BASIC BLOCKS AND FLOW GRAPHS

rcise 8.3.3: Generate code for the following three-address statements
assuming stack allocation and assuming a and b are arrays whose ele-

s are 4-byte values. <6L v 79’ /L.o M) S~ LM/

The four-statement sequence
i g D. Ulluwpn

o
]

ali] = ch i@olj

blj] =

. b) The three-statement sequence WS‘: s Wes [W/ oo %’
& (Th D”af’bﬂg?)akﬁ)

x = a[il
2R y = blil
B —_
zZ=X%y

c) The three-statement sequence

-’; X = a [i]
B y=b [x]
»- : ali] =

".:8.4 Basic Blocks and Flow Graphs

~ This section introduces a graph representation of intermediate code that is help-
_ ~ful for discussing code generation even if the graph is not constructed explicitly
By a code- -generation algorithm. Code generation benefits from context. We
can do a better job of register allocation if we know how values are defined
. and used, as we shall see in Section 8.8. We can do a better job of instruction
selectlon by looking at sequences of three-address statements, as we shall see in

- Section 8.9.

' The representation is constructed as follows:

1. Partition the intermediate code into basic blocks, which are maximal se-
quences of consecutive three-address instructions with the properties that

(a) The flow of control can only enter the basic block through the first
instruction in the block. That is, there are no jumps into the middle
of the block.

(b) Control will leave the block without halting or branching, except
possibly at the last instruction in the block.

2. The basic blocks become the nodes of a flow graph, whose edges indicate
which blocks can follow which other blocks.

B @ﬁil-”—& fnmpzes Tl

596 CHAPTER 8. CODE GENERATION

—

The Effect of Interrupts

The notion that control, once it reaches the beginning of a basic block is
certain to continue through to the end requires a bit of thought. There are
many reasons why an interrupt, not reflected explicitly in the code, could
cause control to leave the block, perhaps never to return. For example, an
instruction like x = y/z appears not to affect control flow, but if 2z is 0 it
could actually cause the program to abort.

We shall not worry about such possibilities. The reason is as follows.
The purpose of constructing basic blocks is to optimize the code. Gener-
ally, when an interrupt occurs, either it will be handled and control will
come back to the instruction that caused the interrupt, as if control had
never deviated, or the program will halt with an error. In the latter case, it
doesn’t matter how we optimized the code, even if we depended on control
reaching the end of the basic block, because the program didn’t produce

- its intended result anyway.

Starting in Chapter 9, we discuss transformations on flow graphs that turn
the original intermediate code into “optimized” intermediate code from which
better target code can be generated. The “optimized” intermediate code is
turned into machine code using the code-generation techniques in this chapter.

8.4.1 Basic Blocks

Our first job is to partition a sequence of three-address instructions into basic
blocks. We begin a new basic block with the first instruction and keep adding
instructions until we meet either a jump, a conditional jump, or a label on
the following instruction. In the absence of jumps and labels, control proceeds
sequentially from one instruction to the next. This idea is formalized in the

following algorithm.

Algorithm 8.5: Partitioning three-address instructions into basic blocks.

INPUT: A sequence of three-address instructions.

OUTPUT: A list of the basic blocks for that sequence in which each instruction
is assigned to exactly one basic block.

METHOD: First, we determine those instructions in the intermediate code that
are leaders, that is, the first instructions in some basic block. The instruction
just past the end of the intermediate program is not included as a leader. The
rules for finding leaders are:

1. The first three-address instruction in the intermediate code is a leader.

LHRHT AT

527

ASIC BLOCKS AND FLOW GRAPHS

onal jump

ion that immediately follows a conditional or unconditional

1 ', fof each leader, its basic block consists of itself and all instructions up to
ot including the next leader or thé end of the intermediate program. O

) i=1

2) j=1

3) ti=10%*1
4) t2=t1+]
5) t3 =8 % t2

6) t4 = t3 - 88

7) alt4] = 0.0

8 j=3+1

9) if j <= 10 goto (3)
10) i=i+1

11) if i <= 10 goto (2)
12) i=1

13) t6=1i-1

14) t6 = 88 x t5

15) alt6] = 1.0

16) i=i+1

17) if i <= 10 goto (13)
rix

Figure 8.7: Intermediate code to set 2 10 x 10 matrix to an identity mat

- Example 8.6: The intermediate code in Fig. 8.7 turns a 10 x 10 matrix a into
an identity matrix. Although it is not important where this code comes from,
it might be the translation of the pseudocode in Fig. 8.8. In generating the
intermediate code, we have assumed that the real-valued array elements take 8

bytes each, and that the matrix a is stored in row-major form.

