
Programming Languages D. GRIES, Editor

A Formalism for Translator
Interactions

JAY EARLEY* AND HOWARD STURGIS t

University of California, Berkeley, California

A formalism is presented for describing the actions of pro-
cessors for programming languages--compilers, interpreters,
assemblers--and their interactions in complex systems such as
compiler-compilers or extendible languages. The formalism
here might be used to define and answer such a question as
"Can one do bootstrapping using a metacompiler whose
metaphase is interpretive?" In addition an algorithm is pre-
sented for deciding whether or not a given system can be
produced from a given set of component processors.

KEY WORDS AND PHRASES: translator, compiler, interpreter, bootstrapping,
language processor, compiler-compiler
CR CATEGORIES: 4.1, 5.29

1 . I n t r o d u c t i o n

There have been many complex systems built for the
implementation of programming languages. Some trans-
late the source language into a different language (often
machine language): these are called compilers, assemblers,
or translators. 1 Some work directly with the source lan-
guage to execute the program: these are the pure interpre-
ters. Many have various combinations of the two modes
of operation. In this paper we present a formalism which
allows us to describe the interactions of the different phases
of such systems.

Previous notations with similar aims [1, 2, 8, and 10]
have concerned themselves only with translators, ignoring
interpreters completely. With the advent of time sharing
and conversational languages, interpreters are being used
more and more frequently; so we feel that the introduction
of a notation which also allows the description of systems
involving interpreters is needed. The previous four nota-
tions seem to be isomorphic, with Bratman's "T-diagram"
the most readable [1]. Therefore, we have adopted his
notation and generalized it to reflect our fundamental
notions of interpretation and translation.

* Department of Computer Science.
t Computer Center and Department of Computer Science.
i Some people use "translator" to mean either a compiler or an
interpreter. Except in the title of this paper, we use "processor"
to mean a compiler or an interpreter and restrict "translator" to
mean those programs which translate one language into another.

Sections 2 and 3 of this paper introduce our notation
and apply it to the description of some interesting systems.
Section 4 is a detailed study of bootstrapping using the
notation. Section 5 provides a mathematical basis for the
notation and proves that the intuitive steps that we have
used previously are actually valid on a real computer. We
conclude in Section 6 with a decision algorithm for deter-
mining what systems can be constructed from a given set
of processors.

2. T h e N o t a t i o n

Our formalism contains one fundamental concept: A
program written in language L1 which computes function
f is represented as follows :2

We furthermore distinguish two speeial eases of funetion
f, one in whieh f translates one language into another, and
one in whieh f interprets a language. These are defined
precisely in Section 5. We are concerned here only with
the notation. A translator written in L1 to translate L2 to
L3 is represented as

I L2~I-,a I

An interpreter written in L1 whieh interprets programs
written in language L2 is represented as

In addition, a maehine which executes machine language
L1 is represented as

V
We compose these boxes to form descriptions of systems
by placing them adjaeent to each other such that vertical
adjacency denotes interpretation and horizontal adja-
cency denotes translation. Thus, if an assembler for
assembly language AL on a machine with machine lan-
guage ML is

AL -~ ML

2 The reader should realize t h a t the funct ion f in roman type in
the figure no ta t ions is the same funct ion f t h a t appears in i tal ic
type in the text .

V o l u m e 13 / N u m b e r 10 / O c t o b e r , 1970 C o m m u n i c a t i o n s o f t h e ACM 607

a run of this assembler on a program to compute function
f is

AL --~ MI~

The meaning of this is that the program is

input as data to the translator I AL --~ ML [, a n d the

program ~ is the output.

This is an example of a "run," which is an important
concept in this paper, i t represents an actual execution
of a program in a computer to produce an output. I t also
denotes that, given the three boxes

and a run of the JOSS system on a JOSS program to com-
pute function f is as follows:

f

JOSS

JOSS

ML

Notice that the bottom box of any configuration repre-
senting a run must be a machine. Consequently, we will
omit the triangular machine boxes from the rest of the
figures.

3. S o m e Examples

We have now introduced the notation; so let us apply
it to some more interesting examples.

