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A formalism is presented for describing the actions of pro- 
cessors for programming languages--compilers, interpreters, 
assemblers--and their interactions in complex systems such as 
compiler-compilers or extendible languages. The formalism 
here might be used to define and answer such a question as 
"Can one do bootstrapping using a metacompiler whose 
metaphase is interpretive?" In addition an algorithm is pre- 
sented for deciding whether or not a given system can be 
produced from a given set of component processors. 
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1 .  I n t r o d u c t i o n  

There have been many complex systems built for the 
implementation of programming languages. Some trans- 
late the source language into a different language (often 
machine language): these are called compilers, assemblers, 
or translators. 1 Some work directly with the source lan- 
guage to execute the program: these are the pure interpre- 
ters. Many  have various combinations of the two modes 
of operation. In this paper we present a formalism which 
allows us to describe the interactions of the different phases 
of such systems. 

Previous notations with similar aims [1, 2, 8, and 10] 
have concerned themselves only with translators, ignoring 
interpreters completely. With the advent of time sharing 
and conversational languages, interpreters are being used 
more and more frequently; so we feel that  the introduction 
of a notation which also allows the description of systems 
involving interpreters is needed. The previous four nota- 
tions seem to be isomorphic, with Bratman's  "T-diagram" 
the most readable [1]. Therefore, we have adopted his 
notation and generalized it to reflect our fundamental 
notions of interpretation and translation. 

* Department of Computer Science. 
t Computer Center and Department of Computer Science. 
i Some people use "translator" to mean either a compiler or an 
interpreter. Except in the title of this paper, we use "processor" 
to mean a compiler or an interpreter and restrict "translator" to 
mean those programs which translate one language into another. 

Sections 2 and 3 of this paper introduce our notation 
and apply it to the description of some interesting systems. 
Section 4 is a detailed study of bootstrapping using the 
notation. Section 5 provides a mathematical basis for the 
notation and proves that  the intuitive steps that  we have 
used previously are actually valid on a real computer. We 
conclude in Section 6 with a decision algorithm for deter- 
mining what systems can be constructed from a given set 
of processors. 

2. T h e  N o t a t i o n  

Our formalism contains one fundamental concept: A 
program written in language L1 which computes function 
f is represented as follows :2 

We furthermore distinguish two speeial eases of funetion 
f, one in whieh f translates one language into another, and 
one in whieh f interprets a language. These are defined 
precisely in Section 5. We are concerned here only with 
the notation. A translator written in L1 to translate L2 to 
L3 is represented as 

I L2~I-,a I 

An interpreter written in L1 whieh interprets programs 
written in language L2 is represented as 

In addition, a maehine which executes machine language 
L1 is represented as 

V 
We compose these boxes to form descriptions of systems 
by placing them adjaeent to each other such that  vertical 
adjacency denotes interpretation and horizontal adja- 
cency denotes translation. Thus, if an assembler for 
assembly language AL on a machine with machine lan- 
guage ML is 

AL -~ ML 

2 The  reader  should realize t h a t  the  funct ion  f in roman type  in 
the  figure no ta t ions  is the  same funct ion f t h a t  appears  in i tal ic 
type  in the  text .  
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a run of this assembler on a program to compute function 
f is 

AL --~ MI~ 

The meaning of this is that the program is 

input as data to the translator I AL --~ ML [, a n d  the 

program ~ is the output. 

This is an example of a "run," which is an important 
concept in this paper, i t  represents an actual execution 
of a program in a computer to produce an output. I t  also 
denotes that, given the three boxes 

and a run of the JOSS system on a JOSS program to com- 
pute function f is as follows: 

f 

JOSS 

JOSS 

ML 

Notice that the bottom box of any configuration repre- 
senting a run must be a machine. Consequently, we will 
omit the triangular machine boxes from the rest of the 
figures. 

3. S o m e  Examples  

We have now introduced the notation; so let us apply 
it to some more interesting examples. 

