
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by 
electronic mail to bhayes@amsci.org. 



282     American Scientist, Volume 100

Computing Science

© 2012 Brian Hayes. Reproduction with permission only. 
Contact bhayes@amsci.org.

The Manifest Destiny of Artificial Intelligence

Brian Hayes

Artificial intelligence began 
with an ambitious research 

agenda: To endow machines with 
some of the traits we value most high-
ly in ourselves—the faculty of reason, 
skill in solving problems, creativity, 
the capacity to learn from experience. 
Early results were promising. Comput-
ers were programmed to play checkers 
and chess, to prove theorems in ge-
ometry, to solve analogy puzzles from 
IQ tests, to recognize letters of the al-
phabet. Marvin Minsky, one of the pio-
neers, declared in 1961: “We are on the 
threshold of an era that will be strongly 
influenced, and quite possibly domi-
nated, by intelligent problem-solving 
machines.”

Fifty years later, problem-solving 
machines are a familiar presence in 
daily life. Computer programs suggest 
the best route through cross-town traf-
fic, recommend movies you might like 
to see, recognize faces in photographs, 
transcribe your voicemail messages 
and translate documents from one lan-
guage to another. As for checkers and 
chess, computers are not merely good 
players; they are unbeatable. Even on 
the television quiz show Jeopardy, the 
best human contestants were trounced 
by a computer.

In spite of these achievements, the 
status of artificial intelligence remains 
unsettled. We have many clever gad-
gets, but it’s not at all clear they add 
up to a “thinking machine.” Their 
methods and inner mechanisms seem 
nothing like human mental processes. 
Perhaps we should not be bragging 
about how smart our machines have 
become; rather, we should marvel at 
how much those machines accomplish 
without any genuine intelligence.

It is not only critics from outside the 
field who express such qualms about 
the direction of AI. Fifteen years ago 
Minsky told an interviewer: “The bot-
tom line is that we really haven’t pro-
gressed too far toward a truly intel-
ligent machine. We have collections of 
dumb specialists in small domains; the 
true majesty of general intelligence still 
awaits our attack.” At a recent math-
ematics meeting I heard Minsky offer a 
similar assessment, lamenting the ne-
glect of the field’s deepest long-range 
goals. His comments prompted me to 
look back at the early literature of ar-
tificial intelligence, and then survey 
some of the recent accomplishments. 
Has AI strayed from the true path, or 
has it found a better way forward?

Neats Versus Scruffies
At the outset, research in artificial in-
telligence was the project of a very 
small community. An inaugural con-
ference in 1956 had just 10 participants. 
They included Allen Newell and Her-
bert A. Simon of Carnegie Tech (now 
Carnegie Mellon University); Minsky, 
who had just begun his career at MIT; 
and John McCarthy, who left MIT to 
start a new laboratory at Stanford. A 
major share of the early work in AI 
was done by these four individuals 
and their students.

It was a small community, but big 
enough for schisms and factional strife. 
One early conflict pitted “the neats” 

against “the scruffies.” The neats em-
phasized the role of deductive logic; 
the scruffies embraced other modes 
of problem-solving, such as analogy, 
metaphor and reasoning from example. 
McCarthy was a neat, Minsky a scruffy.

An even older and deeper rift divides 
the “symbolic” and the “connectionist” 
approaches to artificial intelligence. Are 
the basic atoms of thought ideas, prop-
ositions and other such abstractions? 
Or is thought something that emerges 
from patterns of activity in neural net-
works? In other words, is the proper 
object of study the mind or the brain?

If an artificial intelligence needs a 
brain, maybe it also needs a body, with 
sensors that connect it to the physical 
world; thus AI becomes a branch of ro-
botics. Still another faction argues that 
if a machine is to think, it must have 
something to think about, and so the 
first priority is encoding knowledge in 
computer-digestible form.