IPL [6] is normally implemented as a partial inter-
preter; that is, the source language is first converted into
internal IPL data structures (DS) by the IPL loader.
These are then interpreted to execute the program. We
represent this process in two phases as follows:

[ML

we can produce ~ .

An Algol compiler [3] which goes directly to machine
code looks almost the same:

Agol ~ ML

A pure interpreter for a language like JOSS is represented
as

I P L - - ~ I) S I l)S]

¢

f

DS

DS

ML

A compiler-compiler has three phases. The metaphase
produces a compiler from a description in some higher
level compiler-writing language (CWL). Here we are

using a translator itself I SL --~ ML I as input t o an -

other translator I. CWL --~ ML

translator as a result.

I , and producing a third

608 C o m m u n i c a t i o n s of t h e ACM V o l u m e 13 / N u m b e r 10 / O c t o b e r , 1970

The last two phases look like an ordinary compiler for
the source language (SL). Notice that a compiler really
has two phases, not just one, but the second is trivially
represented by one box in our notation.

k SL --, ML] SL --~ ML

1 CWL] CWL-~ML ML]

SL ~ M L

ML I I
I
I

We will use "COMPILE(SL) and RUN" as an abbrevia-
tion for the last two phases of the above figure.

The metaphase of a translator writing system might
also be a pure interpreter, directly interpreting CWL to
compile the source language.

SL -~ ML

An interesting variant of this was used to write the
Lisp 1.5 compiler [5]. Lisp is actually implemented as a
partial interpreter, but since we are abstracting from
reality anyway, we choose to abstract the parts of the
system being described which are important for our pur-
poses. So for this purpose we choose to ignore the loading
phase of Lisp and to treat it as a pure interpreter. In this
figure, we see the Lisp interpreter being used to execute a
Lisp compiler written in Lisp.

FSL [4, 9] is a compiler-compiler with a more complex
structure than this. Its metaphase has two halves: the
production language (PL) handles syntax, and FSL
handles semantics. FSL is compiled, but PL is partially
interpreted. We can fudge our representation a little to
produce the following representation of the FSL system.

fL MLI I L MLtL L MLI ISL L t PL',PL Tables, Tab, , '' SL, SL ML,
U ' H " \ / /

\ i
J

\ s

SL -~ ML

T a b l e s

M L

Lisp --~ ML

F1 #

However, since the metalanguage and the source language
are both Lisp, an extra phase was added to the system to
obtain a machine language version of the compiler. The
compiler was commanded to compile itself!

[Lisp-*ML I Lisp-.ML]

-1 ' Lisp Lisp --~ M L M L

C O M P I L E (Lisp)
a n d R U N

V o l u m e 13 / N u m b e r 10 / O c t o b e r , 1970 Communica t ions of t h e A C M 609

4. B o o t s t r a p p i n g

There are at least two quite different kinds of boot-
strapping--moving a program from one machine to
another, and writing a compiler in earlier versions of
itself; we will examine both. The first kind can be illus-
trated by the following problem. We have two machines,
with machine languages ML1 and ML2, and we have a
compiler-compiler working in ML1 :

CWL --. MLI I
i

We would like to get a compiler-compiler for ML2 also

ICWL-*ML2 I

with a minimum of effort. This can be done by writing in
CWL a compiler into ML2, and then performing the fol-
lowing process:

I I ' l I I CLW --~ ML2 CWL -~ ML2

-1 ~w~ ~ w ~ l ~ , I

A compiler-compiler often works in two stages as follows:
The compiler writer writes in CWL a program to translate
his SL into an intermediate language (IL); a machine
language compiler for IL has already been provided.

L SL~IL SL-~IL I I I
CWL -~ ML

SL -~ IL IL -~ ML

(l)

i
i
i
I
I

' I

Often in a system such as this, there is actually a phase

previous to the above two in which the CWL is imple-
mented in itself.

CWL CWL ~ ML ! ML

ML I
In this case, the first phase of (1) must be rewritten, show-
ing that the compiler is also compiled in two steps.