IPL [6] is normally implemented as a partial inter- 
preter; that is, the source language is first converted into 
internal IPL data structures (DS) by the IPL loader. 
These are then interpreted to execute the program. We 
represent this process in two phases as follows: 

[ ML 

we can produce ~ .  

An Algol compiler [3] which goes directly to machine 
code looks almost the same: 

Agol ~ ML 

A pure interpreter for a language like JOSS is represented 
as 

I P L - - ~ I ) S  I l )S ] 

¢ 

f 

DS 

DS 

ML 

A compiler-compiler has three phases. The metaphase 
produces a compiler from a description in some higher 
level compiler-writing language (CWL). Here we are 

using a translator itself I SL --~ ML I as  input t o  an -  

other translator I. CWL --~ ML 

translator as a result. 

I , and producing a third 

608 C o m m u n i c a t i o n s  of  t h e  ACM V o l u m e  13 / N u m b e r  10 / O c t o b e r ,  1970 



The last two phases look like an ordinary compiler for 
the source language (SL). Notice that a compiler really 
has two phases, not just one, but the second is trivially 
represented by one box in our notation. 

k SL --, ML ] SL --~ ML 

1 CWL ] CWL-~ML ML ] 

SL ~ M L  

ML I I 
I 
I 

We will use "COMPILE(SL) and RUN"  as an abbrevia- 
tion for the last two phases of the above figure. 

The metaphase of a translator writing system might 
also be a pure interpreter, directly interpreting CWL to 
compile the source language. 

SL -~ ML 

An interesting variant of this was used to write the 
Lisp 1.5 compiler [5]. Lisp is actually implemented as a 
partial interpreter, but since we are abstracting from 
reality anyway, we choose to abstract the parts of the 
system being described which are important for our pur- 
poses. So for this purpose we choose to ignore the loading 
phase of Lisp and to treat it as a pure interpreter. In this 
figure, we see the Lisp interpreter being used to execute a 
Lisp compiler written in Lisp. 

FSL [4, 9] is a compiler-compiler with a more complex 
structure than this. Its metaphase has two halves: the 
production language (PL) handles syntax, and FSL 
handles semantics. FSL is compiled, but PL is partially 
interpreted. We can fudge our representation a little to 
produce the following representation of the FSL system. 

fL MLI I L MLtL L MLI ISL  L t PL',PL Tables, Tab, , '' SL, SL ML, 
U ' H " \ / / 

\ i 
J 

\ s 

SL -~ ML 

T a b l e s  

M L  

Lisp --~ ML 

F1 # 

However, since the metalanguage and the source language 
are both Lisp, an extra phase was added to the system to 
obtain a machine language version of the compiler. The 
compiler was commanded to compile itself! 

[ Lisp-*ML I Lisp-.ML ] 

-1 ' Lisp Lisp --~ M L  M L  

C O M P I L E  (Lisp) 
a n d  R U N  
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4. B o o t s t r a p p i n g  

There are at least two quite different kinds of boot- 
strapping--moving a program from one machine to 
another, and writing a compiler in earlier versions of 
itself; we will examine both. The first kind can be illus- 
trated by the following problem. We have two machines, 
with machine languages ML1 and ML2, and we have a 
compiler-compiler working in ML1 : 

CWL --. MLI I 
i 

We would like to get a compiler-compiler for ML2 also 

ICWL-*ML2 I 

with a minimum of effort. This can be done by writing in 
CWL a compiler into ML2, and then performing the fol- 
lowing process: 

I I ' l  I I CLW --~ ML2 CWL -~ ML2 

-1 ~w~ ~ w ~ l ~ ,  I 

A compiler-compiler often works in two stages as follows: 
The compiler writer writes in CWL a program to translate 
his SL into an intermediate language (IL); a machine 
language compiler for IL has already been provided. 

L SL~IL SL-~IL I I I 
CWL -~ ML 

SL -~ IL IL -~ ML 

(l) 

i 
i 
i 
I 
I 

' I 

Often in a system such as this, there is actually a phase 

previous to the above two in which the CWL is imple- 
mented in itself. 

