
Introduction
Features

Class Example
Conclusion

Terminology
Concerns
Examples

An Overview of Aspect-Oriented Programming

Presented by
Jarrell W. Waggoner

College of Engineering and Computing
University of South Carolina

03/19/08

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Terminology
Concerns
Examples

Terminology of Aspect-Oriented Programming (AOP)

Term: Concern

Definition: A feature or essential operation that is part of a
larger program or solution

Term: Code Entanglement

Definition: Code that cannot be separated into more than one
concern

Term: Cross-Cutting Concern

Definition: A concern that is entangled with one or more other
concerns

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Terminology
Concerns
Examples

Terminology of Aspect-Oriented Programming (AOP)

Term: Concern

Definition: A feature or essential operation that is part of a
larger program or solution

Term: Code Entanglement

Definition: Code that cannot be separated into more than one
concern

Term: Cross-Cutting Concern

Definition: A concern that is entangled with one or more other
concerns

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Terminology
Concerns
Examples

Terminology of Aspect-Oriented Programming (AOP)

Term: Concern

Definition: A feature or essential operation that is part of a
larger program or solution

Term: Code Entanglement

Definition: Code that cannot be separated into more than one
concern

Term: Cross-Cutting Concern

Definition: A concern that is entangled with one or more other
concerns

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Terminology
Concerns
Examples

Division of Concerns

How concerns are divided in different paradigms:

Functional Programming ⇒ Functions
Object-Oriented Programming ⇒ Objects

Aspect-Oriented Programming ⇒ Aspects

Functions: Code separation

Objects: Concern separation

Aspects: Cross-Cutting concern separation

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Terminology
Concerns
Examples

Division of Concerns

How concerns are divided in different paradigms:

Functional Programming ⇒ Functions
Object-Oriented Programming ⇒ Objects
Aspect-Oriented Programming ⇒ Aspects

Functions: Code separation

Objects: Concern separation

Aspects: Cross-Cutting concern separation

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Terminology
Concerns
Examples

Cross-Cutting Concern Examples

List of cross-cutting concerns:

System logging and tracing

Error handling

Statistics gathering

Security handling

Managed garbage collection

Most OOP languages are extended to support Aspect-Orientation
rather than creating entirely new languages:

Common Lisp ⇒ AspectL
Java ⇒ AspectJ
C#/VB.Net ⇒ Aspect.NET
C/C++ ⇒ AspectC/Aspect C++

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Terminology
Concerns
Examples

Cross-Cutting Concern Examples

List of cross-cutting concerns:

System logging and tracing

Error handling

Statistics gathering

Security handling

Managed garbage collection

Most OOP languages are extended to support Aspect-Orientation
rather than creating entirely new languages:

Common Lisp ⇒ AspectL
Java ⇒ AspectJ
C#/VB.Net ⇒ Aspect.NET
C/C++ ⇒ AspectC/Aspect C++

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Properties
Examples

Aspects

Aspect-Oriented Programming Languages:

Are fully object-oriented

Add the “aspects” construct

Aspects:

Encapsulate cross-cutting concerns that cannot be captured
by traditional objects

Generically applied to multiple objects

No direct modification to the objects themselves

Applied to all the objects in a program, or just a single object

Can add methods, or run code around existing methods

Can implement the methods defined by an interface (instead
of requiring an implementing object to do this)

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Properties
Examples

Aspects

Aspect-Oriented Programming Languages:

Are fully object-oriented

Add the “aspects” construct

Aspects:

Encapsulate cross-cutting concerns that cannot be captured
by traditional objects

Generically applied to multiple objects

No direct modification to the objects themselves

Applied to all the objects in a program, or just a single object

Can add methods, or run code around existing methods

Can implement the methods defined by an interface (instead
of requiring an implementing object to do this)

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Properties
Examples

1

1www.volantec.biz/Untangle AOP.ppt
Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Properties
Examples

Aspect Example

Example of an aspect SystemLog.aj:

Example

public aspect SystemLog {

private long Object.attribute;

public void Object.methodToAdd(){
// actions here

}
}

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Traversing Trees
Diagram

Tree Traversal

Options for traversing a tree with varying types of nodes:

“Traditional” OO approach

“Functional” approach

Visitor approach

← modify this with AOP

Aspect oriented approach

Note: Traversing our AST is a cross-cutting concern!