A backdrop to all of these diverg-
ing views within the AI community is 
a long-running philosophical debate 
over whether artificial intelligence 
is possible at all. Some skeptics hold 
that human thought is inherently 
nonalgorithmic, and so a determinis-
tic machine cannot reproduce every-
thing that happens in the brain. (It’s 
the kind of dispute that ends not with 
the resolution of the issue but with 
the exhaustion of the participants.)

Through the 1970s, most AI projects 
were small, proof-of-concept studies. 
The scale of the enterprise began to 
change in the 1980s with the popu-
larity of “expert systems,” which ap-
plied AI principles to narrow domains 
such as medical diagnosis or mineral 
prospecting. This brief flurry of entre-
preneurial activity was followed by a 
longer period of retrenchment known 
as “the AI winter.”

The present era must be the AI 
spring, for there has been an extraor-
dinary revival of interest. Last year Pe-
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ter Norvig and Sebastian Thrun were 
teaching an introductory AI course at 
Stanford and opened it to free enroll-
ment over the Internet. They attract-
ed 160,000 online students (though 
“only” 23,000 successfully completed 
the course). The revival comes with a 
new computational toolkit and a new 
attitude: Intelligent machines are no 
longer just a dream for the future but 
a practical technology we can exploit 

here and now. I’m going to illustrate 
these changes with three examples of 
AI then and now: machines that play 
games (in particular checkers), ma-
chines that translate languages and ma-
chines that answer questions.

Gaming the System
The game of checkers was the subject of 
one of the earliest success stories in AI. 
Arthur L. Samuel of IBM started work 

on a checkers-playing program in the 
early 1950s and returned to the project 
several times over the next 20 years. 
The program was noteworthy not only 
for playing reasonably well—quite 
early on, it began beating its creator—
but also for learning the game in much 
the same way that people do. It played 
against various opponents (including 
itself!) and drew lessons from its own 
wins and losses.

A game of checkers played 50 years ago (July 12, 1962) pitted Robert Nealey, a former champion of Connecticut, against a computer program writ-
ten by Arthur L. Samuel of IBM. Nealey played the white pieces. The first eight moves for each side are shown here; after the computer’s 27th 
move, Nealey resigned. Samuel’s program was designed to improve its strategy by learning from experience, much as a human player would. 
Later programs achieved stronger performance by relying instead on the computer’s capacity to sift through billions of candidate moves. 
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Samuel explained the program’s 
operation in terms of goals and sub-
goals. The overall goal was to reach 
a winning position, where the oppo-
nent has no legal move. The program 
identified subgoals that would mark 
progress toward the goal. Experienced 
players pointed out that the program’s 
main weakness was the lack of any 
sustained strategy or “deep objective.”

The subsequent history of computer 
checkers is dominated by the work 
of Jonathan Schaeffer and his col-
leagues at the University of Alberta. 
In 1989 they began work on a pro-
gram called Chinook, which quickly 
became a player of world-champion 
caliber. It played twice against Mari-
on Tinsley, who was the preeminent 
human checkers player of the era. 
(Tinsley won every tournament he 
entered from 1950 to 1994.) In a 1992 
match, Tinsley defeated Chinook 4–2 
with 33 draws. A rematch two years 
later ended prematurely when Tins-
ley withdrew because of illness. The 
six games played up to that point had 
all been draws, and Chinook became 
champion by forfeit. Tinsley died a few 
months later, so there was never a final 
showdown over the board.

Chinook’s approach to the game 
was quite unlike that of Samuel’s ear-
lier program. There was no hierarchy 

of goals and subgoals, and no attempt 
to imitate the strategic thinking of hu-
man players. Chinook’s strength lay 
entirely in capacious memory and 
rapid computation. At the time of the 
second Tinsley match, the program 
was searching sequences of moves to 
a minimum depth of 19 plies. (A ply is 
a move by one side or the other.) Chi-
nook had a library of 60,000 opening 
positions and an endgame database 
with precomputed outcomes for every 
position with eight or fewer pieces on 
the board. There are 443,748,401,247 
such positions.