I ~L~I~ I [~L~'L I I ~L--'L I

I~" I I~1
This is good for documentation of the system, and it
makes it easier to modify. In addition, if we want to
bootstrap the system to a second machine (M2), it in-
volves only writing an IL compiler which compiles into
ML2. This can even be done in CWL. The problem is
stated as follows: Given

('WI,~IL I I

I,.w,I
and having written

('WI. ~ IL IL -~ MLI
(2) I.,,,~,I I.,,,~, 1

IL-~ ML2]

produce

I CWl, ~ IL

The solution is

IL ~ ML2]
ICWLI CWL-~IL

] and [IL--~ML2]

CWL---~IL I I CWL--~IL

]CWL] CWL--~IL

(3)

(4)

IL --~ ML2 1L -~ ML2]

~ (5)

I I ' " I MLI ~, \

I / l I ' IL --~ ML2 IL --~ ML2 I !

I IL I [L~ML2]ML21 lII

I,

610 Communicat ions of the ACM Volume 13 / Number 10 / October, 1970

Notice that this can be accomplished by running on ML1
only. Another kind of metaeompiler might have the
property that the processor it produces is a partial inter-
preter; that is, it translates into IL first, and then inter-
prets that. This looks like:

i'

SL --~ IL

(7)

f

IL

IL

ML

Furthermore, if the system were written in itself, we
would have available

I CWL--~IL [

The bootstrapping problem for this system is as follows:
Given

' C i : L ~ I L I d-~ C W L - * I L

I
produce

, (8)

I cIL IL I
l L21

(9)

From analyzing possible solutions, we discover that we
cannot get away as easily as we did in the previous sys-
tem. Writing an IL interpreter in CWL will not solve the

problem, because it does not provide us a way to get
anything in ML2. We must either code things directly in
ML2 or write a compiler into ML2. If we code directly
in ML2, we must write both boxes in (9) ourselves, so
there will be no bootstrapping at all. I f we write an IL
interpreter and a compiler into ML2 both in CWL

IL ~ ML2]

I 1 ' CWL
(10)

then we can produce both things in (9). But this is some-
what unpleasant because to do this we have had to write
a compiler which is in no other way a part of our system.
This points out the weakness of having a system that
does not include a compiler into machine language. Of
course, if IL and CWL are designed correctly, the process
of writing the IL compiler in CWL could be little more
than defining the meaning of ML2, but this is likely to
be the exception, not the rule. In Section 6 we present an
algorithm which will determine from any given set of
boxes which other boxes can and cannot be produced,
and we illustrate its use on this example.

The other kind of bootstrapping is used to write a
compiler-compiler in itself. We code a compiler for a very
simple version of CWL (CWL1) in machine language or
whatever else is available. Then we code a more advanced
version (C W ~) in CWL1 and compile it with the first
compiler. We can repeat this as many times as we like,
and at any point in the process we can use the compiler-
compiler as it was intended, to produce a compiler for
some other language (SL).

i 4-'- 1 I 1
t I !

I I I I' I I I CWL,+, -~ ML ! CWLi+, -~ ML ~ 4 I

-1 I ' CWLi CWLi ~ ML ML I
t i . - i+ l !

I I " ML i ~-I t | t |

SL -* ML

I CWL,+, ICWL,+,-~MLIML V
I ML] ,"

COMPILE(SL)
and RUN

This process may also be viewed as language extension,
where the extended language is defined not only in terms
of the base language (CWL1) but also in terms of previous
extensions. Therefore this discussion applies not only to
compiler-compilers, but also to extendible languages.

Volume 13 / N u m b e r 10 / O c t o b e r , 1970 C o m m u n i c a t i o n s o f t h e ACM 611

Similarly we can bootstrap or extend a system like that
in (7) as follows:

i , - 1 r
! !

WLi+i ~ IL ~ : CWL~+, ---, IL

l x_i
t
I

i
1
i
t
I
i
i

' :1 1

IL

Notice, however, that this can only be used to extend
the part of the language which is compiled. We may have
wanted to extend IL to add a language feature which we
wanted to be interpreted (such as dynamic block struc-
ture). In this ease the above kind of bootstrapping is not
possible, and the extension may have to be written in ML.

