that Q[S] is the causal
effect of N\S on S.

We define the c-component relation on the unobserved
variable set U of graph G as: For any U1 ∈ U and U2 ∈ U ,
they are related under the c-component relation if and only
if at least one of conditions below is satisfied:
(i) there is an edge between U1 and U2

(ii) U1 and U2 are both parents of the same observable node
(iii) both U1 and U2 are in the c-component relation with re-
spect to another node U3 ∈ U .
Observe that the c-component relation in U is reflexive,
symmetric and transitive, so it defines a partition of U .
Based on this relationship, we can therefore divide U into
disjoint and mutually exclusive c-component related parts.
A c-component of variable set V on graph G consists of
all the unobservable variables belonging to the same c-
component related part of U and all observable variables
that have an unobservable parent which is a member of that
c-component. According to the definition of c-component
relation, it is clear that an observable node can only appear
in one c-component. If an observable node has no unob-
servable parent, then it is a c-component on V by itself.
Therefore, the c-components form a partition on all of the
variables.

For any pair of variables V1 and V2 in causal graph G, if
there is an unobservable node Ui which is a parent for both
of them, the path V1 ← Ui → V2 is called a bidirected link.
A path between V1 and V2 is called an extended bidirected
link (or divergent path) if (i) there is at last one internal node
in that path; (ii) all the internal nodes in the path are unob-
servable nodes; (iii) one and only one internal node in the
path is a divergent node and there is no convergent internal
node.

Any causal Bayesian network may be transformed to one
in which each unobservable variable is an ancestor of one or
more observable variables in such a way that the answer to
an identifiability question is preserved. Details of this trans-
formation are given in (Huang & Valtorta 2006a). In this
paper, we assume that this transformation has taken place.

We conclude this section by giving several simple graph-
ical definitions that will be needed later.

For a given set of variables C, we define directed unob-
servable parent set DUP (C) as below. A node V belongs
to DUP (C) if and only if both of these two conditions are
satisfied: i) V is an unobservable node; ii) there is a directed
path from V to an element of C such all the internal nodes
on that path are unobservable nodes.

For a given observable variable set C ⊆ N , let GC

denote the subgraph of G composed only of variables in
C ∪ DUP (C) and all the links between variable pairs in
C ∪ DUP (C). Let An(C) be the union of C and the set
of ancestors of the variables in C and De(C) be the union
of C and the set of descendants of the variables in C. An
observable variable set S ⊆ N in graph G is called an an-

cestral set if it contains all its own observed ancestors, i.e.,
S = An(S) ∩ N .

Lemmas
In this section we present five lemmas that will be used in the
next two sections. The first two lemmas are proved in (Tian
& Pearl 2002b). The other three are proved in (Huang &
Valtorta 2006b).

Lemma 1 Let W ⊆ C ⊆ N . If W is an ancestral set in
GC , then ∑

Vi∈C\W

Q[C] = Q[W ] (8)

Lemma 2 Let H ⊆ N , and we have c-components
H ′

1, . . . , H
′
n in the sub graph GH , Hi = H ′

i∩H , 1 � i � n,
then

(i) Q[H] can be decomposed as

Q[H] =
n∏

i=1

Q[Hi] (9)

(ii) Each Q[Hi] is computable from Q[H], in the follow-
ing way. Let k be the number of variables in H , and let a
topological order of variables in H be Vh1 < . . . < Vhk

in GH , Let H(j) = {Vh1 , . . . , Vhj
} be the set of variables

in H ordered before Vhj
( including Vhj

), j = 1, . . . , k,and
H(0) = φ. Then each Q[Hi],i = 1, . . . , n,is given by

Q[Hi] =
∏

{j|Vhj
∈Hi}

Q[H(j)]
Q[H(j−1)]

(10)

where each Q[H(j)], j = 0, 1, . . . , k, is given by

Q[H(j)] =
∑

h\h(j)

Q[H] (11)

Lemma 2 means that if Q[H] is identifiable, then each
Q[Hi] is also identifiable. In the special case for which
H = N , Lemma 2 implies that, for a given graph G, be-
cause Q[N ] is identifiable, Q[C ∩N ] is identifiable for each
c-component C in G.