More recently, Schaeffer and his 
colleagues have gone on from creat-
ing strong checkers players to solv-
ing the game altogether. After a series 
of computations that ended in 2007, 
they declared that checkers is “weakly 
solved.” The weak solution identifies a 
provably optimal line of play from the 
starting position to the end—which 
turns out to be a draw. Neither player 
can improve his or her (or its) outcome 
by departing from this canonical se-
quence of moves. (A “strong” solution 
would give the correct line of play 
from any legally reachable board posi-
tion.) By the time this proof was com-
pleted, the endgame database encom-
passed all positions with 10 or fewer 
pieces (almost 40 trillion of them).

Schaeffer notes that his checkers-
playing program doesn’t need to know 
much about checkers:

Perhaps the biggest contribu-
tion of applying AI technol-
ogy to developing game-playing 
programs was the realization 
that a search-intensive (“brute-
force”) approach could produce 
high-quality performance using 
minimal application-dependent 
knowledge.

There is room here for a devil’s advo-
cate to offer a counterargument. Win-
ning isn’t everything, and playing 
the game without understanding it 
is not the most obvious route to wis-
dom. When Samuel began his work 
on checkers, his aim was not just to 
create an invincible opponent but to 
learn something about how people play 
games—indeed, to learn something 
about learning itself. Progress toward 
these broader goals could have influ-
ence beyond the world of board games.

But this position is difficult to de-
fend. It turns out that brute-force 
methods like those of Chinook have 
been highly productive in a variety 
of other areas. They are not just tricks 
for winning games; Schaeffer cites bio-
informatics and optimization among 
other application areas. The anthropo-
centric scheme, taking human thought 
patterns as the model for computer 
programs, has been less fruitful so far. 

The Vodka Is Strong
In The Hitchhiker’s Guide to the Galaxy, 
Douglas Adams introduces the Babel 
Fish: “If you stick one in your ear, you 
can instantly understand anything 
said to you in any form of language.” 
Here in our little corner of the galaxy, 
Babel Fish is the name of a web ser-
vice (part of Yahoo) that also performs 
translation, though it’s limited to lan-
guages from Planet Earth. Google 
and Microsoft offer similar services. 
Depending on your needs and expec-
tations, the quality of the results can 
seem either amazing or risible. 

Efforts to build a translation machine 
were already under way in the 1950s. 
The simplest of the early schemes was 
essentially an automated bilingual dic-
tionary: The machine would read each 
word in the source text, look it up in the 
dictionary, and return the correspond-
ing word or words in the target lan-
guage. The failure of this approach is 
sometimes dramatized with the tale of 

Chat échaudé craint l’eau froide A scalded cat fears cold water

Chat échaudé  craint  l’eau froide A scalded cat  fears  cold water

craint[(chat échaudé), (l’eau froide)] fears[(a scalded cat), (cold water)]

timet[(scaldata cattus), (frigus aqua)]

NP
VP

NP NP
VP

NP

lexical level

syntactic level

semantic level

interlingua

Machine translation has improved with the adoption of statistical methods that extract word 
patterns from large collections of bilingual texts. Earlier programs, imitating the methods of 
human translators, performed a multilevel analysis, looking not just at the words themselves 
(the lexical level) but also at syntactic structures such as noun phrases (NP) and verb phrases 
(VP) and at semantics, or meanings. At the top of the hierarchy is the interlingua, which is 
meant to be a language-independent representation of meaning. The statistical approach takes 
a shortcut directly from the lexical level of the source language to that of the target language. 
The French-to-English translation shown here was generated by just such a program, that of 
the Google Translate service. (So was the Latin used as a stand-in for an interlingua.)
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the English→ Russian→ English trans-
lation that began with “The spirit is 
willing but the flesh is weak” and end-
ed with “The vodka is strong but the 
meat is rotten.” John Hutchins, in a his-
tory of machine translation, thoroughly 
debunks that story, but the fact remains 
that word-by-word dictionary lookup 
was eventually dismissed as useless.