reaTig,

for i from 1 to 10 do
for j from 1 to 10 do
a[";aj] =0.0;
for i from 1 to 10 do
ali,] = 1.0

A
Lo
i

Figure 8.8: Source code for Fig. 8.7

528 CHAPTER 8. CODE GENERATION

First, instruction 1 is a leader by rule (1) of Algorithm 8.5. To find the
other leaders, wé rst need to find the jumps. In this example, there are three
jumps, all conditional, at instructions 9, 11, and 17. By rule (2), the targets of,
these jumps are leaders; they are instructions 3, 2, and 13, respectively. Then,
by rule (3), each instruction following a jump is & leader; those are instructions
10 and 12. Note that no instruction follows 17 in this code, but if there were
code following, the 18th instruction would also be a leader.

We conclude that the leaders are instructions 1, 2, 3, 10, 12, and 13. The
basic block of each leader contains all the instructions from itself until just
before the next leader. Thus, the basic block of 1 is just 1, for leader 2 the
block is just 2. Leader 3, however, has a basic block consisting of instructions 3
through 9, inclusive. Instruction 10’s block is 10 and 11; instruction 12’s block
is just 12, and instruction 13’s block is 13 through 17. O

8.4.2 Next-Use Information

Knowing when the value of a variable will be used next is essential for generating &
good code. If the value of a variable that is currently in a register will never be 3
referenced subsequently, then that register can be assigned to another variable.

The use of a name in a three-address statement is defined as follows. Suppose.
three-address gtatement i assigns a value to z. If statement § has z as an
operand, and control can flow from statement i to j along a path that has
no intervening assignments to Z, then we say statement j uses the value of a"g_'
computed at statement i. We further say that z i8 live at statement . -

We wish to determine for each three-address statement ¢ =y + 2 what &
next uses of T, ¥, and z are. For the present, we do not concern ourselves wit
uses outside the basic block containing this three-address statement.

Our algorithm to determine liveness and next-use information makes a bac
ward pass over each basic block. We store the information in the symbol tab
We can easily scan & stream of three-address statements to find the ends of B
sic blocks as in Algorithm 8.5. Since procedures can have arbitrary side eff
we assume for convenience that each procedure call starts a new basic blo

‘Algorithm 8.7: Determining the liveness and next-use information for
statement in a basic block.

INPUT: A basic block B of three-address statements. We assume tha
symbol table initially shows all nontemporary variables in B a8 being
exit.

OUTPUT: At each statement i T —y+zin B, we attach to i the liven!
next-use information of z,y, and 2.

METHOD: We start at the last statement in B and scan backwardgs :
beginning of B. At each statement i: T =Y + 2 in B, we do the follo

1. Attachto statement i the information currently found in the s
regarding the next use and liveness of z, y, and Y-

-

g1¢ BLOCKS AND FLOW GRAPHS

ihe gymbol table, set & to “not live” and “no next use.”

the symbol table, set y and z to “live” and the next uses of y and z to

= have used + 852 symbol representing any operator. If the three-address
ent 4 is of the form © = + y or ¢ = ¥y, the steps are the same as above,
2. Note that the order of steps (2) and (3) may not be interchanged

\use ¢ may be y or 2. O

43 Flow Graphs
an intermediate-code program is partitioned into basic blocks, we repre-
¢ the flow of control between them by a flow graph. The nodes of the flow
b are the basic blocks. There is an edge from block B to block C if and
if it is possible for the first instruction in block C' to immediately follow
Jast instruction in block B. There are two ways that such an edge could be
ified:

" :';o There is a conditional or unconditional jump from the end of B to the
" beginning of C.

"+ C immediately follows B in the original order of the three-address instruc-
tions, and B does not end in an unconditional jump.

¢ say that B is a predecessor of C, and C is a successor of B.

Often we add two nodes, called the entry and ezit, that do not correspond

o executable intermediate instructions. There is an edge from the entry to the
rst executable node of the flow graph, that is, to the basic block that comes

* from the first instruction of the intermediate code. There is an edge to the
exit from any basic block that contains an instruction that could be the last
executed instruction of the program. If the final instruction of the program is
- HOt an unconditional jump, then the block containing the final instruction of
 the program is one predecessor of the exit, but so is any basic block that has a

| jump to code that is not part of the program.