Lemma 3 Let S, T ⊂ N be two disjoint sets of observable
variables, If PT (S) is not identifiable in G, then PT (S) is
not identifiable in the graph resulting from adding a directed
or bidirected edge to G. Equivalently, if PT (S) is identifi-
able in G, then PT (S) is still identifiable in the graph ob-
tained by removing a directed or bidirected edge from G.

Intuitively, this lemma states that unidentifiability does
not change by adding any links.

Lemma 4 Let S, T ⊂ N be two disjoint sets of observable
variables, If S1 and T1 are subset of S, T , and PT1(S1) is
not identifiable in a subgraph of G, which does not include
nodes in S\S1 ∪ T\T1, then PT (S) is not identifiable in the
graph G.

Lemma 5 Let A ⊂ B ⊂ N . Q[A] is computable from Q[B]
if and only if Q[A]GB

is computable from Q[B]GB
.
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Identify Algorithm For Q[S]
Based on the lemmas in the last section, we give out an al-
gorithm to calculate Q[S], which is a transfered version of
the similar algorithm in (Tian & Pearl 2003). Here S ⊂ N
is a subset of observable variables.

Assume N(G) be partitioned into N1, . . . , Nk in G,
each of them belongs to a c-components, and we have c-
components S′

1, . . . , S
′
l in GS , Sj = S′

j ∩ S, 1 � j � l.
Based on lemma 2, for any model on graph G, we have

Q[S] =
l∏

j=1

Q[Sj ] (12)

Because each Sj ,j = 1, . . . , l, is a c-component in GS ,
which is a subgraph of G, it must be included in one Nj ,
Nj ∈ {N1, . . . , Nk}. We have:

Lemma 6 Q[S] is identifiable if and only if each Q[Sj ] is
identifiable in graph GNj

.

Proof: Only if part: From lemma 5, each Q[Sj ] is identi-
fiable in GNj

means each Q[Sj ] is identifiable from Q[Nj ]
on G. When we have Q[N ], according to lemma 2, we can
compute all the Q[Nj ]s. So, each Q[Sj ] is identifiable from
Q[N ]. Based on equation 12, Q[S] is identifiable.

If part: If one Q[Sj ] is unidentifiable in Q[Nj ] in graph
GNj

, then, from lemma 4, Q[S] is unidentifiable. �
Now let us consider how to compute Q[Sj ] from Q[Nj ].

Note that Sj ⊂ Nj and both GNj
and GSj

are graphs with
just one c-component.

We give out the algorithm (which follows (Tian & Pearl
2003)) to get Q[C] form Q[T ].

Algorithm Identify(C,T ,Q)
INPUT: C ⊆ T ⊆ N , Q = Q[T ], GT and GC are both

composed of one single c-component.
OUTPUT: Expression for Q[C] in terms of Q or FAIL.
Let A = An(C)GT

∩ T
i) If A = C, output Q[C] =

∑
T\C Q[T ] (Cf. lemma 1)

ii) If A = T , output FAIL
iii) If C ⊂ A ⊂ T

1. Assume that in GA, C is contained in a c-component T ′
1,

T1 = T ′
1 ∩ A

2. Compute Q[T1] from Q[A] =
∑

T\A Q[T ] (Cf. lemma 2)

3. Output Identify(C,T1,Q[T1])

We obtain that the problem of whether Q[C] is com-
putable from Q[T ] is reduced to that of whether Q[C] is
computable from Q[T1].

Using lemma 5, we know Q[C] is computable from Q[T ]
in GT if and only if Q[C] is identifiable form Q[T1] in graph
GT1 .

From the discussions above, we know i) and iii) always
work. Case ii) is handled by the lemma below.

Lemma 7 In a general Markovian model G, if

1. G itself is a c-component
2. S ⊂ N(G) and GS has only one c-component
3. All variables in N\S are ancestors of S

then Q[S] is unidentifiable in G.