Later programs worked with higher-
level linguistic structures—phrases and 
sentences rather than individual words. 
In the early 1970s Yorick Wilks, who 
was then at Stanford, built an English-
to-French translation program that ex-
plicitly tried to reproduce some of the 
mental processes of a human transla-
tor. The program would read a sen-
tence, break it into component phrases, 
try to assign meanings to the words 
based on their local context, and then 
generate corresponding phrases in the 
target language.

Wilks’s project never got beyond the 
prototype stage, but another translation 
system with roots in the same era is still 
in wide use and under active devel-
opment. systran, founded in 1968 by 
Peter Toma, now powers the Babel Fish 
service. It began as a dictionary-based 
system but now has a complex struc-
ture with many modules.

In recent years a quite different ap-
proach to machine translation has 
attracted more interest and enthusi-
asm. The idea is to ignore the entire 
hierarchy of syntactic and seman-
tic structures—the nouns and verbs, 
the subjects and predicates, even the 
definitions of words—and simply 
tabulate correlations between words 
in a large collection of bilingual texts. 
The early work on this statistical ap-
proach to translation was done by Pe-
ter F. Brown and his colleagues at IBM, 

who had already applied analogous 
ideas to problems of speech recogni-
tion. The method is now the basis of 
translation services from both Google 
and Microsoft.

Deliberately ignoring everything 
we know about grammar and mean-
ing would seem to be a step back-
ward. However, all the information 
encoded in grammar rules and dic-
tionary definitions is implicitly pres-
ent in a large collection of texts; after 
all, that’s where the grammarians and 
the lexicographers get it from in the 
first place. Where do the bilingual texts 
come from? Government bodies that 
publish official documents in two or 
more languages, such as Canada and 
the European Union, have been an im-
portant source.

Suppose you have a large corpus 
of parallel documents in French and 
English, broken down into pairs of 
matched sentences. With this resource 
in hand, you are asked to provide an 
English translation of the French prov-
erb Chat échaudé craint l’eau froide. Here 
is one way to begin: Take each word 
of the proverb, find all the French sen-
tences in the corpus that include this 
word, retrieve the corresponding Eng-
lish sentences, and look for words that 
appear in these sentences with unusu-
ally high frequency. In some cases the 
outcome of this process will be easy to 
interpret. If a French sentence includes 
the word chat, the English version is 
very likely to mention cat. Other cases 
could be equivocal. The French craint 
might be strongly correlated with 
several English words, such as fears, 
dreads and afraid. And occasionally it 
might happen that no word stands out 
clearly. By taking all the English words 
identified in this way, and perhaps ap-

plying a threshold rule of some kind, 
you can come up with a list of words 
that have a good chance of appearing 
in the translation.

Now the task is to put the select-
ed words in order, and thus make an 
English sentence out of them. This too 
can be done by a probabilistic process, 
guided by the relative frequencies of 
short sequences of words (n-grams) in 
English text. The likeliest arrangement 
of the words is taken as the translation.

In practice, statistical translation 
programs are not quite as crude and 
simple-minded as the algorithm pre-
sented here. In particular, the order-
ing of the English words is done by 
an alignment process that starts with 
the French sequence and allows for 
insertions, deletions and transposi-
tions. Still, the entire translation is 
done in total ignorance of meaning 
and grammatical structure. It seems a 
bit of a miracle when something sen-
sible comes out. For Chat échaudé craint 
l’eau froide, Google Translate suggests: 
A scalded cat fears cold water. My high 
school French teacher would have giv-
en full credit for that answer.

This numerical or statistical approach 
to translation seems utterly alien to the 
human experience of language. As in 
the case of game-playing, I am tempted 
to protest that the computer has solved 
the problem but missed the point. Sure-
ly a human translator works at a higher 
level, seeking not just statistical correla-
tions but an equivalence of meaning 
and perhaps also of mood and tone. In 
the case at hand, the artful translator 
might render a proverb with another 
proverb: Once burned, twice shy. That 
kind of deft linkage between languages 
seems beyond the reach of programs 
that merely shuffle symbols.