- Example 8.8: The set of basic blocks constructed in Example 8.6 yields the
. flow graph of Fig. 8.9. The entry points to basic block B, since By contains
 the first instruction of the program. The only successor of By is Bz, because
~ By does not end in an unconditional jump, and the leader of By immediately
- follows the end of Bi.
_ Block B; has two successors. One is itself, because the leader of B, instruc-
j‘ tion 3, is the target of the conditional jump.at the end of Bs, instruction 9. The
~ other successor is Ba, because control can fall through the conditional jump at
the end of Bs and next enter the leader of Ba.
_ Only Bg points to the exit of the flow graph, since the only way to get to
code that follows the program from which we constructed the flow graph is to
fall through the conditional jump that ends Bg. [

e S

CHAPTER 8. CODE GENERATION

/
10 * 1

t1+j

8 * t2

tg - 88 |
j=g+t | /

if 5 7<= 10 goto%

i=di41 |
if i <= 10 goto By |

Y

‘11

/
ts =1 -1
tg = 88 * ts
alteg] = 1.0
i=1+1
if i <= 10 goto Bsg

Eq

Figure 8.9: Flow graph from Fig. 8.7

8.4.4 Representation of Flow Graphs

First, note from Fig. 8.9 that in the flow graph, it is normal to replace the jumps
to instruction numbers or labels by jumps to basic blocks. Recall that every
conditional or unconditional jump is to the leader of some basic block, and it
is to this block that the jump will now refer. The reason for this change is that
after constructing the flow graph, it is common to make substantial changes
to the instructions in the various basic blocks. "If jumps were to instructions,
we would have to fix the targets of the jumps every time one of the target
instructions was changed.

Flow graphs, being quite ordinary graphs, can be represented by any of the
data structures appropriate for graphs. The content of nodes (basic blocks)

need their own representation. We might represent the content of a node by & 8

BLOCKS AND FLOW GRAPHS 531

he leader in the array of three-address instructions, together with a

: the number of instructions or a second pointer to the last instruction.
gince we may be changing the number of instructions in a basic block

it is likely to be more efficient to create a linked list of instructions

§) basic block.

Loops

mming-language constructs like while-statements, do-while-statements,
for-statements naturally give rise to loops in programs. Since virtually every
am spends most of its time in executing its loops, it is especially important
ompiler to generate good code for loops. Many code transformations

d upon the identification of “loops” in & flow graph. We say that a set of
I, in a flow graph is a loop if

1. Thereis a node in I, called the loop entry with the property that no other
node in L has a predecessor outside L. That is, every path from the entry
of the entire flow graph to any node in L goes through the loop entry.

9. Every node in L has a nonempty path, completely within L, to the entry
- of L.

" Example 8.9: The flow graph of Fig. 8.9 has three loops:

1. B3 by itself.
2. Bg by itself.
3. {B2,B3,B4}.

" The first two are single nodes with an edge to the node itself. For instance,
B; forms a loop with Bs as its entry. Note that the second requirement for a
~ loop is that there be a nonempty path from Bs to itself. Thus, a single node
- like By, which does not have an edge B, — By, is not a loop, since there is no
nonempty path from Bz to itself within {Bz}.

The third loop, L = {B2, Bs, Bs}, has By asits loop entry. Note that among
these three nodes, only Bs has 2 predecessor, Bi, that is not in L. Further, each
~ of the three nodes has a nonempty path to B staying within L. For instance,
_ Bs has the path By — B3 — By - B,. 0O

8.4.6 Exercises for Section 8.4
. Exercise 8.4.1: Figure 8.10is a simple matrix-multiplication program.
a) Translate the program into three-address statements of the type we have

been using in this section. Assume the matrix entries are numbers that
require 8 bytes, and that matrices are stored in row-major order.