We now investigate this further by considering boot-
strapping on a system which is a pure interpreter. Suppose
we have a metalanguage (PWL) in which we can write
both interpreters and compilers, and that we start with an
interpreter for it.

One way of bootstrapping this is to also write a compiler
for each PWL~ in itself. Then we can extend the inter-
preter as follows:

PWL~+i PWLi+i 1

PWL~ PWL~ --* ML ML ~'~"1
I t

- - - i ~--- 1

$

Produce an interpreter~
or compiler J

This method is awkward, but it does provide a way of
extending a pure interpreter without writing in machine

language. Another method of extension is possible and less
awkward, but it is much less efficient.

• roduce an interpreter h
or compiler J

WLi+ t

WL~]

PWL2

PWL1

PWLi

ML

Here we are extending PWL each time but downgrading
its efficiency enormously each time.

5. M a t h e m a t i c a l B a s i s

We would like to provide a precise basis for our nota-
tion, one which not only is rigorous, but also corresponds
to the reality of running a computer system in terms of
machines, bits, and programs. So we choose a basic vocab-
ulary V, which can be thought of as bits, characters,
punched cards, or anything similar. We would like to
define the functions f, which we have used in our notation,
as simply partial functions on words in V* (the set of all
sequences of elements from V). However, notice that these
not only represent functions computed by programs
written in certain languages, but also represent functions
which correspond to the actions of computers. That is, a
machine is a function which reads in some deck of cards
in V* (including both program and data) and writes out a
deck in V*. So it is, in fact, a function which is mathe-
matically similar to a function which we might represent
as a program, like the square root function. At first look, it
may seem unnatural to lump these two together under
the same concept, but on closer inspection we notice the
following things.

The main difference between the two is that while the
one (the square root) takes only data as input, the other
(the 360) takes both data and program. After all, we could
wire up a computer to compute square roots directly, or
we could conversely write a simulator for the 360 com-
puter in some language. Furthermore, an interpreter
(which is a fundamental notion for us) is precisely a func-
tion which takes both program and data as input. I f we
are running an interpreter, then the machine it runs on
has three inputs, two programs, and some data. One can
see that this is leading us far afield, so we conclude that
"machine" functions and "program-defined" functions
are basically the same thing. We will call these machine

funct ions .

612 Communica t ions of the ACM Volume 13 / Number 10 / October, 1970

Now, if a machine is to execute a program correctly, it
must be able to separate the program from its data in the
input word. Not all machine functions do this, and the
effort required to define those that do would substantially
complicate our formalism. So since we are not concerned
about this particular problem here, we will define it out
of existence by specifying that the input to a machine
function is not a single deck in V* but a sequence of decks,
of which the first is the program and the rest are the data.
The interpreter example should point out why it must be
a sequence of decks and not just two.

Definition. Let Z(= V*) be an infinite alphabet of
decks.

Let F (the set of machine functions) be the set of all
partial functions f: ~* --~ Z.

Let 2 (the set of languages) be the set of all total func-
tions L: Z --~ F.

The partial functions f represent physical translation
processes that take place in a computer, while the func-
tions L simply establish a correspondence between decks
in ~ (representing programs in L) and machine functions
in F (representing the function which that particular
program computes). The functions f are partial because
the program may loop on some of its inputs. We have
chosen to make the functions L total to simplify the for-
malism, despite the fact that normal programming lan-
guages are only defined on certain decks. For any deck w
which represents a program not in the language, let
L(w) be the machine function which is undefined every-
where.

We now define a convenient special function.
Definition. X: F X ~* --~ F is defined as x(f, w~)(w2) =

f(wlw2) fo r f E F, Wl, w~ E ~*.
(Here and elsewhere in this section, equality means

that if one is defined, then the other is, also, and they are
equal.)

We omit the proof of the following trivial lemma:
LEMMA 1. For wl, w~ E ~*, f E F, x(f, wlw2) =

x(x(f, w~), w2).
We now notice that for every machine function f there

is a machine language L s in which one may write programs
for the machine.

