Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part 1

Joun McCartiy, Massachusetts Insittute of Technology, Cumbridyge, Mass,

1. Introduction

A programming system called LISP {for LISt Proeessor)
has been developed for the IBM 704 computer by the
Ariificial Intelligence group at M.I.T. The system was
designed to facilitate experiments with a proposed system
called the Advice Taker, whereby a machine could be
instructed to handle declarative as well as imperative
sentences and could exhibit “common sense” in carrving
out its instructions. The original proposal [1] for the Advice
Taker was made in November 1958, The main require-
ment was a programming systemn for manipulating ex-
pressions representing formalized declarative and impera-
tive sentences so that the Advice Taker system could make
deductions.

In the course of its development the Lisp system went
through several stages of simplification and eventually
came o be based on a scheme for representing the partial
recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the TBM 704
eomputer, or of any other eleetronic computer, and it now
seems expedient to expound the system by starting with
the class of expressions ecalled S-expressions and the fune-
tions called S-{functions.

In this article, we first deseribe a formalism for defining
functions recursively. We believe this formalism has ad-
vantages both as a programming language and as vehicle
for developing a theory of computation. Next, we describe
S-expressions and S-functions, give some examples, and
then deseribe the universal S-function apply which plays
the theoretical role of a universal Turing machine and
the practical role of an interpreter. Then we describe the
representation of S-expressions in the memory of the
IBM 704 by list structures similar to those used by Newell,
Shaw and Simmon (21, and the representation of S-functions
by program. Then we mention the main features of the
Lrsp programming system for the IBM 704. Next comes
another way of describing computations with symbolic
expressions, and finally we give a recursive function in-
terpretation of flow charts,

‘We hope to describe some of the symbolic computations
tor which Lisp has been used in another paper, and also to
give elsewhere some applications of our recursive function
formalism to mathematical logic and to the problem of
mechanical theorem proving.

184 Communications of the ACM

2. Functions and Function Definitions

We shall need n number of mathematical ideas apd
notations concerning functions in general. Maost of the
ideas ure well known, but the notion of condifionul caopres-
ston 13 believed to be new, and the use of conditional
expressions permits lunctions to be defined recursively ina
new and convenient way,

a. Partial Functions. A, partial function is a function
that is defined only on part of its domain. Partial funelious
necessarily arise when functions are defined by computs-
tlons because for some values of the arguments the compu-
tation defining the value of the function may not te-
minate. However, some of our elementary functions will be
defined as partial functions.

b. Propositional Evpressions and Predicates. & propusi-
tional expression is an cxpression whose possible values
are T (for truth) and T (for falsity). We shall nssume
that the reader is familiar with the propositional connee
tives A {“and™), W (Yor’), and ~ (“not’). Typied
propogitional expressions are:

X<y

(x <) A (b =e)

X is prime
A predicate is a funetion whose range cousists of the
truth values T and I

¢. Conditiomal Fapressions. The dependence of truh
values on the values of quantities of other kinds is ex-
pressed in mathematics by predicates, and the dependence
of truth values on other truth values by logical connet-
{ives. However, the notations for expressing symbolically
the dependence of quantities of other kinds on trush
values is inadequate, so that English words and phms{ﬁ
arce generally used for expressing these depeucl(mcuswu‘z
toxts that describe other dependences symbolically. o
cxample, the function | x|is usnally defined in wmx}.\:.

Conditional expressions are a deviee for exprossing e
dependence of quantities on propositional quaniitios. A
conditional expression has the form

{(Pr—>e1, - -, Prn—>Cn)

pls AL

where the p’s are propositional expressions and the
expressions of any kind. Tt may be read, “If pr then Co

stherwize If pg then es, oy otherwise il p, then e, or
gy vields ey, oo pa Vields e 7

l ‘,\io now give the rules for determining whether the valuc
of (py o By o, Da T a) IS defined, fmd if, g0 what its
volue i Bxamine the p's from left to right. If a p whose
value is L is encountered belore any p whose value Is
andefined is encountered, then the value of the conditional
prpression g the valne of the corresponding e (il this 1s
definedy. If any undefined p is encountered before a true p,
o 1 all p’s are false, or if the ¢ corresponding to the first
trae p is undefined, then the value of the conditional ex-
pression iz undelined. We now give examples,

1 <2 —=4122—=31 =4

o
Ja

1= 3T %) is undefined

(2 <134 < 1—4) is undefined

Some of the simplest applicaiions of conditional expres-

sions are in giving such definitions as
xtwm (X <0 —x, T e x)
fp=(i=j—1,T—0)
sgn (¥} = (x <0—> -1, x =0—0,T—=1)

d. Recursive Function Definitioins. By using conditional
expressiong we can, without cireularity, define functions
by formulas in which the defined function ocours. For
example, we write

! (:;1 s () s | T — 11'(:1'1 -1)]

When we use this formula to evaluate 0! we get the answer
i; beeause of the way in which the value of a conditional
sxprossion was defined, the meaningless expression
0-00 ~ 1) ! does not arise. The evaluation of 2! according
to thiz definition proeeeds as follows:
2W=(2=0-1T—2:(2— 1)1

L

=211

i
o

(l=0—=1,T—1(1— 11
= 2-1-0!
200 =0—1,T =>0-(0 — DD

=2.1-1

) We now give two other applications of recursive func-
tion definitions. The greatest common divisor, ged(m,n),
?f two positive integers m and n is eomputed by means of
the Fuclidean algorithm. This algorithm is expressed by

the reeursive funetion definition:
ged{m,i) = (m > n— ged({n,m), rem(n,m)
=0 —m, T — ged{rem(n,m},m))

where rem{n, m) denotes the remainder left when n is
divided by m.

The Newtonian algorithin for obtaining an approximate
square root of a number «, starting with an initial approxi-
mation x and requiring that an acceptable approximation

. 9 .
y satisfy | v° — a| < & may be written as

sqré(a, x, €
= (Ix" ~ a] <e—x, T —syrt (a.,é (x + %), &)

The simultanecus recursive definition of several fune-
tions is also possible, and we shall use such definitions if
they are required.

There is no guarantee that the computation determined
by & recursive definition will ever terminate and, for
example, an attempt to compute n! from our definition
will only suceeed if » is & non-negative integer. If the com-
putation does not lerminate, the funetion must be regarded
as undefined for the given arguments.