Anything besides Aspect-Oriented Programming is going to require
redundant code, clumsy “hacks” or special patterns that “abuse”
features of object-orientation.

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Traversing Trees
Diagram

Tree Traversal

Options for traversing a tree with varying types of nodes:

“Traditional” OO approach

“Functional” approach

Visitor approach

← modify this with AOP

Aspect oriented approach

Note: Traversing our AST is a cross-cutting concern!

Anything besides Aspect-Oriented Programming is going to require
redundant code, clumsy “hacks” or special patterns that “abuse”
features of object-orientation.

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Traversing Trees
Diagram

Tree Traversal

Options for traversing a tree with varying types of nodes:

“Traditional” OO approach

“Functional” approach

Visitor approach ← modify this with AOP

Aspect oriented approach

Note: Traversing our AST is a cross-cutting concern!

Anything besides Aspect-Oriented Programming is going to require
redundant code, clumsy “hacks” or special patterns that “abuse”
features of object-orientation.

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Traversing Trees
Diagram

Tree Traversal (cont.)

Anything besides Aspect-Oriented Programming is going to require
redundant code, clumsy “hacks” or special patterns that “abuse”
features of object-orientation.

Example

The visitor pattern uses (and some would argue abuses) the
polymorphic features of object-oriented languages to reduce the
code that is required to be part of a collection of objects. Every
object still has to have a minimal visit() method, however.

Aspect-Orientation will eliminate the need to ever touch the
original objects. No need for a visit() method!

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Traversing Trees
Diagram

Visitor Pattern with AOP

Implementing the Visitor Pattern with AspectJ:

Example

aspect VisitAspect {
void IfCommand.acceptVisitor(Visitor v) {

v.visit(this);
}

}

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Traversing Trees
Diagram

Visitor Pattern with AOP (cont.)

Or better yet:

Example

aspect VisitAspect {
void AST+.acceptVisitor(Visitor v) {

v.visit(this);
}

}

AST+ means any object that inherits from the abstract AST class.

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Traversing Trees
Diagram

Diagram 1

AST

... ...

...

= visit() method

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Traversing Trees
Diagram

Diagram 2

AST

... ...

...

= visit() method

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Traversing Trees
Diagram

Diagram 3

AST

... ...

...

visit() method

Aspect

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Notes
Importance
Summary

Notes

Implementing the visitor pattern with AOP only uses one limited
feature that is provided by the AOP framework.

Pointcuts, joinpoints, code weaving, runtime code weaving, etc...

There are better ways to traverse our AST with more AOP
“tricks” that would be even more efficient than modifying the
visitor pattern, and use even less code.

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Notes
Importance
Summary

Importance of AOP

Is Aspect-Oriented Programming important?

In 2001, MIT Technology Review listed AOP as one of the top
10 emerging technologies that will change the world

One of the most dramatic examples of a code layer “above”
traditional code

Possibility of “aspect libraries” that can add high-level
features to complex programs easily

Implementation of security patches/fixes as run-time “aspect
layers” for real-time systems

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Notes
Importance
Summary

Summary

Much more to AOP than is discussed here:

Advice Code woven into an object at a joinpoint

Joinpoint A place where code can be woven into an object
(creating a new method/attribute, before or after a current
method, etc.)

Pointcut A collection of joinpoints, perhaps across multiple
objects

Weaving Merging standard code with the associated aspects,
either before compile-time, or at run-time

Many more terms and concepts...

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

Introduction
Features

Class Example
Conclusion

Notes
Importance
Summary

Summary (cont.)

Downsides to using AOP

Difficult to manage
Few programmers are trained to understand AOP, so the
problem here is difficult to identify

Difficult to debug
The open-ended pointcut system can mean advice is being
woven into many, many places

Limited tool support
Few programs understand AOP code, and even fewer can
debug it

Conceptual issues
Arguments that AOP undermines fundamental structural and
organizational programming properties

Presented by Jarrell W. Waggoner An Overview of Aspect-Oriented Programming

	Introduction
	Terminology
	Concerns
	Examples

	Features
	Properties
	Examples

	Class Example
	Traversing Trees
	Diagram

	Conclusion
	Notes
	Importance
	Summary