Definition. For f E F, define L s E 2 such that for all
p E Z, Ls(p) = x(f, P).

This is the language which treats its programs the same
way that f treats the first deck of a string of decks it re-
ceives as input. V'7"-'7

Conversely, we can define V as the set of all machine

functions f which have L as their machine language/

Definition. For L E 2, ~ ' 7 = {f E F I for all

p E Z, L(p) = x(f, P)}. V
This set may contain more than one element because it

does not specify what f does to the empty string of decks.

In this section, f, L, and S that appear in roman type in the
figure notat ions are the same f, L, and S tha t are given in italic
type in the text.

t l
V o l u m e 13 / N u m b e r 10 / O c t o b e r , 1970

A set of translators is defined as follows:

Definition.] L,- , L2 [

L~(p) = L2(f(p))}. So]

= {f E F I f o r al lp E ~,

L~ ~ L2 defines a set

of machine functions which translate programs in L1 to
equivalent programs in L2.

Equivalence of programs pl and p2 is defined by Lt(pl)
= L2(p2), that is, each program corresponds to the same
machine function. Notice that a set defined in this way
really can contain more than one element. For instance,
there is more than one mapping from Algol programs to
Fortran programs, because for any given Algol program
there is more than one equivalent Fortran program. In
addition, if L2 is so weak that it cannot express algorithms
for all recursive functions, then a set defined in this way
may in fact be empty.

We are now prepared to define our fundamental concept.
Definition. For L E 2, S ~_ F,

• = {pw l p E ~, w E Z*, x(L(p), w) E S}.

I t is the set of all programs (or possibly interpreters plus
programs) in language L which compute a machine func-
tion in S. The three boxes which we have used in our nota-
tion are special cases of this. If S is a set with one element J,

we represent it as / ~ / If S i s ~ 7for some L',

1 i

then this corresponds to] L [

I i de ned sl I L, ~ L2 , then this corresponds to

I' Li-*L, l

We would now like to prove that the operations of
adjoining boxes to represent systems and to produce new
boxes which we have used so far in this paper are valid in
our formalism. We do this by proving two theorems.

The first says that if

nonempty then Q

and L ~ L ~ are

is nonempty. We express this

C o m m u n i c a t i o n s o f t h e ACM 613

operation as

Ll

L2

This allows us to stack up as

many interpreters as we like and put any box on top. The
second theorem says that if

nonempty then

operation as

is nonempty. We express this

L2 ~ L8 ~ This

allows us to produce new boxes by translation.

LEMMA2. If r E ~ 7 and w E ~ , then

x(f, w) E S.
PROOF. Le tw = pw', p E Z, w' E ~*.
x(f, w) = X(f, pw') = X(X(f, P), w') by Lemma 1

= x(L(p), w') since f E
V

and x(L(p), w') E S since w = pw r E

So x(f, w) E Z.

THEOREM 1. Ifw~ E

then w2w~ E

and w2 E

PROOF. Let w2 = pw2 r, p E 2;, w2 ~ E ~*.
×(L2(p), w2'wl) = x(x(L2(p), w2'), wl) by Lemma 1

and x(n2(p), w2') E ~ since w2 = pw2' E I L~ I •
V

So X(x(L2(p), w~O, wl) C S by Lemma 2.

x(L2(p), w2'Wl) C S and w2wl C I : I .
IL, i

Thus

and

then

THEOREM 2. I f

So

f(w2p)wl E ~ .

PROOF. X(f, w2) E L,~L2 I by Lemma 2.

L2(x(f, w2)(p)) -- Li(p)
x(L2(x(f, w~)(p)), Wl) = x(Li(p), wl) E S

xff, w~)(p)wl E / ~ 2 /
I I

f(w2p)wl E ~ ~i ~ "
Notice that in translating a string of decks, we translate

just the first deck and place the translated deck in front
of the rest of the string.

Theorems 1 and 2 together provide a basis for the nota-
tion we have used in this paper.