Proof: We know this lemma is true when the models
are semi-Markovian (Huang & Valtorta 2006a) (Shpitser &
Pearl 2006). And any general Markovian model with graph
G can be transformed to a semi-Markovian model with
graph PJ(G,N) through the following a projection (Verma
1993): 1. Add each variable in N as a node of PJ(G,N)
2. For each pair of variables X,Y ∈ N , if there is an edge
between them in G, add the edge to PJ(G,N)
3. For each pair of variables X,Y ∈ N , if there exists a di-
rected path from X to Y in G such that every internal node
on the path is in U , add edge X → Y to PJ(G,N) (if it
does not exist yet)
4. For each pair of variables X,Y ∈ N , if there exists a di-
vergent path between X and Y in G such that every internal
node on the path is in U , add a bidirected edge between X
and Y in PJ(G,N)
If model G and S ∈ N(G) satisfy the conditions of
lemma 7, then, PJ(G,N(G)) and S satisfy those conditions
too. So we just need to prove that if Q[S] is unidentifiable
in PJ(G,N) then Q[S] is unidentifiable in G.

Q[S] is unidentifiable in PJ(G,N) means we have
two models M1 and M2 on graph PJ(G,N) that satisfy
PM1(n) = PM2(n) > 0, but QM1 [S] 	= QM2 [S].

Based on M1 and M2, we construct two models M ′
1 and

M ′
2 on a subgraph of G. We assume the state space for each

node Vi in PJ(G,N) is S(Vi).
We define a state space set SS(X) for each node X in

V (G) and set them to be empty at the beginning.
A) For each node X in N , we add its state space in

PJ(G,N) to its state space set. That is SS(X) = {S(X)}.
B) If in PJ(G,N), observable node X is a parent of ob-

servable node Y , then there are some directed paths from X
to Y in G such that all internal nodes on those paths are in
U . We select one of these paths and add state space S(X)
into the state space sets of all the internal nodes on that path
if it is not in them yet.

C) For any bidirected link in PJ(G,N), assume it is be-
tween observable nodes X , Y and the unobservable node on
the link is Uxy. Select the shortest divergent path between X
and Y in G and add the state space of Uxy to the state space
set of internal nodes on that path if it is not in them yet.

For any observable node X in PJ(G,N), we denote the
set of all X’s parents’ state space as SPa(X). We define
the state space of each node in G′ as the product of its state
space set. Then the product of Pa(X)’s state space can be
transformed to the product of all state spaces in a bag that
consists of all the state space sets of nodes in Pa(X). We
call this bag PB(X), which is

∑
Y ∈Pa(X) SS(Y ).

If X is an observable node, then its CPT in PJ(G,N)
is defined as a map from the product of SPa(X), to S(X).
We define for k = 1, 2,

PM ′
k(X = x|SPa(X) = a, (PB(X) − SPa(X)) = b) =

PMk(X = x|SPa(X) = a)
(13)

If the same node state space in SPa(X) appears more than
once on PB(X), then we arbitrarily select one of them in
the above definition.

If X is an unobservable node in G′, assume its state
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space set SS(X) = {Y1, . . . , Yn, Z1, . . . , Zm}, where Yi,
1 � i � n, are state spaces that also exist in PB(X), while
Z1, . . . , Zm do not. The CPT of X is defined as

PM ′
k(y1, . . . , yn, z1, . . . , zm|y′

1, . . . , y
′
n, b)

=
{ ∏

Zi∈{Z1,...,Zm} PMk(Zi = zi) all yj = y′
j

0 exist yj 	= y′
j

(14)
Here S(Y ′

j ) is the same state space as S(Yj) in PB(X), y′
j is

an instance of it. If a same node state space in {Y1, . . . , Yn}
appears more than once on PB(X), then we arbitrarily se-
lect one of them in the above definition.

Based on this definition, we have PMk(n) = PM ′
k(n) >

0 and QM ′
1 [S] 	= QM ′

2 [S]. �
Putting all the analysis above together, we have
Algorithm Computing Q[S]
INPUT: S ⊆ N .
OUTPUT: Expression for Q[S] or FAIL.
Let N(G) be partitioned into N1, . . . , Nk, each of them

belonging to a c-components in G, and S be partitioned
into S1, . . . , Sl, each of them belonging to a c-components
in GS , and Sj ⊆ Nj . We can

i), Compute each Q[Nj ] with lemma 2.
ii), Compute each Q[Sj ] with Identify algorithm above

with C = Sj ,T = Nj ,Q = Q[Nj ].
iii), If in ii), we get Fail as return value of Identify algo-

rithm of any Sj , then Q[S] is unidentifiable in graph G; else
Q[S] is identifiable and Q[S] =

∏l
j=1 Q[Sj ]

Theorem 1 The computing Q[S] algorithm is sound and
complete.

