

Computational Biology & Computational Medicine

Homayoun Valafar CSCE 190

Outline

- Why proteins?
- What are proteins?
- How do we compute them?
- How do we use computational approaches?

Why Proteins?

Molecular basis of any/all diseases can be traced to proteins

CSCE 190

Alzheimer's Disease

- Alzheimer's disease (AD), first described by Alois Alzheimer in 1906
- Causes the gradual loss of memory and general cognitive decline
- AD is the most common form of dementia in the elderly
- Current estimation suggests that AD affects nearly 2% of the population and projects an increase of three fold within the next 50 years (http://www.alz.org)
- The amyloid hypothesis, proposed in 1992, suggested the accumulation of Aβ peptides is the primary cause of ADrelated pathogenesis
- BACE1 was identified independently by several groups in 1999, and is speculated to be involved in production of A β peptides

Sickle Cell Anemia

- A genetic blood disorder
- Characterized by red blood cells that assume sickle shape
- The sickling occurs because of a mutation in the hemoglobin gene

What are Proteins? One of the major cellular macromolecules

Protein

- Proteins are functional elements of a cell
- Proteins are made of 20 "amino acid" subunits
- Proteins fold to create a their own characteristic fold (three dimensional shape)

Protein Structure Hierarchy

- Primary sequence (1°):
 - linear order of connected amino acids.

ALA-GLY-LYS-PRO-...

β–Sheet

- Secondary Structure (2°):
 - Internal stable segments.

 α -Helix

• Tertiary Structure (3°):

CSCE 769

SOUTH(ARO

Why Protein Structure?

- Proteins provide metabolic and mechanical support for biological organisms.
- Structure gives rise to function.
- Structure is necessary (not sufficient) for function.
- Proteins are of special interest due to their therapeutic potential (why not DNA)?

How do we compute them? Through the simulation of physical forces...

CSCE 190

From Sequence to Structure

- Does primary sequence lead to functional structure?
 - Isolate functional protein
 - Denature using urea or high temperature
 - Confirm loss of function
 - Reinstate folding conditions (remove urea, lower temp.)
 - Confirm gain of function
- In general protein sequence leads to functional structure
- Simulation of physical forces should allow computational folding of proteins
 - Levitt, M. and A. Warshel, *Computer simulation of protein folding*. *Nature*, 1975. 253: p. 694-698.

Potential Energy of Bond Lengths

- The bond length a pair of atoms is known empirically
- Bond lengths should not exceed the expected values
- Defined by two atoms

$$E_{Bond} = \sum_{bond} k_b (r - r_0)^2$$

SOUTH AROLI

03/22/11

Potential Energy of Bond Angles

03/22/11

- Bond angles should not deviate from the known quantities
- Involves three atoms

CSCE 769

$$E_{Angles} = \sum_{angles} k_{\theta} (\theta - \theta_0)^2$$

P.E. of Improper Dihedrals

- Improper dihedrals represent the planarity of a group of atoms
 - Peptide plane

CSCE 769

Aromatic side chains: phenylalanine, tryptophan, tyrosine, histidine

• Four atoms are required for this measure

$$E_{Impr} = \sum_{impropers} k_i (\omega - \omega_0)^2$$

Hydrogen Bond

- Two participating atoms: donor and acceptor
- Normally between O-H or N-H
- Strongest non-bonded force

Van Der Waals Forces

- Van der Waals forces may be:
 - Attractive in long range.
 - Repulsive in short range.
- Modeled by L-J poetntial:
 - ε is the well depth
 - σ is the van der Waals radia
 - Experimentally determined!
- (6-12) L-J potential is defined as:

$$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

UNIVERSI

SOUTH (AROL

CSCE 769

Empirical Energy Terms

- Conformational Energy Terms:
 - E_{BOND} : describes the covalent bond energy over all covalent bonds
 - E_{ANGL} : describes the bond angle energy over all bond angles
 - E_{DIHE} : describes the dihedral angle energy over all dihedrals
 - E_{IMPR} : describes the improper angle energies (planarity and chirality)
- Nonbonded Energy Terms:
 - E_{VDW} : describes the energy of Van Der Waals terms
 - E_{ELEC} : describes the energy of electrostatic interactions
 - E_{HBOND}: hydrogen bond interaction