CWL CWL ~ ML ! ML 

ML I 
In this case, the first phase of (1) must be rewritten, show- 
ing that the compiler is also compiled in two steps. 

I ~L~I~ I [ ~L~'L I I ~L--'L I 

I~" I I~1 
This is good for documentation of the system, and it 
makes it easier to modify. In addition, if we want to 
bootstrap the system to a second machine (M2), it in- 
volves only writing an IL compiler which compiles into 
ML2. This can even be done in CWL. The problem is 
stated as follows: Given 

( 'WI,~IL I I 

I,.w,I 
and having written 

('WI. ~ IL IL -~ MLI 
(2) I.,,,~,I I.,,,~, 1 

IL-~ ML2 ] 

produce 

I CWl, ~ IL 

The solution is 

IL ~ ML2 ] 
ICWLI CWL-~IL 

] and [ IL--~ML2 ] 

CWL---~IL I I CWL--~IL 

]CWL] CWL--~IL 

(3) 

(4) 

IL --~ ML2 1L -~ ML2 ] 

~ (5) 

I I '  " I MLI ~, \ 

I / l  I '  IL --~ ML2 IL --~ ML2 I ! 

I IL I [L~ML2 ]ML21 lII 

I, 
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Notice that  this can be accomplished by running on ML1 
only. Another kind of metaeompiler might have the 
property that  the processor it produces is a partial inter- 
preter; that  is, it translates into IL  first, and then inter- 
prets that.  This looks like: 

i' 

SL --~ IL 

(7) 

f 

IL 

IL 

ML 

Furthermore, if the system were written in itself, we 
would have available 

I CWL--~IL [ 

The bootstrapping problem for this system is as follows: 
Given 

' C i : L ~ I L  I d-~ C W L - * I L  

I 
produce 

, (8) 

I cIL IL I 
l L21 

(9) 

From analyzing possible solutions, we discover that  we 
cannot get away as easily as we did in the previous sys- 
tem. Writing an IL  interpreter in CWL will not solve the 

problem, because it does not provide us a way to get 
anything in ML2. We must either code things directly in 
ML2 or write a compiler into ML2. If  we code directly 
in ML2, we must write both boxes in (9) ourselves, so 
there will be no bootstrapping at all. I f  we write an IL  
interpreter and a compiler into ML2 both in CWL 

IL ~ ML2 ] 

I 1 '  CWL 
(10) 

then we can produce both things in (9). But  this is some- 
what unpleasant because to do this we have had to write 
a compiler which is in no other way a part of our system. 
This points out the weakness of having a system that  
does not include a compiler into machine language. Of 
course, if IL  and CWL are designed correctly, the process 
of writing the IL  compiler in CWL could be little more 
than defining the meaning of ML2, but this is likely to 
be the exception, not the rule. In Section 6 we present an 
algorithm which will determine from any given set of 
boxes which other boxes can and cannot be produced, 
and we illustrate its use on this example. 

The other kind of bootstrapping is used to write a 
compiler-compiler in itself. We code a compiler for a very 
simple version of CWL (CWL1) in machine language or 
whatever else is available. Then we code a more advanced 
version ( C W ~ )  in CWL1 and compile it with the first 
compiler. We can repeat this as many times as we like, 
and at any point in the process we can use the compiler- 
compiler as it was intended, to produce a compiler for 
some other language (SL). 

i 4-'- 1 I 1 
t I ! 

I I I I' I I I CWL,+, -~ ML ! CWLi+, -~ ML ~ 4 I 

-1 I ' CWLi CWLi ~ ML ML I 
t i . - i+ l  ! 

I I " ML i ~- . . . .  ..I t | t | 

SL -* ML 

I CWL,+, ICWL,+,-~MLIML V 
I ML ] ," 

COMPILE(SL)  
and RUN 

This process may also be viewed as language extension, 
where the extended language is defined not only in terms 
of the base language (CWL1) but also in terms of previous 
extensions. Therefore this discussion applies not only to 
compiler-compilers, but also to extendible languages. 
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Similarly we can bootstrap or extend a system like that  
in (7) as follows: 

i , - 1  r 
! ! 