The two lemmas below follow from theorem 1.

Lemma 8 If S ⊂ N in graph G, e is a link exiting one S
node, and graph G′ is the same as graph G except that it
does not have link e, then Q[S] is identifiable in graph G if
and only if Q[S] is identifiable in graph G′.

Proof: Since e is a link exiting an S node, graph G and
G′ have the same c-component partition. Any c-component
in G is also a c-component in G′, and vice versa. Graph
GS and G′

S also have the same c-component partition. Any
c-component in GS is also a c-component in G′

S , and vice
versa. From Algorithm Identify(C,T,Q), Algorithm Com-
puting Q[S], and theorem 1, we know that Q[S] is identifi-
able in graph G if and only if Q[S] is identifiable in graph
G′. �

We also have

Lemma 9 Let S ⊂ N in graph G and graph G′ be obtained
by removing all links getting out from S nodes in graph G.
Then Q[S] is identifiable in graph G if and only if Q[S] is
identifiable in graph G′.

Proof: This result directly follows from lemma 8 above. �

Identify Algorithm For Pt(s)
Lemma 10 Assume S ⊂ N in graph G, X1 ∈ S , X2 ∈ S.
Let < X1, U1, . . . , Uk, X2 > be a directed path from X1 to
X2 in G, with Ui ∈ U(G), 1 � i � k, and let T ⊂ N
and T ∩ S = φ. Let graph G′ be obtained by removing link

< X1, U1 > from graph G. If PT (S) is unidentifiable in
graph G′, then PT (S\{X1}) is unidentifiable in G.

Proof: When PT (S) is unidentifiable in graph G′, there
are two models M1 and M2 on G′ such that: PM1(n) =
PM2(n) > 0, but for given (s, t), PM1

t (s) = a >

PM2
t (s) = b > 0. Assume in that s, X1 = x1, X2 = x2.
Now, based on M1 and M2, we create models M ′

1 and M ′
2

on graph G. First, we define a probability function F . F is
defined from S(X1) to (0, 1), where S(X1) is the state space
of X1 in model Mi, i = 1, 2. Let F be such that P (F (x1) =
0) = 0.5; for any x ∈ S(X1),x 	= x1, P (F (x) = 0) =
(a − b)/4. P (F (x) = 0) + P (F (x) = 1) = 1 for all x in
S(X1).

For any node X , which is not in {U1, . . . , Uk, X2}, we
define for i = 1, 2 the state space for X in model M ′

k to be
the state space of X in model Mk. For any node X , which
is in {U1, . . . , Uk}, we define for i = 1, 2 the state space for
X in model M ′

k to be the product of the state space of X in
model Mk and state space S(X1). The state space of X2 in
M ′

k is defined as S(X2) × {0, 1}.
For any node X that is not in {U1, . . . , Uk, X2} and

has no parent in {U1, . . . , Uk, X2}, its CPT in M ′
k is the

same as the CPT in Mk. For any node X , that is not in
{U1, . . . , Uk, X2} but has some parent in {U1, . . . , Uk, X2},
then its own state space is the same as in Mk but some of its
parents’ state spaces are changed. It is simple to insure that
this change does not effect the CPT: we omit the details.