Total Energy Term

- E_{Total} is the total potential energy of a conformation
- Force Field: A vector field representing the gradient of the total potential
- ω is referred to as the force constants

$$E_{Total} = \sum \left[w_{BOND}^{p} E_{BOND} + w_{ANGL}^{p} E_{ANGL} + w_{DIHE}^{p} E_{DIHE} + w_{IMPR}^{p} E_{IMPR} + w_{VDW}^{p} E_{VDW} + w_{ELEC}^{p} E_{ELEC} \right]$$

$$E_{BOND} = \sum_{bonds} k_{b} (r - r_{0})^{2} \qquad E_{ANGL} = \sum_{angles} k_{\theta} (\theta - \theta_{0})^{2}$$

$$E_{DIHE} = \sum_{dihedrals} \sum_{i=1,m} \left[k_{\varphi_{i}} (1 + \cos(n\varphi_{i} + \delta_{i})) - n_{i} > 0 \\ k_{\varphi_{i}} (\varphi_{i} - \delta_{i})^{2} n_{i} = 0 \right]$$

$$E_{IMPR} = \sum_{impropers} \sum_{i=1,m} \left[k_{\varphi_{i}} (1 + \cos(n\varphi_{i} + \delta_{i})) - n_{i} > 0 \\ k_{\varphi_{i}} (\varphi_{i} - \delta_{i})^{2} n_{i} = 0 \right]$$

$$E_{LEC} = \sum_{i,j} \frac{q_{i}q_{j}}{q\pi\epsilon_{0}}$$

CSCE 769

Force Field

- Technically, the derivate of the potential energy
 - A vector field of forces
- Some currently existing force fields (forcefield):
 - Xplor-NIH
 - AMBER
 - CHARMm
 - MM2, MM3 and MM4
 - Sybyl
 - Etc.

SOUTH (AROL

Minimization of Total Energy

- Theoretically, the structure with the minimum total energy is the structure of interest.
- A number of minimization algorithms can be utilized.
 - Gradient descent
 - Monte Carlo and Simulated Annealing
 - Newton's
 - Genetic Algorithm
 - Distributed Global Optimization
 - Branch and Bound

 $E_{Total} = \sum \left[w_{BOND}^{p} E_{BOND} + w_{ANGL}^{p} E_{ANGL} + w_{DIHE}^{p} E_{DIHE} + w_{IMPR}^{p} E_{IMPR} + w_{VDW}^{p} E_{VDW} + w_{ELEC}^{p} E_{ELEC} \right]$

How do we use computational approaches? In short, we can compute you! A significant step toward personalized medicine! A significant step toward reengineered organisms!

CSCE 190

Successes

• Study of structure and dynamics of challenging proteins or complexes from minimal experimental data

- Size: 56 residues.
- Data acquisition: 1 week.
- Data analysis: 2 hours.
- Results: 1.8 Å with X-ray

- Size: 70 residues.
- Data acquisition: 1 week.
- Data analysis: 1 Day.
- Results: C-terminal motion.

- Size: ~60 residues.
- Data acquisition: 1 week.
- Data analysis: 2 hours.
- Results: Unstructured Znbinding region.
- \sim 1.5 Å with X-ray.

CSCE 190

Simultaneous Structure and Dynamics

CSCE 190

Why Motion?

SOUTH CAROLINA

Sickle Cell Anemia

- Genetic disorder cause by VAL substitution for ALA at $\beta 6$
- Hydroxyurea (Hydrea) aleviates symptoms of SCA
- Hydrea has negative sideeffects
- Can we identify patients that will respond to Hydrea?
- Used
- Have demonstrated more than 90% success

Computational Medicine

- Disorder: Sickle Cell Anemia
- Treatment: Hydroxyurea
- Question: Who benefits?
- Approach: Computational models predicting patients' response to treatment.