One may wonder why we have not included a theorem
which allows us to glue translators together since Theorem
l'allows us to glue interpreters together. This might read:

L3 I L~ yields La]

The most important reason for not including this is that
any straightforward theorem one might derive from it is
false. That is, if we concatenate two decks representing
the translators on the left, we do not get a deck represent-
ing the one on the right (as is true with interpreters). At
the very least, we must include a third program which
feeds the output of one as the input to the other. This
introduces enormous complications which our formalism,
as it is, does not handle.

614 Communicat ions of the ACM Volume 13 / Number 10 / October, 1970

6 . A D e c i s i o n A l g o r i t h m

Let us examine the problem presented in diagrams (2),
(3), and (4) of Section 4. We are given a certain set of
translators and interpreters represented by boxes and we
would like to know whether or not we can produce other
boxes which we need from them. We can show that certain
boxes can be produced by exhibiting a system which
constructs them as in diagrams (5) and (6). But we would
also like to be able to prove that certain boxes cannot be
produced by the methods we have.

In fact we can do better than this. In this section we
present an algorithm which, given a set of input boxes
and a desired box, will determine whether or not tha t box
can be produced and will supply the construction which
produces it if it can be produced.

Before exhibiting the algorithm, we will formalize ex-
actly what steps may be used to produce new boxes.

Definition. Given a finite set B of boxes (a box is a
subset of Z+ or a set over F)

(1) B ~ ~ 1 ~ iff

I I

L2 ---~ LI

(2) B ~ @ ~ l ~ iff 3 a sequence of boxes @ ~

I I I I

(i = 1, . - . ,n) (n => 1) such that

o r ~ E B.

(i = 0 , - . . , n - 1)

Definition (1) specifies the two ways in which a new box
may be produced according to Theorems 1 and 2. Note
that we have required specifically a set of machine boxes

~ . This corresponds to the of physical computers sei

we are using. I t actually requires that only the bottom
element of a stack of interpreters be written in a machine
language.

This comes about because we can obtain the following
by repeatedly applying definition (1) part (a) :

S

LI

L1

L2

Definition (2) specifies the way in which a box can be pro-
duced by any number of applications of definition (1) (in-
cluding 0 applications if the box is already in the set).

We now present an algorithm for generating the set of
all boxes which can be produced from a given set.

ALGORITHM. Given a set B of boxes, compute Closure(B)
as follows:

A: For each pair of boxos do the following: If the pair matches
the conditions of definition (1) part (a), let b be the box
resulting from applying that definition. If b E B go on. If
b ~ B, let B = Bu{b} and start over at A. When all pairs
have been exhausted without starting over, repeat the
process for all triples and definition (1) part (b). When
these are all exhausted without starting over, the algorithm
terminates.

THEOREM 3. Closure(B) = {b I B ~ b}.

PROOF. Closure(B) must be finite for the following
reason: Any box in Closure(B) must consist of a language
which originally existed in a box in B and a function which
originally existed in a box in B. Since both these sets are
finite, their Cartesian product is finite. Therefore the
closure algorithm always terminates. The rest of the proof
is obvious.

Thus we generate all the boxes which can be produced
from a given set by a simple exhaustive search. More effi-
cient algorithms may be devised, but we do not examine
them here for two reasons: (1) we are mainly concerned
with showing that a decision procedure exists; and (2) the
set Closure(B) will be small enough in practice that a faster
algorithm will not gain much.

We can now, of course, decide whether or not a given
box can be produced from a set B by computing Closure(B)
and testing the box against each element of Closure(B) as
it is generated.

We now provide an example of the use of this algorithm.
Consider the problem given in (8) and (9). We have con-
cluded correctly that writing the boxes in (10) will allow

V o l u m e 13 / Number 10 / October, 1970 Communications of the ACM 615

us to produce the boxes in (9). Suppose, however, that we

did not have box [CWL~IL I

This box is not part of the original system in (7). We just
assumed that it had come about through a prior boot-
strapping process. Suppose we ask whether or not the
problem can be solved without this box. We will run the
closure algorithm on it in order to answer this question.
The results are in Figure 1. The initial set B is given at

IC~L C~WL --~ IL I ~ ~

[ILeaL2 I 'L L2 I

IILI IL --~ ML2 I

M L I / =

IL --~ ML2 I

1MLI]

FIG. 1

~-- desired

IL -* ML2

the top. We then show each application of Definition 1 and
the box it produced. We have omitted all applications
which produce a box in B or one previously produced.