532 CHAPTER 8. CODE GENERATION

b) Construct the flow graph for your code from (a)-

¢) Identify the loops in your flow graph from (b).

for (i=0; i<n; i++)
for (j=0; j<u; j++)
c[il[j]1 = 0.0;
for (i=0; i<n; i++)
for (j=0; j<m; j++)
for (k=0; k<n; k++)
clil[j] = clil [j1 + alil [k1*bl&] [31;

Figure 8.10: A matrix-multiplication algorithm

Exercise 8.4.2: Figure 8.111is code to count the number of primes from 2 to

n, using the sieve method on a suitably large array a. That is, ali] is TRUE at
the end only if there is no prime \/i or less that evenly divides i. We initialize
all afi] to TRUE and then set a[j] to FALSE if we find a divisor of J. 2

A8

a) Translate the program into three-address statements of the type we have
been using in this section. Assume integers require 4 bytes. By

-

b) Construct the flow graph for your code from (a).

¢) Identify the loops in your flow graph from (b).

for (i=2; i<=n; i+4)
a[i] = TRUE;
count = 0;
s = sqrt(n);
for (i=2; i<=s; i++)
if (afil) /+ i has been found to be a prime */ {
count++; :
for (j=2%i; j<=n; j = j+i) ;
alj] = FALSE; /* no multiple of i is a prime

Figure 8.11: Code to sieve for primes

533

:"@PTIMIZATION OF BASIC BLOCKS
sic Blocks

Optimization of Ba
a substantial improvement in the running time of code
y by performing local optimization within each basic block by itself. More
;mgh global optimization, which looks at how information flows among the

is covered in later chapters, starting with Chapter 9.

locks of a prograi,
'a complex subject, with many different techniques to consider.

often obt ain

1 The DAG Representation of Basic Blocks
imization begin by transforming a basic

ny important techniques for local opt i
into a DAG (directed acyclic graph). In Section 6.1.1, we introduced the
The idea extends naturally

for single expressions.
that are created within one basic block. We

G as a representation

the collection of expressions

" construct a DAG for a basic blockas follows:

1 There is a node in the DAG for cach of the initial values of the variables

appearing in the basic block.

9. There is a node N associated with each statement S within the block.
The children of N are those nodes corresponding to statements that are

the last definitions, prior to s, of the operands used by s.
nd also attached to N

operator applied at s, &
tion within the block.

3. Node N is labeled by the
hich it is the last defini

is the list of yariables for w
nodes. These are the nodes whose
hat is, their values may be
L. Calculation of these “live

discussed in Section 9.2.5.

4. Certain nodes are designated output
variables are live on ezit from the block; t
used later, in another block of the flow grap
variables” is a matter for global flow analysis,

ck lets us perform several code-

n of a basic blo
ed by the block.

The DAG representatio
the code represent

improving transformations on

local common subexpressions, that is, instructions that

ady been computed.

that is, instructions that compute a value

a) We can eliminate
compute a value that has alre

b) We can eliminate dead code,

b | that is never used.
d on one another; such

¢) We can reorder statements that do not depen:
value needs to be preserved

reordering may reduce the time a temporary

in a register.

*/

o reorder operands of three-address instruc-

aic laws ©
computation.

d) We can apply algebr
thereby simplify the

tions, and sometimes

ezt == T Do A

i A

534 CHAPTER 8. CODE GENERATION

8.5.2 Finding Local Common Subexpressions

Common subexpressions can be detected by noticing, as a new node M is about
to be added, whether there is an existing node N with the same children, in
the same order, and with the same operator. If so, N computes the same value
as M and may be used in its place. This technique was introduced as the
«yalue-number” method of detecting common subexpressions in Section 6.1.1.

Example 8.10: A DAG for the block

= +
= +

is shown in Fig. 8.12. When we construct the node for the third statement
c=b+c, we know that the use of b in b+c refers to the node of Fig. 8.12
labeled -, because that is the most recent definition of b. Thus, we do not
confuse the values computed at statements one and three.

Figure 8.12: DAG for basic block in Example 8.10

However, the node corresponding to the fourth statement d =a-d has
operator - and the nodes with attached variables a and dp as children. Sin
the operator and the children are the same as those for the node correspon
to statement two, we do not create this node, but add d to the list of defi

for the node labeled —. O

It might appear that, since there are only three nonleaf nodes in the DA
Fig. 8.12, the basic block in Example 8.10 can be replaced by a block wi
three statements. In fact, if b is not live on exit from the block, then we
need to compute that variable, and can use d to receive the value repr
by the node labeled —. in Fig. 8.12. The block then becomes :

a b+ c
d a-4d
c=d+c

535

B MIZATION OF BASIC BLOCKS

n b and 4 are live on exit, then 4 fourth statement must be

er, if bot
o the other.

