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Example 4.1 - Consider the problem of searching for a specific name in
a table of nanes. A simple method is to scan the table
sequentially starting from one end until we either find the
name or reach the other end, indicating that the required
name is missing from the table. The following is a PASCAL

program segment for sequential search:

VAR T: ARRAY[0..n] OF NAME;

Z: NAME;

I: 0..n;

BEGIN
T[0]:=%; {T[0] is used as a sentinel or marker!}
I:=n;
WHILE Z # T[I] DO

I:=I - 1;

IF I > 0 THEN {found; I points to 2z}
ELSE {not found}.

END.

In order to analyze the time required for sequential
search, let X be the discrete random variable denoting the
number of comparisons "Z # T[I]" made. Clearly, the set of
all possible values of X is {1,2,...,n+1}, and X=n+l for
unsuccessful searches. Since the value of X is fixed for
unsuccessful searches, it is more interesting to consider a

random variable Y which denotes the number of comparisons on



a successful search. The set of all possible values of ¥ is
{1,2,...,n}. To compute the average search time for a
successful search, we must specify the pmf of VY. In the

absence of any specific information, it is natural to assume

that Y is uniform over its range, i.e.,

A | .
Py(i) = & , 1<i<n

Then
n
E[Y] = 5 ip (i) = = RIgHa) - il
i=1

Thus,on the average, approximately half the table needs to

be searched.

Example 4.2:

The assumption of uniform distribution, used 1in
example 4.1, rarely holds in practice. It is possible to
collect statistics on access patterns and use empirical
distributions to reorganize the table so as to reduce the
average search time. 1If di denotes the access probability
for name T[i], then the average successful search time
E{Y] = Zid;. Unlike example 4.1, we now assume that table
search starts from the front for convenience. Then E[Y] is

—_—
minimized when names in thgntable are in the order of non-

increasing access probabilities, i.e., dlzqzz...zqn. As an

example, many tables in practice follow Zipf's law:

d s = % r li iin r



where the constant ¢ is determined from the normalization

n
requirement, = di = 1. Thus,

i=1
c-—_...l_=l..,.§ 1
n 4 H In(n)
Z T
i=1
where Hn is the partial sum of a harmonic series, i.e.
82
H - Z-v-o
n j=11%

Now, if the names in the table are ordered as above,

then the average search time is

E[Y]-n' 1 r.‘.l...
T EMy g 51T

which is considerably less than the previous wvalue E;l, for

large n.

Example 4.3 - Recalling the example of a computer system with five
tape drives (Chapter 1), let X be the number of available

tape drives. Then

w

BIX] = 5 ipg(i) = 0%(35) + 1*(35) +

i=0

2%(33) + 3*(FP + 4 (g3y + 5*(Fy)

= 2.5



The above example illustrates that E[X] need not correspond to
a possible value of the random variable X. The expected value denotes
the "center" of a probability distribution in the sense of a weighted

average, or better, in the sense of a center of gravity.

Example 4.4 - Let X be a continuous random variable with an

exponential density given by:

£(x) = e ™M, x>0
Then
a0
E(X] = { xf(x) dx = ?xe‘?\xdx.
=0

Let u = A\X, then du = xdx, and

E[X] = % ue Ydu

= %FQ = %, using formula (3.26) [Q&muua

Thus, if a component has an exponential failure law
with parameter ) (known as the failure rate) then its
expected life, or its mean time to failure (MTTF)} |is %.
Similarly, 1if the interarrival times of jobs to a computer
center are exponentially distributed with parameter N\ (known
as the arrival rate) then the mean (average) interarrival
time is %. Finally, if the service time requirement of a
job 1is an exponentially distributed random variable with
parameter p (known as the service rate), then the mean

(averagé) service time is l.

B



IV.B MOMENTS

Let X be a random variable and define another random variable
Y as a function of X so that, Y = ¢(X). Suppose we wish to compute
E[¥]. In order to apply definition (4.l1), we must first compute the
pmf (or pdf in the continuous case) of Y by methods of Chapter 2 ( or
Chapter 3 in the continuous case). An easier method of computing E[Y]

is to use the following result:

§¢(xi)Px(xi) , if X is discrete

E[Y] = E[$(X)] = - (4.2)
f ¢(x)fx(x) dx » 1f X is continuous
-0

(provided the sum or the integral on the right hand side is absolutely

convergent) .