WLi+i ~ IL ~ : CWL~+, ---, IL 

l x_ . . . .  ....i 
t 
I 

i 
1 
i 
t 
I 
i 
i 

' :1  1 

IL 

Notice, however, that  this can only be used to extend 
the part  of the language which is compiled. We may have 
wanted to extend IL  to add a language feature which we 
wanted to be interpreted (such as dynamic block struc- 
ture). In this ease the above kind of bootstrapping is not 
possible, and the extension may have to be written in ML. 

We now investigate this further by considering boot- 
strapping on a system which is a pure interpreter. Suppose 
we have a metalanguage (PWL) in which we can write 
both interpreters and compilers, and that  we start  with an 
interpreter for it. 

One way of bootstrapping this is to also write a compiler 
for each PWL~ in itself. Then we can extend the inter- 
preter as follows: 

PWL~+i PWLi+i 1 

PWL~ PWL~ --* ML ML ~'~"1 
I t  

- - -  i ~--- 1 

$ 

Produce an interpreter~  
or compiler J 

This method is awkward, but  it does provide a way of 
extending a pure interpreter without writing in machine 

language. Another method of extension is possible and less 
awkward, but  it is much less efficient. 

• roduce an interpreter h 
or compiler J 

WLi+ t 

WL~ ] 

PWL2 

PWL1 

PWLi 

ML 

Here we are extending PWL each time but downgrading 
its efficiency enormously each time. 

5.  M a t h e m a t i c a l  B a s i s  

We would like to provide a precise basis for our nota- 
tion, one which not only is rigorous, but  also corresponds 
to the reality of running a computer system in terms of 
machines, bits, and programs. So we choose a basic vocab- 
ulary V, which can be thought of as bits, characters, 
punched cards, or anything similar. We would like to 
define the functions f, which we have used in our notation, 
as simply partial functions on words in V* (the set of all 
sequences of elements from V). However, notice that  these 
not only represent functions computed by programs 
written in certain languages, but also represent functions 
which correspond to the actions of computers. That  is, a 
machine is a function which reads in some deck of cards 
in V* (including both program and data) and writes out a 
deck in V*. So it is, in fact, a function which is mathe- 
matically similar to a function which we might represent 
as a program, like the square root function. At first look, it 
may seem unnatural  to lump these two together under 
the same concept, but  on closer inspection we notice the 
following things. 

The main difference between the two is that  while the 
one (the square root) takes only data as input, the other 
(the 360) takes both data and program. After all, we could 
wire up a computer to compute square roots directly, or 
we could conversely write a simulator for the 360 com- 
puter in some language. Furthermore, an interpreter 
(which is a fundamental notion for us) is precisely a func- 
tion which takes both program and data as input. I f  we 
are running an interpreter, then the machine it runs on 
has three inputs, two programs, and some data. One can 
see that  this is leading us far afield, so we conclude that  
"machine" functions and "program-defined" functions 
are basically the same thing. We will call these machine 

funct ions .  
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Now, if a machine is to execute a program correctly, it 
must be able to separate the program from its data in the 
input word. Not all machine functions do this, and the 
effort required to define those that do would substantially 
complicate our formalism. So since we are not concerned 
about this particular problem here, we will define it out 
of existence by specifying that the input to a machine 
function is not a single deck in V* but a sequence of decks, 
of which the first is the program and the rest are the data. 
The interpreter example should point out why it must be 
a sequence of decks and not just two. 

Definition. Let Z(= V*) be an infinite alphabet of 
decks. 

Let F (the set of machine functions) be the set of all 
partial functions f: ~* --~ Z. 

Let 2 (the set of languages) be the set of all total func- 
tions L: Z --~ F. 

The partial functions f represent physical translation 
processes that take place in a computer, while the func- 
tions L simply establish a correspondence between decks 
in ~ (representing programs in L) and machine functions 
in F (representing the function which that particular 
program computes). The functions f are partial because 
the program may loop on some of its inputs. We have 
chosen to make the functions L total to simplify the for- 
malism, despite the fact that normal programming lan- 
guages are only defined on certain decks. For any deck w 
which represents a program not in the language, let 
L(w) be the machine function which is undefined every- 
where. 