v
opy the value from one t
ubexpressions, we really are look-

jons that are gua,ranteed to compute the same value, no matter
ed. Thus, the DAG method will miss the fact that the
he first and fourth statements in the sequence

8.11: When we ook for common 8

n computed by t

a=b+ ¢
p=b-4
c=c+d
e=b+C

That is, even though b and ¢ both change between

eir sum remains the same, because b+c=
hown in Fig. 8.13, but does

gebraic identities applied
he equivalence. a

same; namely bg + Co-
grst and last statements, th
d) + (c+4d). The DAG for this sequence is s

' n subexpressions. However, al

xhibit any commo
d in Section 8.5.4, may expose t

¢ DAG, as discusse
(1) e
o a eo c

bo Co do

Figure 8.13: DAG for basic block in . Example 8.11

8.5.3 Dead Code Elimination

The operation on DAG’s that corresponds to dead-code elimination can be im-

plemented as follows. We delete from a DAG any root (node with no ancestors)
that has no live variables attached. Repeated application of this transformation
will remove all nodes from the DAG that correspond to dead code.

Example §.12: I, in Fig. 8.13, 2 and b are live but ¢ and e are not, we can
immediately remove the root labeled e. Then, the node labeled ¢ becomes a
root and can be removed. The roots labeled 2 and b remain, since they each
have live variables attached. O
al, we must be careful, when reconstructing code from DAG’s, how we choose

variables. If a variable = ig defined twice, or if it is assigned once and the initial
ke sure that we do not change the value of z until we

hen we must ma
e whose value & previously held.

1In gener
‘the names of
value zg is also used,
have made all uses of the nod

536 CHAPTER 8. CODE GENERATION

8.5.4 The Use of Algebraic Identities

Algebraic identities represent another important class ‘of optimizations on basic
blocks. For example, we may apply arithmetic identities, such as

z+0=0+2=2 z—0==z
zxl=1lxz=¢7 z/l==z

o eliminate computations from a basic block.
Another class of algebraic optimizations includes local reduction in strength,
that is, replacing a more expensive operator by & cheaper one as in:

EXPENSIVE CHEAPER
z? TXT
2xzT = z+2z
z/2 z % 0.5

A third class of related optimizations is constant folding. Here we evaluate
constant expressions at compile time and replace the constant expressions by
their values.? Thus the expression 2 * 3.14 would be replaced by 6.28. Many
constant expressions arise in practice because of the frequent use of symbolic
constants in programs.

The DAG-construction process can help us apply these and other more
general algebraic transformations such as commutativity and associativity. For -
example, suppose the language reference manual specifies that *is commutative;
that is, T*y = yxz. Before we create a new node labeled x with Jeft child M and
right child N, we always check whether such a node already exists. Howeveg
because * is commutative, we should then check for a node having operator *;
Joft child N, and right child M. ' v

The relational operators guch as < and = sometimes generate unexpect'
common subexpressions. For example, the condition = > y can also be test
by subtracting the arguments and performing a test on the condition code set
by the subtraction.® Thus, only one node of the DAG may need to be generate
forz —yand T > Y-

Associative laws might also be applicable to expose common subexpres
For example, if the source code has'the assignments

a=b+ Cj
e=c+d+b;

the following intermediate code might be generated:

e e
2 Arithmetic expressions should be evaluated the same way ab compile time a8 th
run time. K. Thompson has suggested an elegant solution to constant folding: €0
constant expression, execute the target code on the spot, and replace the expression
result. Thus, the compiler does not need to contain an interpreter.

3The subtraction can, however, introduce overflows and underflows while a €@

struction would not.

=b + C
c+ d
=t +Db

1}

e

t needed outside this block, we can change this sequence to

b+c
=a+d

e

ativity of -+.
the language reference manual care-
computations are permitted, since

both the associativity and commut
e compiler writer should examine

y to determine what rearrangements of
cause of possible overflows or underflows) computer arithmetic does not al-

Ays obey the algebraic identities of mathematics. For example, the Fortran

dard states that a compiler may evaluate any mathematically equivalent
ression, provided that the integrity of parentheses is not violated. Thus,
ompiler may evaluate z *y — I «z as = * (y — z), but it may not evaluate
(b—c) as (a+ b) —c. A Fortran compiler must therefore keep track of where
entheses were present in the source language expressions if it is to optimize
grams in accordance with the language definition.