The propositional connectives themselves can be de-
fined by conditional expressions. We write

pAgq=(p—qT—>T)
pVqg=(p~T,T->q)
~p=(p—=FT-T)

i

poq=(p—qT—T)

It 1g readily seen that the right-hand sides of the equa-
tions have the correct truth tables. If we consider situa-
tions in which p or ¢ may be undefined, the connectives
A and V/ are seen to be noncommutative. For example if
p is false and ¢ is undefined, we see that according to the
definitions given above p A q is false, but q A p is unde-
fined. For our applications this noncommutativity is
desirable, since p A (18 computed by first computing p,
and if p is false ¢ is not computed. If the computation for
p does not terminate, we never get around to computing ¢.
We shall use propositional connectives in this sense here-
after.

e. Functions and Forms. 1t is usual in mathematics—-
outside of mathematical logic-—to use the word “function”
imprecisely and to apply it to forms such as y° + x. Be-
cauge we shall later compute with expressions for functions,
we need a distinetion between funetions and forms and a
notation for expressing this distinetion. This distinetion
and a notation for describing it, from which we deviate
trivially, is given by Church {3].

Let f be an expression that stands for a function of two
integer variables. It should make sense to write f(3, 4) and
the value of this expression should be determined. The
expression v° 4 x does not meet this requirement;

Communications of the ACM 185

y‘z 4+ x(3, 4) 18 not & conventional notation, and if we
attempted to define it we would be uncertain whether its
value w c)ul(ltum out to be 13 or 19, Church calls an expres-
sion like ¥* 4+ x # form. A form can be converted into a
function if we ean determine the correspondence between
the variables occurring in the form and the ovdered list of
arguments of the desired function.
by Chureh’s A-notation,

If § is a form in variables x, , cXo, then A((x, -,
Xa), &1 will be taken to be the function of n variables whose
value 1s determned by substituting the arguments for the
variables xp, - -+, x,, in that order in & and evaluating the
resulting expression. For example, A({x,y),y'-+x) iz a
function of two variables, and A{((x, ¥), v’ +x1{3,4) = 19.

The varisbles oecurring in the list of variables of u A-ex-
pression are dummy or bound, like variables ol lntegration
in a definite integral. "That is, we may change the names
of the bound variables in a function expression without
changing the value of the expression, provided that we
make the same change for each ocourrence of the variable
and do not make two variables the same that previously
were different. Thus Mx,y),y" +x) AM{u,v), vi4+u) and
M (¥, x), £4¥) denote the same function.

We shall frequently use expressions in which some of the
variables are bound by Ms and others are not. Such an ex-
pression may be regarded as defining a function with
paraumeters. The unbound variables are called free vari-
ables.

An adequate notation that distinguishes functions from
forms allows an unambiguous treatment of functions of
[unctions. It would involve too much of a digression to give
examples here, but we shall use functions with [unctions as
arguments tater in this report.

Difficullies arise in combining Funclions described by
-expressions, or by any other notation involving variables,
because different bound variables may he represented by
the same symbol, This is called collision of bound vari-
ables. There is a notation involving operators that are
called combinators for combining functions without the use
of variables. Unfortunately, the combinatory expressions
for interesting combinations of functions tend to be lengthy
and unreadable.

This 15 accomplished

f. Eapressions for Recursive Functions. The h-notation is
inadequate for naming funetions defined recursively. For
example, using A's, we ¢an convert the definition

sqrt{a, x, €
r 1 &
= (%= a] <e-x, T —sqrtla, 2(+3) e)

nto

sqre = AM(a, %, ¢}, (ix* — 2l < e—x, T—

squt (a, 5

RO)

but the right-hand side ecannot serve as an expression for
the funetion beeause there would be nothing to indicate

186 Communications of the ACM

that the reference o sqrt within the expression stood foy i,
axpression us a whole,

In order to be able to write expressions for TCCUrsiLe
funcitons, we intreduce gnother notation label(0,87 de
noles the expression &, provided lhat occurrences of 4
within & are to be interpreted as veferring to the expressiny
as a4 whole, Thus we cun write

label(sqee, Ma, x, ¢), (] x% — a |

-

< e x, T st (a, l)(\ -+ i) €
a5 a name for our sgrt funetion.

The symbol ¢ in label{a,&)
may be aftered systematically without changing the mesn-
ing of the expression. It behaves differently from a varidie
bound by a A, however,

is also bound, thai

3. Recursive Functions of Symbolic Expressions
3. R e F t f Symbolie Lxy .

We shall firsy define 2 class of symbolie expressions i
terms of ordered pairs and lists. Then we shall define five
clementary functions and predicates, and build from thep
by ecomposition, conditional expressions, and recursive
definitions an extensive class of functions of which we
shall give o number of examples. We shall then show by
these funetions themselves can be expressed as svinbolic
expressions, and we shall define a universal function appls
that allows us to compute from the expression for a gvep
function its value {or given argurents. Finally, we shall
define some [unctions with functions as arguments sl
give some useful examples.

a. A Class of Symbotic Expressioms, We shall now define
the S-expressions (3 stands for symbolic). They are forgd
by using the special characters

)
(

and an infinite set of distinguishable atomie symbols. For
atomie symbols, we shall use strings of capital Latin letters
and digits with single imbedded blanks. Fxamples o
atomic symbols are

A
A’B;\
APPLE PIE NUMBER 3

There is & twofold reason for departing from the uslz::a&
mathematical practice of using single letters [or atusis
symbols. First, computer programs frequently requrt
hundreds of distinguishable symbols that must be x'oz'fnw%
from the 47 characters that are printable by the IBM 7
computer. Second, it is convenient to allow English w s
and phrases to stand for atomie entities for mnf‘mw‘u
reasons. The symbols are atomic in the sense that any sub
strueture they may have as sequences of characters i i_“
nored. We assume only that different symbols can 0%
distinguished,

Lexpressions ure then detined as follows:
 Atomic svibols are S-eXpressions.
1§ o5 and e are S-expressions, so s (ey-e).