A special case of interest is the power function ¢(X) = xk,

th moment of the random

for k=1,2,3,... . E[X®] is known as the k
variable X. Note that the first moment, E[X], is the ordinary

expectation or the mean of X.

It is possible to show that if X and Y are random variables
that have matching corresponding moments of all orders, E[Xk] = E[Yk]

for k=1,2,..., then X and ¥ have the same distribution.

To eliminate the scale of measurement, it is convenient to
work with powers of X-E[X]. We define the kt? central moment, Py r of

the random variable X by . = E[(X-E[X])k].

Of special interest is the gquantity



b, = EL(X-E[X]) %1, (4.3)

known as the variance of X, Var[X], often denoted by 02.

Definition (variance): The variance of a random variable X is

= 2¢(x) 4

{;JX-E[X]) (x) dx ; if X is continuous

Var [X] = Pz = 52 = 9 (4.4)
£(x,-E[x1) %p(x;)

i

if X is discrete.

It is clear that var{X) is always a positive number. The
square root of the variance, o, is known as the standard deviation.
The variance and the standard deviation are measures of the "spread"
or "dispersion"™ of a distribution. If X has a "concentrated"
distribution so that X takes values near to E[X] with a large

probability, then the variance is small (see Figure 4.1).

Figure 4.2 shows a diffuse distribution, i.e., with a large value of

cz. It should also be noted that variance need not always exist (see

Exercise ).

Example 4.5 - Let X be an exponentially distributed random variable

with parameter A. Then since E[X] = % and f(x) = ke_kx,

o? = I(x—%) 2 )\e-)\xdx
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@
1&x2e“kx dx - 2{xe_kxdx + %I;-kxdx

}1_\2]"3 -2+ 1 = 1., using formula (3.26)
A A A

The standard deviation is expressed in the same units &
individual values of the random variable X. For some purposes
more useful to measure the spread of the distribution of X in re
terms. The coefficient of variation of a random variable X is d

by Cx and defined by

Sx
C, = .
X E1X]
Note that the coefficient of variation of an expon
T T eI PR TERSERT =
andom variable is 1, so C, is .a measure of deviation fr

A et et S

axponential distribution.
v“-__——_——_'_.’-_‘_—"__\_-_ =
Yet another function of X that is often of intere

Y = aX+b, where a and b are constants. It is not difficult t
that

E[Y] = E[laX+b] = aE[X] + b

In particular, if a is zero, then E[b] = b; that is
expectation of a constant is that constant. If we take a=1 an

E[X], then we conclude that the first central moment, by = E[X -
= E[X] - E[X] = 0.
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IV.C EXPECTATION OF FUNCTIONS OF MORE THAN ONE RANDOM VARIABLE

Let Xl,xz,...,xn be n random variables defined on the same
probazbility space and let Y = ¢(X1,X2,...,xn)- Then

E[Y] = E[?(xl,xz,...,xn)]

oo o @
‘; 5\ .'.J‘ ¢(xl’X2'.o.'xn)f(x1,xZ,boopxn)Xmdle-.dxn 'continuous Case
“O0  —O
(4.7)
S E o0 T PR Ky re e e X )P (R Xgreen X)) ydiscrete case
XqX X
1°2 n

Example 4.6 - Consider a moving head disk with the innermost cylinder
of radius a and the outermost cylinder of radius b. We
assume that the number of cylinders is very 1large and the
cylinders are very close to each other so that we may assume
a continuum of cylinders. Let the random variables X and Y
respectively denote the current and the desired position of
the head. Further assume that X and Y are independent and

uniformly distributed over the interval (a,b). Therefore,

and
f(x,v) = *_E__f r @A <X, ¥ <b
{b-a)

Head movement for a seek operation traverses a distance

which is a random variable given by |X-Y|. The expected

seek distance is then given by (see Figure 4.3)



lia

a " > 5

F‘-BIML 4.3: ﬁa Ancas 4 gnhagwﬂ‘q'an ﬁ. Exm{o’tb 4.6,
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b b
E[|x-¥[] = § { [x-y|£(x,y) axay
a a

It

X=- d=xd

= J’ 5‘ (xX=v) dydx + I j‘ { Y ~X) dydx

a<y<x<b  (b-a) a<x<y<b  (b-a)

2 f(x—y) dvdx (by symmetry)
(b-a) a a

2 2 X
(xy - } | dx
—zi(b_a) 12

2 .2
_..._._2._.......2.? (xz—ax—-};—+§—) dx
(b=-a) "a

3__3 2
(bz > b2’ 2,22 . a (b-a) ,
-a

b-a
3 )

Thus, the expected seek distance is one third the
maximum seek distance. The intuition may have led us to the
incorrect conclusion that the expected seek distance is half

of the maximum.