0.0 0.1 0.2 0.3 0.4 0.5

pas
ne

non
pas de tout

faux
ce

que
jamais

plus

probability

0.469
0.460
0.024
0.003
0.003
0.002
0.002
0.002
0.002

The   proposal           will      not     now      be        implemented.

Les propositions ne seront pas mises en application maintenant.

Candidate French translations of the English word not were identified by a program that has no understanding of either language; the list (left 
panel) was generated simply by searching for words that appear with elevated frequency in French translations of English sentences that include 
the word not. The most likely candidates are ne and pas, which together form the most common French negation. The final step in a statistical 
translation algorithm is an alignment (right panel) that maps words of the source sentence to those of the target. Both of the examples shown here 
are adapted from a 1990 article by Peter F. Brown and his colleagues, using a bilingual corpus of Canadian parliamentary proceedings.
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But are human readers really so dif-
ferent from the computer plodding 
through its database of sentences? 
How do people learn all those nuanced 
meanings of thousands of words and 
the elaborate rules for putting them 
together in well-formed sentences? We 
don’t do it by consulting dictionaries 
and grammar books. Starting as young 
children, we absorb this knowledge 
from exposure to language itself; we 
listen and talk, then later we read and 
write. For the lucky polyglots among 
us, these activities go on in multiple 
languages at once, with fluid inter-
change between them. In other words, 
we infer syntax and semantics from 
a corpus of texts, just as the statistical 
translator does. Most likely the mental 
process underlying the acquisition of 
language involves no explicit calcula-
tion of probabilities of n-grams, but it 
also requires no dictionary definitions 
or memorized conjugations of verbs. 
In spirit at least, our experience of lan-
guage seems closer to statistical infer-
ence than to rule-based deduction.

Q and A
My final example comes from an area 
of AI where algorithmic ingenuity 
and high-performance computing 
have yet to triumph fully. The task 
is to answer questions formulated in 
ordinary language.

In a sense, we already have an ex-
traordinary question-answering tech-
nology: Web search engines such as 
Google and Bing put the world at our 
fingertips. For the most part, however, 
search engines don’t actually answer 
questions; they provide pointers to 
documents that might or might not 
supply an answer. To put it another 
way, search engines are equipped to 
answer only one type of question: 
“Which documents on the Web men-
tion X?,” where X is the set of key-
words you type into the search box. 
The questions people really want to 
ask are much more varied. 

One early experiment in question 
answering was a program called 
Baseball, written at MIT circa 1960 by 
Bert F. Green Jr., and three colleagues. 
The program was able to understand 
and answer questions such as “Who 
did the Red Sox lose to on July 5, 
1960?” This was an impressive feat 
at the time, but the domain of dis-
course was very small (a single sea-
son of professional baseball games) 
and the form of the queries was also 

highly constrained. You couldn’t ask, 
for example, “Which team won the 
most games?”

For a glimpse of current research on 
question answering we can turn to the 
splendidly named KnowItAll project 
of Oren Etzioni and his colleagues at 
the University of Washington. Sev-
eral programs written by the Etzioni 
group address questions of the “Who 
did what to whom?” variety, extract-
ing answers from a large collection of 
texts (including a snapshot of the web 
supplied by Google). There’s a demo 
at openie.cs.washington.edu. Instead 
of matching simple keywords, the 
KnowItAll programs employ a tem-
plate of the form X ∼ Y, where X and 
Y are generally noun phrases of some 
kind and “∼” is a relation between 
them, as in “John loves Mary.” If you 
leave one element of the template 
blank, the system attempts to fill in all 
appropriate values from the database 
of texts. For example, the query “___ 
defeated the Red Sox” elicits a list of 
59 entries. (But “___ defeated the Red 
Sox on July 5, 1960” comes up empty.)

KnowItAll is still a research project, 
but a few other question-answering 
systems have been released into the 
wild. True Knowledge parses natural-
language queries and tries to find 
answers in a hand-crafted semantic 
database. Ask.com combines question 
answering with conventional keyword 
Web searching. Apple offers the Siri 
service on the latest iPhone. Wolfram 
Alpha specializes in quantitative and 
mathematical subjects. I have tried all of 
these services except Siri; on the whole, 
unfortunately, the experience has been 
more frustrating than satisfying.