:@*‘&QM;

samples of B-expressions are
AB
{(A-Bj
(FAR-Cr-ID)

An R-expression is then simply an ordered pair, the
rerins of which may be atomic synihols or simpler S-expres-
sons, We can represent a list of arbitrary length in terms
of Rexpressions as follows, The list

(my, mg, ©° My}
represented by the S-expression
(oo (o (- o« (o NELY -+))

Here NTL s an atomic symbol used to terminate lists,
Rinee many of the symbolic expressions with which we

desl are conveniently expressed as listz, we shall introduce

o list notation to abbreviate certain S-expressions. We have

. (m) stands for (m- NIL).
20my, o, i)) stands for {nty- L+« (- NTL) -+ -y,
30 {m, -0, maeX) stands for (g (- {myex))0,

Subexpressions can be similarly abhreviated. Some

examples of these abbreviations are
CAB, C), D3 for ({AB-(C-NIL)) - (
A, BY G D) for j{A-(‘B-NIL)‘

(D-NILY)
(C-(D-E)))

Singe we regard the expressious with commas ag abbre-
viations for those not invelving commas, we shall refer to
ther all as S-expressions.

.
2k

. Funetions of S-cxpressions and the Expressions That
frpresent Them. We now define a class of functions of
Soxpressions, The expressions representing these func-
tions are written in o eonventional funetional notation,
Huwever, in order to clearly distinguish the expressions
sepresenting Muuesions from S:expressions, we shall use
sxquences of lower-case letters for funetion names and
variables ranging over the set of S-expressions. We also
use hrockets and semicolons, instead of parentheses and

eommas, for denoting the application of functions to their
arguments. Thus we write

car [x|

ear [cons [(A-B); x]]

i these M-expressions (meta-expressions) any S-expres-
stans that oeenr stand for themselves.

i The Glementary S-functions and Predicates, We intro-
e mo following funetions and predicates:

- i'. atom.atom (x| has the value of T or F, accordingly
84X 38 un atomie symbol or not., Thus

som X} = T
Atom [(X-A)] = F

2. eq. eq [x; v] is defined if and only if both x and y
are atomie. eq [x: y] = T if x and y are the same symbol,
and eq [x; y] = F otherwise. Thus
eq[X;X] = T
eq XA = T
e {X; (X-A)} is undefined.
car [x] is defined if and only if X is not atomie,
e, . Thus car [X] is undefined.

3. ear.
mur (e ey)] =

car 1'(\'- Al = Y
car [((X-A) Y)] = (N-A)

E

edr Ix'} iz also defined when x 1s not atomie.
Thus edr [X] is undefined.

4. edr,
We have edr [(e-e0)! = e

edr [(N-A)] = A
cdr [(X-A)-Y)] =)

cons [x; v] is defined Tor any x and y. We

3. eons.

have cons (e, ; egi = (p;-e;). Thus
cons (X \I o A)
cous [{X-A '\] X-A)N)

car, ¢dr, and cons are (sﬂs;ily geen to satisfy the relations

car {eons [x; v)] = x
edr Jeons [x; vl = ¥

cons [car {x]; edr [x]] = x, provided that x is not atomic.

The names “ear” and “cons” will eome to have mne-
monie significance only when we discuss the representation
of the system in the computer, Compositions of car and edr
give the subexpressions of a given expression in a given
position. Compositions of eons form expressions of a given
structure cut of parts. The class of functions which can be
formed in this way is quite limited and not very interesting.

d. Recwrsive S-functions. We get a much larger class of
functions (in fuct, all computable functions) when we
allow ourselves to form new functions of S-expressions by
conditional expressions and recursive definition.

We now give some examples of functions that are de-
finable in this way.

1. fF [x]. The value of fT {x] is the first atomic symbol
of the S-expression x with the parentheses ignored. Thus

ffl((AB)-C)} = A

"We have

ff {x] = fatom [xj — x; T — ff [car [x]1)

We now trace in detail the steps in the evalualion of
FI((A-B)- O

fI(A-B)-C)]

= [atom [((A-B)-C)] — ((A-B)-C);

T ff [ear [((A-B)-CH]
= [F = ({AB)-Cl T — ff fear [((A-B).C)]))
[T = ff [car [{(A-B)-OH)

1

#

Communications of the ACM 187

= ff [ear [{((A-B)-C)1

= ff [(A-B)]

= [atom [(A-B)] ~ (A-B); L — [T [car [(A B}
= F - (AB); T — ff [ear [{A-B}H]

= [T — f fear [(A-B)]}]

= ff {ear [(A-B)]]

= ff [A]

= [atom [A] ~» A; T — ff [car jA]]

= [T — A; T — ff lcar [A]]]

= A

2. subst [x; v; zl. This function gives the result of

substituting the S-expression x for all occurrences of the
atomic symbol y in the S-expression z. It is defined by

subst [x; v; 2] = [atom [z] — [eq [z; y] — x; T — 2j;
' — cons [subst [x; y; car [g]]; subst [x; y; edr (2]}
As an example, we have
subst [(X-A); B; ((A-B)-O)] = ((A-(X-A))C)

3. equal [x; ¥k This is a predicate that has the value
T if x and y are the same S-cxpression, and has the value
T otherwise. We have

equal [x; y] = [atom [x] A atom [y] /A eq [x; yli
\/ [~atom. [x] A ~atom [v] A equal [ear [x]; car ¥l
A equal [edr [x]; edr [v]]]

1{ is convenient to see how the elementary functions
look in the abbreviated list notation. The reader will
easily verifly that

(i} car [(my, mg, -+, mu)] = my

(i) edr [(my, ma, - -, ma)l = (ma, -+, M)

(iii) edr [(m)] = NIL

{(iv) cons [my ; (mg, -~)] = (my, e, e, my)
(v) eons [m; NIL] = (m)
We define

null [x] = atom [x] A eq [x; NIL]

This predicate is useful in dealing with lists.

Compositions of car and cdr arise so frequently that
many expressions can be written more concisely if we
abbreviate

car [edr [x]],

car {edr [edr [x]l], ete.

cadr [x] for

caddr [z} for

: cons e, ; NIL]- - -]}, This fune-
, en), as a function of its ele-

for cons & ; cons {es ; - - -
tion gives the list, (er, <«
ments.