Certain functions of random variables (e.g., sums), are of

special interest and are of considerable use.

Theorem 4.1 (The linearity property of expectation):

Let X and Y be two random variables. Then the expectation of

their sum is the sum of their expectétions, that is, if Z=X+Y, then
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ElZ] = E[X+Y] = E[X] + EfY].

Proof:

We will prove the theorem assuming that X,Y, and hence 2 are

continuous random variables. Proof for the discrete case is very
similar.
& o
E[X+Y] = {  (x+y) £(x,y) dxdy
-0

0 oo
= X f f(x,y) dydx + jg} f f(x,y)} dxdy
-© -© =-m

8

8

il

(o o] A
by definition of the
*Iffx(x) dx +'£;3EY(Y) dy marginal densities

E[X]+E[Y]

Note that the above theorem does not require that X and Y be

independent. It can be generalized to the case of n variables, i.e.

n n
E[ £ X;] = Z EIX;]
i=1 i=1
and to
El n ] n
£ a;Xx;] = £ a;E[X;] (4.8)
j=1 PR g5 T T

where ayr....ra, are constants. For instance, let X1rXgsee Xy be
random variables (not necessarily independent) with a common mean b=
E[xi] (i=1, 2, ..., n}. Then the expected value of their sample

mean (defined in section 3.1) is equal to M
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N I
E{X] =B [ &= z EiX,] =p (4.9)

Example 4.7 - We have noted that the variance

.

E[(X—E[X])z]

n

E[x2-2XE[x]+(E[X])2]

It

2, 2 by the above linear
EIXT1-E[2XE[X]]1+(E[X]) property of expectation

noting that E[X]
is a constant

|

E[X2]-2E[X]E[X]+(E[X]) 2

o? = E[x*]-(E[X]) 2 (4.10)
This formula for Var[X] is wusually preferred over the

original definition.

Unlike the case of expectation of a sum, the expectation of a
product of two random variables does not have a simple form, unless

the two random variables are independent.

Theorem i-£=

—— - %EB[XY] = E[X]E[Y], if X and Y are independent random variables.

S

Proof:

We give a proof of the theorem assuming X and Y are discrete

random variables. The proof for the continuous case is similar.

E[XY]

XX, VsP (R rY3)
iy & ; ir]

= f?xiyjpx(xi)PY(¥i? by independence
¥

¢
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It should be noted that converse of Theorem 4.2 does not hold,

that is, random variable X and Y may satisfy the relation E[XY] = E[X]

E[Y] without being independent.

The above theorem can be easily generalized to a mutually

independent set of n random variables Xy rXgreae X8
n

] = ME[XJ’_] (4.11)
i=1

and further to

n n
Elﬂgi¢i(xi)1 = ;E&E[¢i‘xi’]

Again with the assumption of independence, the variance of a sum takes

a simpler form also:

Theorem E.E:

Var [X+¥] = Vvar{X] + var[¥], if X and Y are independent random

variables.

Proof:
From the definition of variance,

E[ ((X+Y) - B[X+Y]) 2]

Var [X+Y]
= B[((X+Y) - E[X]-E[¥]) 2]
= E[ (X-E[X])2 + (Y-E[¥])? + 2(X-E[X]) (Y-E[Y¥]) ]

= E[(X-E[X])?] + E[(Y-E[Y1)?] + 2E[ (X-E[X]) (Y-E[Y])]
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n
var{ = xi] = nVar[Xi] = nCJ'2 (4.14)
i=1

and the variance of their sample mean is

n
z X.
j=1 3% 1 n
Var [X] = Var[—5—] = = Var[ Z X;!
62 n i=1
=2 (4.15)
We have noted that Cov(X,¥) = 0, if X and Y are independent

random variables. However, it is possible for two random variables to

satisfy the condition Cov(X,¥) = 0 without being independent.

Definition (Uncorrelated Random Variables):

Random variables X and Y are said to be uncorrelated provided

Cov(X, ¥) = 0.