--'--I

Notice that one of our desired boxes I:~21

/
I CWL ~ IL

duced, while the other did not. Notice I ML2]

did get pro-

also that the seemingly innocuous box I i L I w a s crucial

in obtaining the one desired box. This is because it
could be translated into a different language.

This algorithm provides a decision procedure for what
boxes can be produced by Definitions 1 and 2 only. I t
cannot say that a desired box cannot be produced by any
means, This is because we have no way of knowing what
will happen if a program written in L1 is given as data to a
translator which translates programs written in L2. That is,

L2 ---~ ~

we have no idea what the result of this will be.
Notice that this algorithm will answer the question "Can

language L1 be executed given that we can execute lan-
guage L2?" because this is equivalent to asking "Can

~ b e produced?" The algorithm will also answer the

question "Can L1 be translated into L2?" even though it
[

is not equivalent to "Can L1 ~ L2 I be produced?"

The reason they are not equivalent is that translators can-
not be glued together like interpreters since the translation
may take more than one step. However, the question

can be answered by adding / ,~ / to B and asking

whether or not (f ' ~ is in Closure(B).

616 Communications of the ACM Volume 13 / Number 10 / October, 1970

Algorithms L.D. FOSDICK, Editor 7. S u m m a r y

W e have i n t roduced a fo rmal i sm which allows us to
expl ica te cer ta in r a t h e r gross p roper t i e s of l anguage proc-
essing sys tems . As i t is, the n o t a t i o n should be useful for
des igning the out l ines of complex p r o g r a m m i n g sy s t e ms
a n d the i r imp lemen ta t i on , and i t should be especia l ly good
for documen ta t i on . T h e fo rmal i sm should also p rov ide a
m a t h e m a t i c a l bas is which can be ex t ended to hand le more
de ta i l ed p roper t i e s of such sys tems . Some specific in-
adequac ies where i t could be ex tended follow.

1. I t does no t descr ibe the a m o u n t of compi l a t i on or
i n t e rp re t a t i on , unless i t is coupled wi th precise def ini t ions
of t he l anguages involved . F o r ins tance , in (7) we have no
i dea w h e t h e r I L is close to machine l anguage or to t he
source language . I L could be l i t t l e more t h a n a s sembly
language, or j u s t a t r iv ia l modi f ica t ion of t he source lan-

guage, or a n y t h i n g in be tween . Of course precise def ini t ions

of SL, I L , a n d M L would clear th is up .

2. I t does no t p e r m i t the desc r ip t ion of such processes

as inc remen ta l compi la t ion .

3. I t does no t p e r m i t t he formal desc r ip t ion of sys t ems

invo lv ing p r o g r a m s which consis t of two or more pieces

wr i t t en in different languages , such as F S L .

A c k n o w l e d g m e n t . W e have bene f i t t ed f rom c o m m e n t s

b y J . G r a y and J. R e y n o l d s in p r e p a r i n g this pape r .

RECEIVED JANUARY, 1970; REVISED JUNE, 1970

REFERENCES

1. BRATMAN, H. An alternate form of the "UNCOL diagram."
Comm. A C M 4, 3 (Mar. 1961), 142.

2. BUREHARDT, W. H. Universal programming languages and
processors: A brief survey and new concepts. Proc. AFIPS
1965 Fall Joint Comput. Conf., Vol. 27, Pt. 1, Spartan
Books, New York, pp. 1-21.

3. EVANS, A. An Algol 60 compiler. Proc. ACM 18th Nat. Conf.,
1963.

4. FELDMAN, JEROME A. A formal semantics for computer lan-
guages and its application in a compiler-compiler. Comm.
A C M 9, 1 (Jan. 1966), 3-12.