188 Communicalions of the ACM

The following functions are useful when S-oxpressiong
are regarded as lists.
1. append [x; v].

append [x; y) = [oull {x| — ;T — cons [ear [x];
append [ede [x]; v

An example is

append [(A, B); (C, D, E)] = (A, B, C, D, I

¥

2. among [x; v]. This predicate is true if the S-ex.
pression x oceurs among the elements of the list v. We have
among [x; v} = ~null [y} A [equal [x; car Jy]|

\/ among [x; edr [v]}]

3. pair [x; ¥h This function gives the list of paits of
corresponding clements of the lists x and y. We have

pair [x; v} = [pull X] A null [y| — NIL; ~atom [x]
A ~atom {v] — cons st {ear [x]; ear [v]];
pair {edr [x]; edr [y}l
An example i3
pair [{A, B, C); (X, (Y, 2), U)] = (A, X),
(B, (Y, 7)), (C, L))
4. assoc [x; ¥ If v is a list of the form ({m, v},

v+ (Ua, va)) and x is one of the u’s, then assoc [vl
the corresponding v. We have

assoe [x; ¥] = eyfeaar [y]; x| — cadar [y};
T — agsoc [x; cdr [v]]]
An example is
assoc [X; ((W, (A, B)), (X, (C, D)),
(Y, (E, F))) = (C. 1

5. sublis [x; vi. Here x is assumed to have the form
of u list of pairs ((uy, vi), -+, (Un, va)), where the u’s
are atomic, and y may be any S-expression. The value of
sublis [x; v] is the result of substituting each v for the cor-
responding u in y. In order to define sublis, we first define
an auxiliary function. We have

sub2 [x: 2] = [null [x] — z; eq [eaar [x}; 2] — cadar x[;
T -+ gub2 [edr [s]; 7l
and
sublis [x; ¥] = [atom [¥] — sub2 [x: v];
T — cons [sublis [x; ear [y]}; sublis [x; edr [v]]
We have
sublis [((X, (A, B, (Y, (B, €))); (A, XY
= (A, (A, B). B O

0. Representotion of S-Functions by S-Eupressions.
Geynetions have boen described by M-expressions. We
pow give a rule for translating M-expressions into 8-
expressions, in order to be able to use S-functions for
making certain computations with S-funetions and lor
answering certain questions about S-functions.

The trauslation is determined by the following rules in
«hieh we denote the translation of an M-expression & by
&%,

1 Tf & is an S-expression Li* is (QUOTE, &).

9. Variables and function names that were represented
hy strings of lower-case letters are translated to the cor-
responding strings of the correspending upper-case letters.
Thug ear® is CAR, and subst® is SUBST.

3. Aformfler ;- -+ senlis translated to (f*, e*, -+ -, e.%),
Thus {eons [ear {x]; odr [x]Ii* is (CONS, (CAR, XJ,
(CDR, X))

4 lpL > e
cen, (’ipu*‘ Qn*))~

5. fAllxu; oo s xal; 811* is (LAMBDA, (x*, -
&%),

6. {label [a; 8} * it (LABEL, a*, 8%).

With these conventions the substitution function whose
V-expression is label [subst; Mx; v; z); [atom [z] —
feq ly; 2} — x; T — z]; T — cons [subst [x; ¥; ear (=]1;
subst [x; y; edr [z]]]]]] has the S-expression

(LABEL, SUEST, (LAMBDA, (X, Y, %), (COND
((ATOM, %), (COND, (EQ, Y, 2), X), ((QUOTE,
Ty, Z))), ((QUOTE, T), (CONS, (SUBST, X, Y,

 pa > ed}* i (COND, (pr*, *),

] Xu*)’

(CAR Z)), (SUBST, X, ¥, (CDR, Z)))))))

This notation is writable and somewhat readable. 1t can
be made easier to read and write at the cost of making its
structure less regular. If more characters were available
on the computer, it could be improved considerably.

. The Universal S-Funcison apply. There is an S-func-
tion apply with the property that if f is an S-expression for
an S-function £/ and args is a list of arguments of the form
(argl, ---, argn), where argl, ---, argn are arbitrary
S-expressions, then applylf; args] and tlargl; - - - ; argn]
are defined for the same values of argl, - -+, argn, and are
equal when defined. For example,

Mix; yi; cons [car [x]; il [(A, B); (C, D)]
= apply (LAMBDA, (X, Y), (CON5, (CAR, X),
Y)); (A, B), (C, D] = (4, C D)
The S-function epply is defined by
apply If; args] = eval [cons |f; appq [args]]; NILJ
where
appq [m] = [null (m] — N1L;
T - cons [list [QUOTE; car (m]]; appy [edr (]

and,
eval [e;al = [
atom {el — assoc [e; al;
atom [car [e]] — [
eq [ear [e}; QUOTE] — cadr [e];
eq [car [e]; ATOM] — atom [eval [cadr [e]; a]];
eq [ear [e]; EQ] — [eval [cadr [e]; a] = eval [caddr [e]; all;
eq [ear le]; COND] — cveon [edr [e]; al;
eq fear [e]; CAR] — car [eval {cadr [e]; a]];
eq [ear [e]; CDR] - cdr {eval [cadr [e]; all;
eq [ear [¢]; CONS] — cons [eval [cadr [e]; a]; eval [caddr le];
al]; T — eval [cons fassoc [car [e]; al;
evlis [edr [e]; alf; all;
eq [caar {e|; LABEL] — eval (cons [eaddar [e}; edr [el};
cons [list [cadar [e]; car [el; all;
eq leaar [e]; LAMBDA] — eval [caddar fe];

append [pair [cadar [e]; evlis [edr [e]; a]; a]l]

and
eveon [e;a] = [eval [caar [e]; a] — eval [eadar [¢]; a];

T — eveon [edr [e]; a])
and

evlis [m; a] = [oull [m] — NIL;
T — cons [eval [car [m]; al; evlis [edr [ml]; al]]

We now explain a number of points about these defini-
tions.

1. apply itself forms an expression representing the
value of the function applied to the arguments, and puts
the work of evaluating this expression onto a function eval.
Tt uses appq to put quotes around vach of the arguments,
<o that eval will regard them as standing for themselves. -

2. eval [e; a] has two arguments, an expression ¢ to be
evaluated, and a list of pairs a. The first item of each pair
is an atomie symbol, and the second is the expression for
which the symbol stands.

3. If the expression to be evaluated is atomic, eval
evaluates whatever is paired with it first on the list a.

4. Tf e is not atomic but car [¢] is atomic, then the expres-
gion has one of the forms (QUOTE, e) or (ATOM, e) or
(EQ7 €1, 62) or (OOND, (pla el) y s (pn, €n)}, Or
(CAR,e) or (CDR, e) or (CONB, e, ez) or (f,ey, - €n)
where T is an atomic symbel.