A bright spot on the question-
answering horizon is Watson, the 
system created by David Ferrucci 
and a team from IBM and Carnegie 
Mellon to compete on Jeopardy. The 
winning performance was dazzling. 
On the other hand, even after read-
ing Ferrucci’s explanation of Watson’s 
inner architecture, I don’t really un-
derstand how it works. In particular 
I don’t know how much of its suc-
cess came from semantic analysis and 
how much from shallower keyword 
matching or statistical techniques. 
When Watson responded correctly to 
the clue “Even a broken one of these 
on your wall is right twice a day,” was 
it reasoning about the properties of 
12-hour clocks in a 24-hour world? Or 
did it stumble upon the phrase “right 

twice a day” in a list of riddles that 
amuse eight-year-olds?

Writing in Nature last year, Etzioni 
remarked, “The main obstacle to the 
paradigm shift from information re-
trieval to question answering seems 
to be a curious lack of ambition and 
imagination.” I disagree. I think the 
main obstacle is that keyword search, 
though roundabout and imprecise, has 
proved to be a remarkably effective 
way to discover stuff. In the case of 
my baseball question, Google led me 
straight to the answer: On July 5, 1960, 
the Red Sox lost to the Orioles, 9 to 
4. Once again, shallow methods that 
look only at the superficial structure of 
a problem seem to be outperforming 
deeper analysis.

Applied Computer Science
Edward A. Feigenbaum, a veteran 
of AI’s first-generation, has declared 
that “computational intelligence is the 
manifest destiny of computer science.” 
The slogan “manifest destiny” once 
expressed the sea-to-shining-sea ter-
ritorial ambitions of the young Unit-
ed States. Feigenbaum, by analogy, is 
telling us there’s no stopping AI until 
it reaches the level of human intelli-
gence. (And then why stop there?)

Feigenbaum’s declaration reiterates 
Minsky’s prophecy from 50 years ago. 
They may both be proved right, one 
of these days. In the meantime, I see a 
different kind of territorial aggrandize-
ment going on. AI is expanding into 
turf that once belonged to other special-
ities. It looks like the destiny of artificial 
intelligence may be to assimilate all the 
rest of applied computer science.

I came to appreciate how much the 
field has broadened as I was reading 
Artificial Intelligence: A Modern Approach, 
a recent textbook by Stuart Russell and 
Norvig. (The third edition came out in 
2010.) It’s a splendid book, and I rec-
ommend it not just for students of AI 
but for anyone seriously interested in 
computer science. And that’s the point: 
Many of the ideas and methods intro-
duced here would be quite at home in 
a text on algorithm design or optimiza-
tion theory. Some of the more tradition-
al AI themes are scarcely mentioned.

Russell and Norvig give a brief 
history of AI, where recent develop-
ments are introduced under the ru-
bric “AI adopts the scientific meth-
od.” This characterization seems a bit 
heavy-handed. Are we to conclude 
that previous generations were un-
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scientific, toiling in benighted pursuit 
of cognitive phlogiston? The book’s 
subtitle, “A Modern Approach,” re-
inforces this impression. I’m sure the 
intent is not to be dismissive or scorn-
ful; it’s just that the questions that ani-
mated AI research in its first decades 
no longer seem so urgent or central. 
But that’s not because those questions 
have all been answered.

Meanwhile, the brash new style of AI 
plunges ahead. The roaring success of 
all those “shallow” methods—such as 
treating natural language as a sequence 
of n-grams—is something I find both ex-
citing and perplexing. Exciting because 
these are algorithms we can implement 
and programs we can run; AI becomes 
a technology rather than a daydream. 
Perplexing because the shallow meth-
ods weren’t supposed to work, and now 
we have to explain their unreasonable 
effectiveness. Perhaps this is how we’ll 
get back to those deeper questions that 
Minsky warns we are neglecting.
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