We now define a convenient special function. 
Definition. X: F X ~* --~ F is defined as x(f, w~)(w2) = 

f(wlw2) fo r f  E F, Wl, w~ E ~*. 
(Here and elsewhere in this section, equality means 

that if one is defined, then the other is, also, and they are 
equal.) 

We omit the proof of the following trivial lemma: 
LEMMA 1. For wl,  w~ E ~*, f E F, x(f, wlw2) = 

x(x(f, w~), w2). 
We now notice that for every machine function f there 

is a machine language L s in which one may write programs 
for the machine. 

Definition. For f E F, define L s E 2 such that for all 
p E Z, Ls(p) = x(f, P). 

This is the language which treats its programs the same 
way that f treats the  first deck of a string of decks it re- 
ceives as input. V'7"-'7 

Conversely, we can define V as the set of all machine 

functions f which have L as their machine language/ 

Definition. For L E 2, ~ ' 7  = {f E F I for all 

p E Z, L(p) = x(f, P)}. V 
This set may contain more than one element because it 

does not specify what f does to the empty string of decks. 

In this section, f, L, and S that  appear in roman type in the 
figure notat ions are the same f,  L, and S tha t  are given in italic 
type in the text.  

t l 
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A set of translators is defined as follows: 

Definition. ] L,- ,  L2 [ 

L~(p) = L2(f(p))}. So ] 

= {f E F I f o r  al lp E ~, 

L~ ~ L2 defines a set 

of machine functions which translate programs in L1 to 
equivalent programs in L2. 

Equivalence of programs pl and p2 is defined by Lt(pl) 
= L2(p2), that is, each program corresponds to the same 
machine function. Notice that a set defined in this way 
really can contain more than one element. For instance, 
there is more than one mapping from Algol programs to 
Fortran programs, because for any given Algol program 
there is more than one equivalent Fortran program. In 
addition, if L2 is so weak that it cannot express algorithms 
for all recursive functions, then a set defined in this way 
may in fact be empty. 

We are now prepared to define our fundamental concept. 
Definition. For L E 2, S ~_ F, 

• = {pw l p E ~, w E Z*, x(L(p), w) E S}. 

I t  is the set of all programs (or possibly interpreters plus 
programs) in language L which compute a machine func- 
tion in S. The three boxes which we have used in our nota- 
tion are special cases of this. If S is a set with one element J, 

we represent it as / ~ / If S i s ~  7for  some L', 

1 i 

then this corresponds to ] L [ 

I  i de ned sl I L, ~ L2 , then this corresponds to 

I' Li-*L, l 

We would now like to prove that the operations of 
adjoining boxes to represent systems and to produce new 
boxes which we have used so far in this paper are valid in 
our formalism. We do this by proving two theorems. 

The first says that if 

nonempty then Q 

and L ~ L  ~ are 

is nonempty. We express this 
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operation as 

Ll 

L2 

This allows us to stack up as 

many interpreters as we like and put any box on top. The 
second theorem says that if 

nonempty then 

operation as 

is nonempty. We express this 

L2 ~ L8 ~ This 

allows us to produce new boxes by translation. 

LEMMA2. If r E  ~ 7  and w E  ~ , then 

x(f, w) E S. 
PROOF. Le tw  = pw', p E Z, w' E ~*. 
x(f, w) = X(f, pw') = X(X(f, P), w') by Lemma 1 

= x(L(p), w') since f E 
V 

and x(L(p), w') E S since w = pw r E 

So x(f, w) E Z. 

THEOREM 1. Ifw~ E 

then w2w~ E 

and w2 E 

PROOF. Let w2 = pw2 r, p E 2;, w2 ~ E ~*. 
×(L2(p), w2'wl) = x(x(L2(p), w2'), wl) by Lemma 1 

and x(n2(p), w2') E ~ since w2 = pw2' E I L~ I • 
V 

So X(x(L2(p), w~O, wl) C S by Lemma 2. 

x(L2(p), w2'Wl) C S and w2wl C I : I .  
IL, i 

Thus 

and 

then 

THEOREM 2. I f  

So 

f(w2p)wl E ~ .  