In the case (QUOTE; ¢) the expression e, itself, is taken,
In the case of (ATOM, e) or (CAR, e) or (CDR, e) the
expression e is evaluated and the appropriate function
taken. In the case of (EQ, e, e:) or (CONS, e, ez) two
expressions have to be evaluated. In the case of (COND,

Communications of the ACM 189

{(pyy e, <oy (Do, €n)) the p’s have to be evaluated in
order um,il a true p is found, and then the corresponding e
must be evaluated. "This is accomplished by eveon, Finudly,
in the case of (f, e;, -+, e,) we evaluate the expression
that results from replacing fin this expression by whatever
it 18 paired with in the list a.

5. The evaluation of ((LABEIL,{, &), e, -+ ,0.) is ac-
,()Illplibh(’d by evaluating (€, e, -+, e,) with the pairing
(f, (LABEL, {, &)) pul on the front of the previous list «
of p:.um.

6. Finally, the evaluation of ((LAMBDA, (x, -+, Xa),
&), 80, -0, e4) 1s accomplished by evaluating & with the
fist of pairs ({(x1,e), - -+, ({x., €s)) pul on the front of
the previous list a.

The list a could be eliminated, and LAMBDA and
LABEIL expressions evaluated by substituting the argu-
ments for the variables in the expressions & Unfortu-
nately, difficulties involving collisions of bound variables
arise, but they are avoided by using the list a

Caleulating the values of funetions by using apply is an
activity better suited to electronic computers than to
people. As an illustration, however, we now give some of
the steps for ealculating

apply [(LABEL, FF, (LAMBDA, (X), (COND,
((ATOM, X), X), ((QUOTE, 1),
(FF, (CAR, X))))1); ((A-B))] = A

The first argument is the S-expression that repregents the
function ff defined in section 3d, We shall abbreviate it
by using the letter 4. We have

apply [¢; ((A-B))]
= eval [({LABEL, FF, ¢), (QUOTE, (A-B))); NIIJj
where ¥ is the part of ¢ beginning (LAMBDA
eval [{LAMBDA, (X)), «), (QUOTE, (A-B)));
((FF, ¢))]
where © 18 the part of ¢ beginning {COND
= eval [(COND, (x, &), (7, &)); ((X, (QUOTE,
(A-B))), (FF, ¢))]
Denoting ((X, (QUOTE, (A-B))), (FF,¢)) by a,

we obtain

i

i

eveon [({m, &), (72, &)); o

This involves eval [;]

= eval [([ATOM, X}; o]

= gtom [eval [X; «j

= atom Jeval lassoc [X; ({X, (QUOTE, (A-B))),
(FF, ¢1)1; oll

= atom [eval [{QUOTE, (A-B)); «f

= atom [(A-B)]

=T

190 Communicuations of the ACM

Our main caleulation continues with
apply fo; ((A-B))]

=eveon [{((m, &)} o,

which involves eval [m ;o] = eval [[QUOTE, Th; 6] = T
Our main calenfation agan continues with

apply [¢; ((A-B))]
= aval [e ; o]
FHEE, (CAR, X)) ; o
= eval [cons [¢; evliz [((CAR, X)); o]; «]

= eV

[valuating evlis [{({CAR, X}); o] involves
eval [{CAR, X ; o
= car [eval {X;]

= car {{A-B)], where we took wtvp% from the carlier
computation of atom [eval [X; o]} = A,
and =0 evlis [((CAR, X)); t.hen hecomes

list [list {QUOTE; A]l = ((QUOTE, A)),
and our main quantity becomes

= eval [(¢, (QUOTE, A)); «

The subsequent steps are made as in the beginning of
the calculation. The LABEL and LAMBDA cause new
puirs to be added (o «, which gives a new list of pairs g .
The term of the conditional eval [(ATOM, X}, o} has
the value T beeause X is pawred with {QUOTE, ¢ jj' {nse
in a , rather than with (QUOTE, (A-B)) as in «

Therefore we end up with eval [X; @] from the eecon,
and this is just A.

g, Functions with Functions as Arguments. There are a
number of useful functions some of whose arguments are
functions. They are especially useful in defining other fune-
tions. One such function is maplist [x; {] with an S-expres:
sion argument x and an argument £ that is a function from
H-cxpressions to S-expressions, We define

maplist [x; f] = [null [x] — NIL;
T — cons [fix]: maplist {edr {x]; 11}

The usefulness of maplist is illustrated by formulas fov
the partial derivative with respect to x of expressions i
volving sums and products of x and other variables. The
S-cxpressions that we shall differentiate are formed o=
follows.

1. An atomic symbol 1s an allowed expression.

2. Ife;, e, -, eqate allowed expressions, (PLUS, ¢

-, e and (TIMES, e, -+, e,) arealso, and represen’®
the sum and product, respectively, of e;, -+ -, ..

This is, essentially, the Polish notation for functions
exeept that the inclusion of parentheses and commas al-
lows funetions of variable numbers ol arguments. An maur
ple of an allowed expression is (TIMES, X, (PLU®

X, A), Y), the conventional algebraic notation for whit
is X(X + A)Y.

&

{aj

1T —C17

(b} ic}

Fro. |

Our differentiation formula, which gives the derivative
ol v with respect to x, is
diff [v; %] = [atow Ty — [eq [v; x] = ONI; T - ZEROL,
eq lear [yl; PLUS| = cons {PLUS; maplist [edr [v]; Mz},
difflear [21; x|l)}; eqlear [y]; TIMES] — cons[PLUS;
maplistledr(y); Mlz); eons [TIMES; maplistfedr [v};
Miwl; ~eq [z; wi - car [w]; T — diff jear [[w]; x]I]}]}]

The derivative of the allowed expression, as computed
by thiz {ormula, 1z
(PLUS, (TIMES, ONT, (PLUS, X, A), Y),

(TIMES, X, (PLUS, ONI, ZERO), Y3,
(TIMES, X, (PLUS, X, A}, ZERO))

Besides mapiist, another useful funetion with functional

arguments is search, which is defined as

seareh [x; p; 17 ul = [null [x] — u; plx| — flx;
T — search [edr [x]; p; ; ul

The function search is used to search a list for an element
. that has the property p, and if such an element i= found, f
of that element is taken. If there is no such element, the
funetion v of no argument. is computed.