5.5 Representation of Array References
_indexing instructions can be

ght appear that the array
stance the sequence of three-

ator. Consider for in:

t first glance, it mi
ated like any other oper
address statements:

x = alil
aljl =y
z = al[il

. If we think of a[i] as an operation involving a and i, similar to a + i, then
- it might appear as if the two uses of ali] were a common subexpression. In
. that case, we might be tempted to “optimize” by replacing the third instruction
ez - al[i] by the simpler z = X. However, since j could equal i, the middle
. statement may in fact change the value of a[i]; thus, it is not legal to make

~ this change.
The proper way to represent array accesses in a DAG is as follows.

1. An assignment from an array, like x = alil,is represented by creating a
node with operator =[] and two children representing the initial value of
the array, ap in this case, and the index i. Variable x becomes & label of

this new node.

9. An assignment to an array, like aljl = v, is represented by a new node
with operator []= and three children representing 2o, j and y. There is

no variable labeling this node. What is different is that the creation of

538

this node kills all
A node that has

Example 8.13: The

is shown in Fig. 8.14
labeled [1=is create

Exampl

What is happe

then b represents
then b[i] and b

that does the kill

cannot become a COMIMON subexpr

cannot be identified wit
ig must be created instead. O

Figure 8.14: The DAG for a

e 8.14: Sometimes,

children have an array
a node can kill if it has a
children are array nodes.

be a position in an a

to have the third instruction, b[jl = ¥:
variable. However, as we see i

CHAPTER 8. CODE GENERATION

ted nodes whose value depends on ag.

currently construc
abels; that is, it

been killed cannot receive any more 1
ession.

DAG for the basic block

x = alil
aljl = vy
z = alil

_ The node N for x is created first, but when the node
d, N is killed. Thus, when the node for z is created, it
h N, and a new node with the same operands agp and

Yo

sequence of array assignments

¢ killed even though none of 1

like ao in Example 8.13 as attached yariable. Likewis
descendant that is an array, even though none of I
For instance, consider the three-address code

2 node must b

bp=12 + a
x = b[il
blil =¥

asons, b has been defin
e four byt

a. Ifjandi represent the same
location. Therefore it i8 impo!
kill the node with x as its & b
n Fig. 8.15, both the killed node and &
dchild, not as a child. B

ning here is that, for efficiency re
rray a. For example, if the elements of a ar
the fourth element of

[3] represent the same

ing have ao as a gran

|G

L7\

©

12 ag io Jo Yo

3.15: A node that kills a use of an array peed not have that array as @

6 Pointer Assignments and Procedure Calls

en we assign indirectly through a pointer, as in the assignments

¥ = *P
*q = ¥

do not know what p or 4 point to- In effect, x = *P is a use of every
iable whatsoever, and *q = yis @ possible assignment to every variable. As
' a consequence, the operator =* must take all nodes that are currently associated
f with identifiers as arguments, which is relevant for dead-code climination. More
~ importantly, the %= operator kills all other nodes so far constructed in the DAG.
i There are global pointer analyses 0ne could perform that might limit the set
of variables a pointer could reference at a given place in the code. Even local
~ analysis could restrict the scOP€ of a pointer. For instance, in the sequence
p = &x
*p =¥

we know that x, and no other variable, 18 given the value of y, s0 W€ don’t need
to kill any node but the node to which x was attached.

Procedure calls behave much like assi
absence of global data-flow information, we must assume that a procedure uses
and changes any data to which it has access. Thus, if variable is in the scope
of a procedure P, & call to P both uses the node with attached variable x and

kills that node.

8.5.7 Reassembling Basic Blocks From DAG’s

After we perform whatever optimizations are possible while constructing the
DAG or by manipulating the DAG once constructed, we may reconstitute the
three-address code for the basic block from which we built the DAG. For each

LTS

Foww - AAED ._i:y-:-.—‘,,

e et sl SRS

d

540 CHAPTER 8. CODE GENERATION

node that has one or more attached variables, we construct a three-address
statement that computes the value of one of those variables. We prefer to
compute the result into & variable that is live on exit from the block. However, if
we do not have global live-variable information to work from, we need to assume
that every variable of the program (but not temporaries that are generated by
the compiler to process expressions) is live on exit from the block.

If the node has more than one live variable attached, then we have to in-
troduce copy statements 0 give the correct value to each of those variables.
Sometimes, global optimization can eliminate those copies, if we can arrange to
use one of two variables in place of the other.