PROOF. X(f, w2) E L,~L2 I by Lemma 2. 

L2(x(f, w2)(p)) -- Li(p) 
x(L2(x(f, w~)(p)), Wl) = x(Li(p), wl) E S 

xff, w~)(p)wl E / ~ 2 /  
I I 

f(w2p)wl E ~ ~i ~ " 
Notice that in translating a string of decks, we translate 

just the first deck and place the translated deck in front 
of the rest of the string. 

Theorems 1 and 2 together provide a basis for the nota- 
tion we have used in this paper. 

One may wonder why we have not included a theorem 
which allows us to glue translators together since Theorem 
l'allows us to glue interpreters together. This might read: 

L3 I L~ yields La ] 

The most important reason for not including this is that 
any straightforward theorem one might derive from it is 
false. That is, if we concatenate two decks representing 
the translators on the left, we do not get a deck represent- 
ing the one on the right (as is true with interpreters). At 
the very least, we must include a third program which 
feeds the output of one as the input to the other. This 
introduces enormous complications which our formalism, 
as it is, does not handle. 
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6 .  A D e c i s i o n  A l g o r i t h m  

Let us examine the problem presented in diagrams (2), 
(3), and (4) of Section 4. We are given a certain set of 
translators and interpreters represented by boxes and we 
would like to know whether or not we can produce other 
boxes which we need from them. We can show that  certain 
boxes can be produced by exhibiting a system which 
constructs them as in diagrams (5) and (6). But  we would 
also like to be able to prove that  certain boxes cannot be 
produced by the methods we have. 

In fact we can do better than this. In this section we 
present an algorithm which, given a set of input boxes 
and a desired box, will determine whether or not tha t  box 
can be produced and will supply the construction which 
produces it if it can be produced. 

Before exhibiting the algorithm, we will formalize ex- 
actly what steps may be used to produce new boxes. 

Definition. Given a finite set B of boxes (a box is a 
subset of Z+ or a set over F) 

(1) B ~ ~ 1 ~  iff 

I I 

L2 ---~ LI 

(2) B ~ @ ~ l ~  iff 3 a sequence of boxes @ ~  

I I I I 

(i = 1, . - .  ,n)  (n => 1) such that  

o r ~ E  B. 

(i = 0 , - . . , n -  1) 

Definition (1) specifies the two ways in which a new box 
may be produced according to Theorems 1 and 2. Note 
that  we have required specifically a set of machine boxes 

~ .  This corresponds to the of physical computers sei  

we are using. I t  actually requires that  only the bottom 
element of a stack of interpreters be written in a machine 
language. 

This comes about because we can obtain the following 
by repeatedly applying definition (1) part (a) : 

S 

LI 

L1 

L2 

Definition (2) specifies the way in which a box can be pro- 
duced by any number of applications of definition (1) (in- 
cluding 0 applications if the box is already in the set). 

We now present an algorithm for generating the set of 
all boxes which can be produced from a given set. 

ALGORITHM. Given a set B of boxes, compute Closure(B) 
as follows: 

A: For each pair of boxos do the following: If the pair matches 
the conditions of definition (1) part (a), let b be the box 
resulting from applying that definition. If b E B go on. If 
b ~ B, let B = Bu{b} and start over at A. When all pairs 
have been exhausted without starting over, repeat the 
process for all triples and definition (1) part (b). When 
these are all exhausted without starting over, the algorithm 
terminates. 

THEOREM 3. Closure(B) = {b I B ~ b}. 

PROOF. Closure(B) must be finite for the following 
reason: Any box in Closure(B) must consist of a language 
which originally existed in a box in B and a function which 
originally existed in a box in B. Since both these sets are 
finite, their Cartesian product is finite. Therefore the 
closure algorithm always terminates. The rest of the proof 
is obvious. 