4. The LISP Programming System

The LISP programming system ig a system for using
the IBM 704 eomputer to compute with symbolie informa-
tion in the form of S-expressions. Tt has been or will be
used for the following purposes: '

1. Writing a compiler o compile LISP programs into
machine language.

2. Writing a program to check proofs in a class of
lormal logical systems.

3. Writing programs [or formal differentiation and
integration.

4, Writing programs 1o realize various algorithmas for
generating proofs in predieate calculus.

5. Making certain enginecring ecalealations whose re-
sults are formulas rather than numbers,

6. Programming the Advice Taker system.

The basis of the system i3 a way of writing computer
programs to evaluate S-funetions. This will be deseribed
in the folloving sections.

In addition to the facilities for deseribing S-functions,
there are facilities for using $-functions in programs
written as sequences of statements along the lines of
Forrran (4) or Avcon (5). These features will not be
described in this article.

a. Representation of S-Flrpressions by List Structure. A
ligh structure is a collection of computer words arranged
as in figure la or 1b. ach word of the list structure is
represented by one of the subdivided rectangles in the
figure. The left box of a rectangle represents the address
field of the word and vhe r7ight box ropresents the deere-
ment field, An arrow from a box to another rectangle
means (hat the field corresponding to the box contains
the location of the word corresponding to the other
rectangle.

It is permitted for a substructure to oceur in more than
one place in a list structure, as in figure 1bh, but it is not
permitted for a sturcture to have cycles, as n figure le.

Aun atomic symbol is represented in the computer by a
list structure of speciul form called the association lst of
the symbol. The address field of the first word contains a
special constant which enables the program to tell that
this word represents an atomic symbol. We shall describe
assoclation ligts in section 4b.

Fia. 2

An S-expression x that is not atomic is represented by
a word, the address and decrement parts of which contain
the locations of the subexpressions car{x] and edrfx],
respectively. If we use the symbols A, B, ete. to denote
the locations of the association list of these symbols, then
the S-expression ((A-B)-(C-(E-F))) is represented by
the list structure ¢ of figure 2. Turning to the list form of
S-expressions, we see that the S-expression (A, (B, C), 1)),
which iz an abbreviation for (A-((B-{C-NIL)-(D-
NTL)Y)), is represented by the ligt structure of figure 2b.
When a list structure is regarded as representing a list,
we see that each lerm of the list ocecupies the address
part of a word, the decrement part of which peinis to the
word containing the next term, while the last word has
NIL in its deerement.

An expression that has a given subexpression occurring
more than once can be represented in more than one way.
Whether the list structure for the subexpression iz or is not
repeated depends upon the history of the program.
Whether or not o subexpression is repeated will make no

Communieations of the ACM 191

difference in the results of o program as they appesr out-
side the machine, although it will affect the thme and
storage requirements. For example, the D-expression
{({A-B)-(A-B)) can be represented Dy either the list strye-
wure of figure 3a or 3b.

{a} {b)
Fra. 3

5

AlB

The prohibition against eircular lst struetures is es-
sentislly a prohibition against au expression belng a sub-
expression of itself, Such an expression could not exist on
paper in a world with our topology. Cireular list structures
would have some advantages in the machine, for example,
for representing recursive functions, but diffieulties
printing them, and in certaln other operations, make it
seemn advizable not to use them for the present.

The advantages of list structures for the stovage of
symbolic expressions are:

1. The size and even the number of expressions with
which the program will have to deal cannot be predieted
in advance. Therefore, it is difficult to arrange blocks of
storage of fixed lenglh to contain them.

2. Registers can be put back on the free-storage list
when they are no longer needed. Even one register re-
turned to the list iz of value, buy if expressions are stored
linearly, it is difficult to make use of blocks of registers of
odd sizes that may become available.

3. An expression that occurs as a subexpression of
several expressions need be represented iu storage only
onec.

b Assoiation Lists. In the Lise programming system
we pul more in the association list of 4 symbol than is
required by the mathematical system deseribed in the
previous sections. Io fact, any information that we desire
to assoviate with the avmhnl may be put on the associa-
tlon list. This information may include: the print name,
that is, the string of letters and digits which represents
the symbol outside the machine; & numerical value if
the symbol represents a number; another S-expression
if the symbol, in some way, serves as o name for it; or ihe
location of a routine if the symbol represents a function
for which there is a machine-language subroutine. All this
implies that in the machine system there are more primi-
tive entities than have been described in the sections on
the mathematical system.

For the present, we shall only desceribe how print names
are represented on association lists so that in reading or
printing the program can esiablish o correspondence
between information on punched eards, magnetic tape or
printed page and the list structure inside the machine,
The association list of the symbol prrFerENTIATE hos a
segment of the form shown in figure 1. Here pname is s
symbol that indicates that the structure for the print

192 Communications of the ACM

name of the symbol whose association list this is hangs
from the next word on the association list. I the second
row of the .l'ﬂ'ure we buve alist of three words. The addres
pare of each of these words points to o word contalning
six {i-bit characters. The lasy word is filled out with g
B-bil corbination that does not represent a character
prindable by the computer, (Reeall that the 1M 704 hs
a 36-bit word and that printable charaeters ave epch
represented by O bits) The presenee of the words with
charneter information means that the association lists dg
not. themselves represent S-expressions, and that only
some of the funetions for dealing with S-oxpressions make
gapse within as association list.

¢ Free-Storage Last. AU any given thme only a parl of
the memory reserved {or list struetures will actually be in
use for storing S-expressions. The remaining registers (i
our system the number, initially, s approximately 15,000)
ave arranged in a single lst called the free-storage (ist, A
certain register, FREE, In the program contains the loca-
tion of the first register in this list. When a word is re-
guiredd to form some additional list structure, the fird
word on the free-storage list is taken and the number in
register FrEE 18 changed to become the loeation of the
second word on the free-storage list. No provision need be
made for the user (o program the return of registers 1o the
[ree-storage list,

This return takes place automatically, approximately
as follows (it iz necessary to give a simplified description
of this process in this report): There is » lxed set of buss
registers in the program which contains the locations of
fist. structures that are accessible to the program. Of
course, because list stractures branch, an arbitrars num-
ber of registers may be nvolved. Each register that i
accessible to the program Js accessible because it can be
reached from one or more of the base registers by a chain
of car and cdr operations. When the contents of a base
register are changed, it may happen that the register v
which the base register formerly pointed cannot be reached
by a ear-cdr chain from any base register. Such a register
may be considered abandoned by the program because its
contents ean no longer be found by any possible program;
henee its contents are no longer of miterest, and so we
would like to have it back on the free-storage list. This
cornes about In the following way.