Example 8.15: Recall the DAG of Fig. 8.12. In the discussion following
Example 8.10, we decided that if b is not live on exit from the block, then the

three statements

a b +c
d=a-4d
c=d+c

suffice to reconstruct the basic block. The third instruction, ¢ =d +c, must use

4 as an operand rather than b, because the optimized block never computes b.
If both b and d are live on exit, or if we are not sure whether or not they '

are live on exit, then we need to compute b as well as d. We can do so with the. b

sequence

=b + ¢C
=a-d
=d

=d +cC

This basic block is still more officient than the original. Although the num
of instructions is the same, weé have replaced & subtraction by a copy; whi
tends to be less expensive on most machines. Further, it may be that by doi
a global analysis, we can eliminate the use of this computation of b ou
the block by replacing it by uses of d. In that case, we can come back to
basic block and eliminate b = d later. Intuitively, we can eliminate this €0
wherever this value of b is used, d is still holding the same value. That situ
may or may not be true, depending on how the program recomputes d-

When reconstructing the basic block from a DAG, we not only need t0°
about what variables are used to hold the values of the DAG’s nodes;
also need to worry about the order in which we list the instructions €O
the values of the various nodes. The rules to remember are

1. The order of instructions must respect the order of nodes in th
That is, we cannot compute a node’s value until we have COH
value for each of its children.

541

IMIZATION OF BASIC BLOCKS

ents to an array must follow all previous assignments t0, Or eval-

(]
ding to the order of these instructions

15 from, the same array, accor

e original basic block.
; uations of array elements must follow any previous (according to the
ts to the same array. The only permutation

al block) assignmern
owed is that two evaluations from the same array may be done in either
hat array.

er, as long as neither crosses over an assignment to t

y use of a variable must follow all previous (according to the original

ck) procedure calls or indirect assignments through a pointer.

all or indirect assignment through a pointer must follow

y procedure ¢
block) evaluations of any variable.

all previous (according to the original

is, when reordering code, no statement may Cross a procedure call or
ent through a pointer, and uses of the same array may Cross each other
f both are array accesses, but not assignments to elements of the array.

Exercises for Section 8.5

e =a
b=>
a=e

' xercise 8.5.2: Simplify the three-address code of Exercise 8.5.1, assuming

¢ ~ a) Only o is live on exit from the block.

b) a, b, and c are live on exit from the block.

e

Exercise 8.5.3: Construct the basic block for the code in block Bsg of Fig. 8.9.

Do not forget to include the comparison % < 10.

" Exercise 8.5.4: Construct the basic block for the code in block Bs of Fig. 8.9.

:_- Exercise 8.5.5: Extend Algorithm 8.7 to process three-statements of the form

a) alil = b
b) a = blil
) a = *b
c) *a = b

Exercise 8.5.6: Construct the DAG for the basic block

CHAPTER 8. CODE GENERATION

alil = b
*p = C
d = alj]
e = *p
*p = alil

on the assumption that
a) p can point anywhere.
b) p can point only to b or d.

! Exercise 8.5.7: If a pointer or array expression, such as a[i] or *p is assigned
and then used, without the possibility of being changed in the interim, we can
take advantage of the situation to simplify the DAG. For example, in the
code of Exercise 8.5.6, since p is not assigned between the second and fourth
statements, the statement e = *p can be replaced by e = c, regardless of what
p points to. Revise the DAG-construction algorithm to take advantage of such
situations, and apply your algorithm to the code of Example 8.5.6.

Exercise 8.5.8: Suppose a basic block is formed from the C assignment state-
ments

x=a+b+c+d+e+ f;
y=a+c+te;

a) Give the three-address statements (only one addition per statement) for
this block.

b) Use the associative and commutative laws to modify the block to use the
fewest possible number of instructions, assuming both x and y are live on
exit from the block.

8.6 A Simple Code Generator

In this section, we shall consider an algorithm that generates code for a single
basic block. It considers each three-address instruction in turn, and keeps track
of what values are in what registers so it can avoid generating unnecessary loads
and stores.

One of the primary issues during code generation is deciding how to use
registers to best advantage. There are four principal uses of registers: '

¢ In most machine architectures, some or all of the operands of an operation
must be in registers in order to perform the operation.

» Registers make good temporaries — places to hold the result of a subex-
pression while a larger expression is being evaluated, or more generally, a
place to hold a variable that is used only within a single basic block.