Thus we generate all the boxes which can be produced 
from a given set by a simple exhaustive search. More effi- 
cient algorithms may be devised, but we do not examine 
them here for two reasons: (1) we are mainly concerned 
with showing that  a decision procedure exists; and (2) the 
set Closure(B) will be small enough in practice that  a faster 
algorithm will not gain much. 

We can now, of course, decide whether or not a given 
box can be produced from a set B by computing Closure(B) 
and testing the box against each element of Closure(B) as 
it is generated. 

We now provide an example of the use of this algorithm. 
Consider the problem given in (8) and (9). We have con- 
cluded correctly that  writing the boxes in (10) will allow 
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us to produce the boxes in (9). Suppose, however, that we 

did not have box [ CWL~IL I 

This box is not part of the original system in (7). We just 
assumed that it had come about through a prior boot- 
strapping process. Suppose we ask whether or not the 
problem can be solved without this box. We will run the 
closure algorithm on it in order to answer this question. 
The results are in Figure 1. The initial set B is given at 

IC~L C~WL --~ IL I ~ ~ 

[ ILeaL2 I 'L  L2 I 

IILI IL --~ ML2 I 

M L I /  = 

IL --~ ML2 I 

1MLI ] 

FIG.  1 

~-- desired 

IL -* ML2 

the top. We then show each application of Definition 1 and 
the box it produced. We have omitted all applications 
which produce a box in B or one previously produced. 

--'--I 

Notice that one of our desired boxes I:~21 

/ 
I CWL ~ IL 

duced, while the other did not. Notice I ML2] 

did get pro- 

also that the seemingly innocuous box I i L I w a s  crucial 

in obtaining the one desired box. This is because it 
could be translated into a different language. 

This algorithm provides a decision procedure for what 
boxes can be produced by Definitions 1 and 2 only. I t  
cannot say that a desired box cannot be produced by any 
means, This is because we have no way of knowing what 
will happen if a program written in L1 is given as data to a 
translator which translates programs written in L2. That is, 

L2 ---~ ~ 

we have no idea what the result of this will be. 
Notice that this algorithm will answer the question "Can 

language L1 be executed given that we can execute lan- 
guage L2?" because this is equivalent to asking "Can 

~ b e  produced?" The algorithm will also answer the 

question "Can L1 be translated into L2?" even though it 
[ 

is not equivalent to "Can L1 ~ L2 I be produced?" 

The reason they are not equivalent is that translators can- 
not be glued together like interpreters since the translation 
may take more than one step. However, the question 

can be answered by adding / ,~ / to B and asking 

whether or not ( f ' ~  is in Closure(B). 
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Algorithms L.D. FOSDICK, Editor 7. S u m m a r y  

W e  have  i n t roduced  a fo rmal i sm which  allows us  to 
expl ica te  cer ta in  r a t h e r  gross p roper t i e s  of l anguage  proc-  
essing sys tems .  As  i t  is, the  n o t a t i o n  should  be  useful  for 
des igning the  out l ines  of complex  p r o g r a m m i n g  sy s t e ms  
a n d  the i r  imp lemen ta t i on ,  and  i t  should  be especia l ly  good 
for documen ta t i on .  T h e  fo rmal i sm should  also p rov ide  a 
m a t h e m a t i c a l  bas is  which  can  be ex t ended  to hand le  more  
de ta i l ed  p roper t i e s  of such sys tems .  Some specific in- 
adequac ies  where  i t  could  be  ex tended  follow. 

1. I t  does no t  descr ibe  the  a m o u n t  of compi l a t i on  or  
i n t e rp re t a t i on ,  unless  i t  is coupled  wi th  precise  def ini t ions  
of t he  l anguages  involved .  F o r  ins tance ,  in (7) we have  no 
i dea  w h e t h e r  I L  is close to  machine  l anguage  or  to  t he  
source language .  I L  could  be l i t t l e  more  t h a n  a s sembly  
language,  or  j u s t  a t r iv ia l  modi f ica t ion  of t he  source lan-  

guage,  or  a n y t h i n g  in be tween .  Of course precise  def ini t ions 

of SL,  I L ,  a n d  M L  would  clear  th is  up .  