Nothing happens until the program runs out of free
storage. When a free register 18 wanted, and there is none
left on the free-storage list, a reclamation eyele starts.

E:)IFFEQ] L{ ENTIAT L| E 77777 |

Fre, 4

First, the program finds all registers accessible {rom fhe
base registers and makes their signs negative. This B
accoraplished by starting from cach of the hase registers

and changing the sign of every register that can be reached
from it by a car-cdr chain. If the program encounters a
register in this process which already has a negative sign,
it assumes that this register has already been reached.

After all of the accessible registers have had their signs
changed, the program goes through the area of memory
reserved for the storage of list structures and puts all the
registers whose signs were not changed in the previous
step back on the free-storage list, and makes the signs of
the accessible registers positive again.

This process, because it is entirely automatic, is more
convenient for the programmer than a system in which
he has to keep track of and erase unwanted lists. Its effi-
ciency depends upon not coming close to exhausting the
available memory with accessible lists. This is because the
reclamation process requires several seconds to execute,
and therefore must result in the addition of at least
several thousand registers to the free-storage list if the
program is not to spend most of its time in reclamation.

d. Elementary S-Functions in the Computer. We shall
now describe the computer representations of atom, =,
car, cdr, and cons. An S-expression is communicated to
the program that represents a function as the location of
the word representing it, and the programs give S-expres-
sion answers in the same form. '

afom. As stated above, a word representing an atomic
symbol has a special constant in its address part: atom is
programmed as an open subroutine that tests this part.
Unless the M-expression atomie] oceurs as a condition in
a conditional expression, the symbol T or F is generated
as the result of the test. In case of a conditional expression,
a conditional transfer is used and the symbol T or F is
not generated.

eq. The program for eqle; f] involves testing for the
numerical equality of the locations of the words. This
works because each atomic symbol has only one association
list. As with atom, the result is either a conditional transfer
or one of the symbols T or F.

car. Computing car[x] involves getting the contents
of the address part of register x. This is essentially accom-
plished by the single instruction cra 0, i, where the argu-
ment is in index register i, and the result appears in the
address part of the accumulator. (We take the view that
the places from which a function takes its arguments and
into which it puts its results are prescribed in the defini-
tion of the function, and it is the responsibility of the
programmer or the compiler to insert the required data-
moving instructions to get the results of one calculation
in position for the next.) (“car” is a mnemonic for “con-
tents of the address part of register.”)

cdr. cdr is handled in the same way as car, except that
the result appears in the decrement part of the accumu-
lator. (“cdr” stands for “contents of the decrement part
of register.”)

cons. The value of cons[x; y] must be the location of a
register that has x and y in its address and decrement
parts, respectively. There may not be such a register in

the computer and, even if there were, it would be time-
consuming to find it. Actually, what we do is to take the
first available register from the free-storage list, put x and
y in the address and decrement parts, respectively, and
make the value of the funection the location of the register
taken. (“‘cons” is an abbreviation for “construct.”)

It is the subroutine for cons that initiates the reclama-
tion when the free-storage list is exhausted. In the version
of the system that is used at present cons is represented
by a closed subroutine. In the compiled version, cons is
open.

e. Represenlation of S-Functions by Programs. The
compilation of functions that are compositions of car,
cdr, and cons, either by hand or by a compiler program,
is straightforward. Conditional expressions give no trouble
except that they must be so compiled that only the p’s
and e’s that are required are computed. However, prob-
lems arise in the compilation of recursive functions.

In general (we shall discuss an exception), the routine
for a recursive function uses itself as a subroutine. For
example, the program for subst[x;y;z] uses itself as
a subroutine to evaluate the result into the subexpres-
sions car[z] and cdr{z]. While subst[x;y:cdr{z]] is being
evaluated, the result of the previous evaluation of
substlx; yv; car{z]] must be saved in a temporary storage
register. However, subst may need the same register for
evaluating subst[x;y;edr(z]]. This possible conflict is re-
solved by the SAVE and UNSAVE routines that use
the public push-down list. The SAVE routine is entered
at the beginning of the routine for the recursive function
with a request to save a given set of consecutive registers.
A block of registers called the public push-down list is
reserved for this purpose. The SAVE routine has an index
that tells it how many registers in the push-down list are
already in use. It moves the contents of the registers
which are to be saved to the first unused registers in the
push-down list, advances the index of the list, and returns
to the program from which control came. This program
may then freely use these registers for temporary storage.
Before the routine exits it uses UNSAVE, which restores
the contents of the temporary registers from the push-
down list and moves back the index of this list. The result
of these conventions is described, in programming termi-
nology, by saying that the recursive subroutine is trans-
parent to the temporary storage registers.

f. Status of the LISP Programming System (February
1960). A variant of the function apply described in section
5f has been translated into a program APPLY for the
IBM 704. Since this routine can compute values of S-
functions given their descriptions as S-expressions and
their arguments, it serves as an interpreter for the Lisp
programming language which deseribes computation
processes in this way.

The program APPLY has been imbedded in the Lisp
programming system which has the following features:

1. The programmer may define any number of S-func-

Communications of the ACM 193

tions by S-expressions. These functions may refer Lo cach
other or to certain S-functions represented by machine
language program.

2. The values of defined functions may be computed.

3. B-expressions may be read and printed (directly or
via magnetic tape).

4. Bome error diagnostic and seleciive (racing facilitios
are included.

3. The programmer may have selected S-functions
compiled inie machine language programs pul into the
core memory. Values of compiled funetions are computed
about 60 times as fast as they would if interpreted. Com-
pilation 13 fasl enough so that it is not necessary to punch
compiled program for future use.

6. A “program feature” allows programs containing
assighment and go to statements in the style of Ancor.

7. Computation with fosling point numbers is possible
in the systern but this is inefficient,

8. A prograrumer’s manual is being prepared.

The Lizp programming system is appropriate for com-
putations where the data can conveniently be represented
as symbolic expressions allowing expressions of the same
kind as subexpressions. A version of the system for the
IBM 709 is being prepared.

5. Another Formalism for Funections of Symbolic
Expressions

There are a number of ways of defining lunctions of
symbolie expressions which ave quite similar to the system

we have adopted. Fach of them involves three basic func-
tions, conditional expressions, and recursive function
definitions, hut the class of expressions corresponding to
B-expressions is different, and go are the precise definitions
of the functions. We shall deseribe one of these variants

called linear LISD.