Since Cov(X,Y) = EIXY¥Y] -E[X]EI[Y¥], an equivalent definition of
uncorrelated random variables is the condition E[XY] = E[X] E[¥Y]. It

follows that independent random variables are uncorrelated but the

= - - o e i s

- ot e

converse need not hold.
st

Example 4.8 Let X be uniformly distributed over the interval (-1,1)
and let Y=X2, so Y is completely dependent on X. Noting
that for all odd values of k > 0, gth moment E[xk] =0, we
have,

E[XY]=E[X3]=0 and E[X]IE[Y]=0 * E[Y] =0.

Therefore X and Y are uncerrelated!
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= Var {X] + Vvar([¥] + 2E{(X-E[X]) (Y-E[Y])],

by the linearity property of expectation.

The guantity E[(X-E[X])(Y-E[Y])] 1is defined to be the

covariance of X and Y and is denoted by Cov(X,Y). It is easy to see

that Cov(X,¥) is zero when X and Y are independent:

Cov(X,Y)

E[(X-E[X]) (¥Y-E[¥])]

E[ XY - YE[X] - XE[Y] + E[X]E[Y]]

[

E[XY] - E[YIE[X] - EIX]E[Y] + E[X]E[Y]

T TR T o

zpy the linearity of expectation

E[XY] - E[X]E[Y]

0, by Theorem 4.2 since X and Y are independent.

Therefore, Var[X+Y] = Var[X]+Var[¥] if X and Y are independent

random variables.

In case X and Y are not independent we obtain the formula

Var [X+¥]= Var[X1+Var[Y] + 2Cov(X,Y) (4.12)

The above theorem c¢an be generalized for a set of n mutually

i)

independent variables Xl,Xz,...,Xn; and constants A1r8gre0.sapt

n
Var{ & aixi] =

2 7
= aiVar[Xi] {4.13)
i=1 i=

1
Thus if X1+X5r...,X, are independent random variables with a
common variance o? = Var[Xi] (i=1,2,..., n) then the variance of their

sum is given by
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We have declared that Cov(X,Y¥) = 0, means X and Y are
uncorrelated. On the other hand, if X and Y are linearly related,
that is, X = a Y for some constant a # 0, then since E[X] = a E[Y], we

have,

Cov(X,Y) = a vVar([Y] = 1/a Vvar([X]
or

Cov2 (X,Y) = Var[X] var|¥]
In the general case, it can be shown that

0 < cov? (x,Y) < Var[X] Var[Y] (4.16)

using the following Cauchy-Schwarz inequality:
(e{xy1) 2 < E1x?) BIY?] (4.17)

Cov(X,Y¥) measures the degree of linear dependence (or the degree of

correlation) between the two random variables. Recalling the example

s T

e e T e exar
4.8, we note the notion of covariance completely misses the quadratic

dependence. It is often useful to define a measure of this dependence

in a scale-independent fashion. The correlation coefficient p(X,Y) is

defined by
p(X,y) = ___CoviX,¥) _ (4.18)
\ |Var[XT Vat Y]
_ Cov{X,Y)
%%

Using the relation (4.16), we conclude that

-1<p(X,¥)<1. (4.19)
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Also,

-1 if X = -aYy (a>0)

eX,y) = 0 if X and Y are uncorrelated (4.20)
+1 if X = a¥ (a>0)

IV.D TRANSFORM METHODS

In many probability problems, the form of the density function
{or the pmf in the discrete case) may be so complex so as to make
computations difficult, if not impossible. As an example, recall the
analysis of the program MAX. A transform can provide a compact
description of a distribution and it is relatively easy to compute the
mean, the variance, and other moments directly from a transform rather
than resorting to a tedious sum (discrete case) or an equally tedious
integral (continuous case). The transform methods are particularly
useful in problems involving sums of independent random variables, and
in solving difference equations (discrete case} and differential

equations (continuous case) related to a stochastic process. We will

introduce the 2z-transform (also called the probability generating

function), the Laplace transform, and the characteristic function

(also called the Fourier transform). We will first define the moment

generating function and derive the above three transforms. as _ special

cases.
B ]

For a random variable X, ex9 is another random variable. The

—— PP

expectatiqnu“E[exe] will be a function of 6. Define the moment

generating function (MGF) My(8), abbreviated M(®), of the random