5. MCCARTHY, J., ET AL. L i s p 1.5 Programmers Manual . MIT
Press, Cambridge, Mass., 1968, pp. 76-77.

6. NEWELL, A. I P L - V Manual . Prentice-Hall, Englewood Cliffs,
N.J., 1961.

7. SHAW, J . C . JOSS: A designer's view of an experimental on-
line computing system. Rand Corp. P-2922, Santa Monica,
Calif., Aug. 1964.

8. SKLANSKY, J., FINKELSTEIN, M., AND RUSSELL, E. C. A
formalism for program translation. J . A C M 15, 2 (Apr.
1968), 165-175.

9. ITURRXAGA, R., STANDISH, T., KRUTAR, R., EAnLEY, J. Tech-
niques and advantages of using the formal compiler writing
system FSL to implement a Formula Algol compiler. Proc.
AFIPS 1966 Spring Joint Comput. Conf. Vol. 28, Spartan
Books, New York, 241-252.

10. STRONG, J., ET AL. The problem of programming communi-
cation with changing machines: A proposed solution.
Comm. A C M 1, 8 (Aug. 1958), 12-18; and 1, 9 (Sept. 1958),
9-15.

A L G O R I T H M 395
S T U D E N T ' S t - D I S T R I B U T I O N [S14]
G. W. HILL (Recd. 17 Nov . 1969 and 23 M a r . 1970)
C.S . I .R .O. , Div i s ion of M a t h e m a t i c a l S ta t i s t ics , Glen

Osmond, S o u t h A u s t r a l i a

KEY WORDS AND PHRASES: Student's t-statistic, distribu-
tion function, approximation, asymptotic expansion
CR CATEGORIES: 5.12, 5.5

real p rocedure student (t, n, normal, error); value t, n; rea l t, n;
rea l p rocedure normal, error;

c o m m e n t student evaluates the two-tail probability P (t [n)
that t is exceeded in magnitude for Student's [1] t-distribution
with n degrees of freedom. The procedure provides results accu-
rate to 11 decimal places and 8 significant digits for integer val-
ues of n, with approximate continuation of the function through
noninteger values of n (over 6 decimal places for n > 4.3).

The procedure normal (x) returns the area under the standard
normal frequency curve to the left of x, so that a negative argu-
ment yields the lower-tail area. The user-supplied procedure,
error(n), should produce a diagnostic warning and may go to a
label, terminate, or return a distinctive value (zero or -1.0) as
a signal of error to the calling program.

Student's series expansion of the probability integral is sup-
plemented by a faster asymptotic approximation for large values
of n and by a more precise " ta i l" series expansion for large
values of t.

The value of x, defined as the normal deviate at the same
probability level as t, may be approximated by an asymptotic
normalizing expansion of Cornish-Fisher type [2].

x = z T (z3-F3z)/b -- (4zT+33zS~240zS+855z)/10b ~

T(64zU~788zg.~9801z~T89775z6T543375za~1788885z)/210b8

where z = (a X l n (1 T t ~ / n)) t , a = n - ½ and b = 48a 2 [3].
This is well approximated by the first three terms with the third
term's divisor replaced by

10b (b+0.Sz4+100).

The student probability is double the normal single-tail area,
corresponding to the deviate x.

The maximum error in the probability result for all values of t
ig displayed as a function of n in Figure 1, for this approxima-
tion, for the first few terms of the asymptotic expansion and for
Fisher's [4] fifth-order approximation used in Algorithm 321 [5]
for n > 30.

For small n and moderate t the result is calculated as P (t I n) =
1 - A (t [n) using Student's cosine series for A (t [n) , rearrang-
ing formulas 26.7.3 and 26.7.4 of the NBS Handbook [6] in
nested form

A(tln odd) = a; ~tan(y) + 1 + ~ (n--4)b

• (1 + (n--3) ...1tl

where y = x / (t2 /n) and b = 1 + t2/n. In the nested form, terms
are treated in reverse order to the summation in Algorithm 321
and Algorithm 344 [7], reducing the number of operations re-
quired and reducing build up of roundoff error. Explicit decre-

Volume 13 / Number 10 / October, 1970 Communica t ions of the ACM 617