The L-expressions are defined as follows:

1. A finite list of characters is admitted.

2, Any string of admitted charactersia un Leexpression.
This includes the null string denoted by A.

There are three tunctions of sirings:

1. first{x] is the first character of the siring x,

first{A] is undefined,

For example: first[ABRC] = A

2. rest[x] i# the string of characters which remains when
the first character of the string is deleted.

rest[A] iz undefined.

For example: rest[ABC] = BC

3. combine[x; y| is the string formed by prelixing the
character x to the string y.
For example: combine{A; BC] = ABC

There are three predicates on strings:

1. charlx], xisa single character.

2. nulljx], x is the null string,

3. x = y, defined for x and y characters.

The advantage of linear Tisp is that no characters are
given special roles, as are parontheses, dots, and commas
in Lisp. This permits computations with all expressions

194, Communications of the ACM.

thut can be wriiten linearly, The disadvantage of lingsy
Lise iz that the extraciion of subexpressions iz 5 fairte
involved, rather than an elementary, operation, It je iii‘;{
hard to write, in linear Lise, funcilons thot correspong T
the basic [unctions of Lise, so that, mathematicyl),
linear Lrsy includes Lisp, This turns out to be the n’@
convenient way of programming, in lnear Lise, the me,
complicated manipulations. However, if the funetio,,
are to be represented by computer vontines, Lisp is pagp,
tially faster.

6. Flowcharts and Recuarsion

Bince both the usual form of computer program and ..
cursive function definitions are universal computationally,
it is interesting to display the relation between them. ”{W
translation of recursive symbolie functions into Computer
progrars was the subject of the rest of this report, Tn this
section. we show how 1o go the other way, al losst i
principle.

The state of the machine ul any time daring 4 compuis-
tlon is given by the values of o number of variables, Let
ihese variables be combined into a vector £ Consider o
program block with one entrance and one exit. It defines
and is essentially defined by a ceriain funetion f tha
takes one machine configuration into another, that is, [hss
the form & = {(£). Let us call { the associated funetion of
the program block. Now let a number of such blocks e
combined into a program by decision clements = that de-
cde after cach block is completed which block will b
entered next, Nevertheless, let the whole program -
have one entranee and one exit.

|

R

4
Fra. &

We give as an example the flowehart of figure 5. Let d{
describe the function rg] that gives the transformation &
the veetor £ hetween entrance and exit of the whole bloek

We shall define 11 in conjunction with the functions
sfg] and tE], which give the transformations that £ vnder-
goes between the pointg S and T, respectively, and the exit.
We have

tlE] = frenfg] - s[TE; T == sl 2]

s[E] = [ra[E] - £ T — tEN]

tED = [rull — Lalels male] — v(E]; T — Uf[]]]

Caven a flowehart with a single entrance and a single
exit, Il 18 eagy to write down the recursive funetion that
gives the transformation of the state vecetor from entrance
to exit in terms of the corresponding functions for the
eomputation blocks and the predicates of the branch
points. In general, we proceed as follows.

In figure 6, let 8 be an n-way branch point, and let
f, -+, fu be the computations leading to branch points
Gy, Be, -, By, Let ¢ be the funetion that transforms &
hetween g and the exit of the chart, and let ¢, , - - -, ¢, be
the corresponding functions for S, -+, B« . We then
write

¢l = [plg] — ilhilEl]; - - ;5 pald] — ¢ulflé]]]

Acknowledgments

The inadequacy of the Anotation for naming recursive
functions wag noticed by N. Rochester, and he discovered
an alternative to the solution involving fabel which has
been used here. The form of subroutine for cens which
permits ite composition with other functions was invented,
In connection with another programming system, by C.
Gerberick and H. L. Gelernter, of IBM Corporation. The
Lisp programming system was developed by a group
including R. Brayton, D. Fdwards, . Fox, L. Hodes, D.
Luckham, K. Maling, J. MeCarthy, D. Park, 3. Russell,

The group was supported by the M.L'T. Computation
Center, and by the M.L'T. Rescarch Laboratory of Elec-
tronies (which is supported in part by the U.S, Army

(mignal Corps), the US. Alr VFarce (Office of Scientific
Research, Air Research and Development Command),
and the U8, Navy (Office of Naval Research)). The author
also wizhes to acknowledge the personal financial support
of the Alfred P. Sloan Foundation,

f f f
| 2 cee n
¢F ¢2 ¢n
LR N J
B, B, B,
Fra. 6

REFERENCES

1. J. McCarray, Programs with common sense, Paper presented
at the SBymposium on the Mechanization of Thought Proe-
eszes, National Physical Laboratory, Teddington, England,
Nov. 24-27, 1958, (Published in Proceedings of the Sympo-
sium by II. M. Stationery Office].
2. A. Newer. ano J. C. Smaw, Programming the logic theory
machine, Proc. Western Joint Computer Conference, Feb.
1957.
3. A. Cuurch, The Calcwli of Lambda-Conversion (Princeton
University Press, Princeton, N, J., 1941},
4. FORTRAN Trogrammer’s Reference Manual, IBM Corpora-
tion, New York, Oet. 15, 1056,

. A J. Perors ano K. Bameusoy, International algebraic lan-
guage, Preliminary Report, Comm. Assac. Comp. Mach., Dec.
1958.

14

Symbol Manipulation by Threaded Lists”

AT, Peris ann Cuarres Tuorsrtox, Carnegic Institute of Technology, Pittsburgh, Pa,

Part I: The Threaded List Language

L. Introduction

In the field variously ecalled artificial intelligence,
heuristic programming, automata theory, ete., many of

*The work was supported in part by the Office of Naval Re-
search under contract number Nonr-760 (18), Ny 049-141 and by
Eh"- UL 8. Army Signsl Corps under contraet number Da 36.039-
ReT5081, File No. 0195-T'H-58.01 (4461). '

the most interesting problems do not lend themselves
readily to solutions formulated in the automatic program-
ming systems now in wide use. Several new approaches
to more adequate and natural programming systems have
been made in the past few years. Notable among these
are the list strueture languages of the IPL family developed
by Newell-Simon-Shaw [1] and LISP by McCarthy [2}.
They provide great flexibility for the comstruction of
highly composed programs, and are able to represent and
process systems of arbitrarily great complexity, subject

Communications of the ACM 195