For u1 and x1we define

PM ′
i ((u1, x1)|pa(U1), x′

1) =
{

PMi(u1|pa(U1)) x1 = x′
1

0 x1 	= x′
1

(15)
For ui, which is an instance of Ui ∈ {U2, . . . , Uk}, we

define

PM ′
i ((ui, x1)|pa′(Ui), (ui−1, x

′
1))

=
{

PMi(ui|pa′(Ui), ui−1) x1 = x′
1

0 x1 	= x′
1

(16)

For x2, which is an instance of X2,m = 0, 1, we define

PM ′
i ((x2,m)|pa′(X2), (uk, x1))

= PMi(x2|pa′(X2), uk) × P (F (x1) = m)
(17)

Then for any instance n of N in model M ′
1 and M ′

2,

PM ′
1(n) = PM ′

2(n) > 0 (18)

But for (s\{x2}, (x2, 0), t),

P
M ′

1
t (s\{x1}) > 0.5a (19)

P
M ′

2
t (s\{x1}) < 0.5b + (a − b)/4 < 0.5a (20)

From models M ′
1 and M ′

2, we conclude that PT (S\{X1})
is unidentifiable in G. �

We define the s-ancestor set D of S in G to be an observ-
able variable set for which S ⊆ D ⊆ N and D = An(S) in
GD.

Lemma 11 If D is an s-ancestor set of observable node set
S on graph G, then

∑
D\S Q[D] is identifiable if and only if

Q[D] is identifiable.
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Proof: The if part is easy since, if Q[D] is identifiable,∑
D\S Q[D] is identifiable.
If Q[D] is unidentifiable, then we know form the lemma 9

that Q[D] is unidentifiable in graph G′, where G′ is obtained
by removing from G all links that exit nodes in D.

Because D is an s-ancestor set of S, we can find an order
of nodes in D\S, say X1, . . . , Xk, such that in graph G for
each Xi, 1 � i � k, there is a directed path from Xi to one
node in S ∪ {X1, . . . , Xi−1}, and all nodes in the middle
of that path are unobservable. Assume for a given Xi, 1 �
i � k, the link from Xi in G that does not exist in G′ is ei.
And graph Gi is obtained by adding link ei to graph Gi−1,
starting with G0 = G′.

Note that Q[D] = PN\D(D) is unidentifiable in
G′. From lemma 10, PN\D(D\{X1}) is unidentifiable
in graph G1. Using this lemma again, we have that
PN\D(D\{X1, X2}) is unidentifiable in graph G2, and, fi-
nally, we have that PN\D(S) is unidentifiable in graph Gk.
Since Gk is a subgraph of G, according to lemma 3, if
PN\D(S), which equals to

∑
D\S Q[D], is unidentifiable in

Gk, then it is unidentifiable in G. �
Based on the lemmas above, we can obtain an algorithm

to solve the identifiability problem on general Markovian
models.

What we want to compute is:

Pt(s) =
∑

N\(T∪S)

Pt(n\t) =
∑

N\(T∪S)

Q[N\T ] (21)

Let D = An(S)GN\T
∩ N . D is an ancestral set

in graph GN\T , Lemma 1 allows us to conclude that∑
N\(T∪D) Q[N\T ] = Q[D]. Therefore, we have:

Pt(s) =
∑

D\S

∑

N\(T∪D)

Q[N\T ] =
∑

D\S

Q[D] (22)

Since D is a s-ancestor set of S, according to lemma 11,∑
D\S Q[D] is identifiable if and only if Q[D] is identifi-

able.
Algorithm Computing PT (S)
INPUT: two disjoint observable variable sets S, T ⊂ N .
OUTPUT: the expression for PT (S) or FAIL.

1. Let D = An(S)GN\T
∩ N

2. Using the Computing Q[S] algorithm in last section to
compute Q[D].

3. If the algorithm returns FAIL, then output FAIL.

4. Else, output PT (S) =
∑

D\S Q[D]

Our discussion above shows,

Theorem 2 The Computing PT (S) algorithm is sound and
complete.

Conclusion
In this paper, we review the identify algorithm for semi-
Markovian graphs given by J.Tian and J.Pearl. We extend
that algorithm into an identify algorithm that can be used

on general causal graphs and prove that the extended algo-
rithm is sound and complete. This result shows the power
of the algebraic approach to solving identifiability problems
and closes the identifiability problem.

Future work includes implementing the modified identify
algorithm and analyzing its efficiency, extending the results
of this paper to conditional causal effects, and providing an
explanation of the causal effect formula found by the iden-
tify algorithm in terms of applications of the rules of the
graphical do calculus by J.Pearl in (Pearl 2000).
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