2. I t  does no t  p e r m i t  the  desc r ip t ion  of such processes  

as inc remen ta l  compi la t ion .  

3. I t  does no t  p e r m i t  t he  formal  desc r ip t ion  of sys t ems  

invo lv ing  p r o g r a m s  which  consis t  of two or  more  pieces  

wr i t t en  in different  languages ,  such as F S L .  

A c k n o w l e d g m e n t .  W e  have  bene f i t t ed  f rom c o m m e n t s  

b y  J .  G r a y  and  J.  R e y n o l d s  in p r e p a r i n g  this  pape r .  

RECEIVED JANUARY, 1970; REVISED JUNE, 1970 
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A L G O R I T H M  395 
S T U D E N T ' S  t - D I S T R I B U T I O N  [S14] 
G. W.  HILL (Recd.  17 Nov .  1969 and  23 M a r .  1970) 
C.S . I .R .O. ,  Div i s ion  of M a t h e m a t i c a l  S ta t i s t ics ,  Glen 

Osmond,  S o u t h  A u s t r a l i a  

KEY WORDS AND PHRASES: Student's t-statistic, distribu- 
tion function, approximation, asymptotic expansion 
CR CATEGORIES: 5.12, 5.5 

real  p rocedure  student (t, n,  normal,  error); value t, n; rea l  t, n; 
rea l  p rocedure  normal,  error; 

c o m m e n t  student evaluates the two-tail probability P ( t [ n )  
that  t is exceeded in magnitude for Student's [1] t-distribution 
with n degrees of freedom. The procedure provides results accu- 
rate to 11 decimal places and 8 significant digits for integer val- 
ues of n, with approximate continuation of the function through 
noninteger values of n (over 6 decimal places for n > 4.3). 

The procedure normal (x) returns the area under the standard 
normal frequency curve to the left of x, so that  a negative argu- 
ment yields the lower-tail area. The user-supplied procedure, 
error(n), should produce a diagnostic warning and may go to a 
label, terminate, or return a distinctive value (zero or -1.0)  as 
a signal of error to the calling program. 

Student's series expansion of the probability integral is sup- 
plemented by a faster asymptotic approximation for large values 
of n and by a more precise " ta i l"  series expansion for large 
values of t. 

The value of x, defined as the normal deviate at the same 
probability level as t, may be approximated by an asymptotic 
normalizing expansion of Cornish-Fisher type [2]. 

x = z T (z3-F3z)/b -- (4zT+33zS~240zS+855z)/10b ~ 

T(64zU~788zg.~9801z~T89775z6T543375za~1788885z)/210b8 . . . .  

where z = ( a X l n ( 1 T t ~ / n ) ) t ,  a = n - ½ and b = 48a 2 [3]. 
This is well approximated by the first three terms with the third 
term's divisor replaced by 

10b (b+0.Sz4+100). 

The student probability is double the normal single-tail area, 
corresponding to the deviate x. 

The maximum error in the probability result for all values of t 
ig displayed as a function of n in Figure 1, for this approxima- 
tion, for the first few terms of the asymptotic expansion and for 
Fisher's [4] fifth-order approximation used in Algorithm 321 [5] 
for n > 30. 

For small n and moderate t the result is calculated as P ( t  I n) = 
1 - A (t [ n) using Student's cosine series for A ( t  [ n) ,  rearrang- 
ing formulas 26.7.3 and 26.7.4 of the NBS Handbook [6] in 
nested form 

A(tln odd) = a; ~tan(y) + 1 + ~ (n--4)b 

• (1 + (n--3) ...1tl 

where y = x / ( t2 /n)  and b = 1 + t2/n. In the nested form, terms 
are treated in reverse order to the summation in Algorithm 321 
and Algorithm 344 [7], reducing the number of operations re- 
quired and reducing build up of roundoff error. Explicit decre- 
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