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Editorial 
Exploratory Research in Machine Learning 

Exploratory research contributes to the continued vitality of every discipline. The aim 
of exploratory research is to identify new tasks--tasks that cannot be solved by existing 
methods. Once a new task has been found, exploratory research seeks to develop a precise 
definition of the task and to understand the factors that make the task different from 
previously-solved tasks. 

Until recently, most research in machine learning was primarily exploratory. However, 
during the past decade, some areas of the field--particularly inductive learning--have 
matured to the point that careful, quantitative experiments are now possible and proved 
theoretical results have been obtained. Although these trends are extremely healthy and 
long overdue, there is a danger that the increased attention to these products of mature 
research may discourage researchers from undertaking and publishing research of a more 
exploratory nature. The goal of this editorial is to emphasize the importance of exploratory 
research and to encourage the publication of high quality exploratory results in Machine 
Learning. 

A model of the research process 

To appreciate the role of exploratory research, it is helpful to examine the various phases 
of the research process. We begin by defining each of the phases and indicating the kinds 
of results obtained in each phase. 

Research begins with a phase of exploration, usually driven by specific problems in spe- 
cific domains. For example, the early research in inductive concept learning was motivated 
by neural modeling [Rosenblatt, 1957], psychological modeling [Hunt, Marin & Stone, 
1966], and minimization of switching circuits [Michalski, 1969] to name only a few of 
the pioneering projects. Exploratory research seeks to understand a new problem and develop 
a precise task definition. In the area of inductive concept learning, a clear definition of 
the task eventually emerged in the work of Mitchell [1978]. Subsequent exploratory research 
has produced less constrained and more realistic definitions [e.g., Valiant, 1984]. 

Exploration is usually followed by (or associated with) a phase in which algorithms and 
methods are developed. In addition to the methods developed from the exploratory research 
mentioned above (perceptrons, CLS, and Aq), the past decade has seen an explosion in 
the number of learning methods (such as ID3 [Quinlan, 1983], PLS [Rendell, 1983], Back- 
propagation [Rumelhart, Hinton, & Williams, 1986], Stagger [Schlimmer, 1987], etc.). The 
primary research result in this phase is simply the development of a new method. 

The goal of the third phase of research is to perform empirical evaluation of the methods 
that have been developed. The first empirical evaluations of machine learning algorithms 
were performed using the training set/test set methodology by Hunt, Marin, & Stone [1966]. 
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Subsequent evaluations focused on additional criteria such as the number of examples re- 
quired to obtain good performance [Quinlan, 1983], noise tolerance [Quinlan, 1986], con- 
cept drift [Schlimmer & Granger, 1986], and incremental learning [Schlimmer & Fisher, 
1986]. In this third phase, methods are typically evaluated in isolation, although resear- 
chers are encouraged to proceed to comparative studies (phase four) as quickly as possible. 

Once more than one method is available, the fourth phase of research can begin. In this 
phase, algorithms are compared against one another under controlled situations (e.g., same 
data, same representation, etc.). The goal of the research is to determine which algorithms 
are better (and under what conditions). Inductive concept learning research is actively pro- 
ceeding through this phase, as demonstrated in the papers by Fisher [1987], Schlimmer 
& Fisher [1986], Utgoff [1988], Quinlan [1988], Mingers [1989], Mooney, Shavlik, Towell, 
& Gove [1989], Weiss & Kapouleas [1989], Fisher & McKusick [1989]. 

A fifth phase of research, which may proceed independently of phases three and four, 
is the theoretical analysis of the task and the methods. For inductive concept learning, there 
has been an explosion of activity in the past five years, as represented by Valiant [1984], 
Blumer, Ehrenfeucht, Haussler, & Warmuth [1987], Ehrenfeucht, Haussler, Kearns, & Valiant 
[1988], Judd [1987], Pitt & Warmuth [1988], Kearns & Valiant [1988], and many others. 
The goal of this research is to develop upper and lower bounds on the performance of any 
algorithm. Another goal is to analyze specific algorithms to determine their relationship 
to these upper and lower bounds. Theoretical analysis must also determine the sensitivity 
of its results to slight changes in the task definition. 

A sixth phase of research attempts to tie together all that is known about a problem and 
provide a theoretical foundation for the field. One form that this can take is a generative 
theory of methods that tells how to design a good method for any particular problem. In 
the inductive concept learning area, the minimum description length principle [Rissanen, 
1978] and its Bayesian justification shows some promise of providing such a foundation, 
although much research remains to be done. 

The role of Machine Learning 

Machine Learning has the responsibility to encourage and publish high quality research 
in all of these phases. Recently, editorials in Machine Learning have attempted to articulate 
good techniques for the empirical evaluation of machine learning methods (i.e., phases 
three and four) and the development of good theoretical work (i.e., phase five). Nearly 
all of the manuscripts received by the journal fall into these three phases. This is appropriate, 
and I expect it to continue in the future. However, I would like to give some attention to 
the other phases, especially exploratory research. 

An exploratory paper should include the following: (1) a precise statement of a new learning 
problem or learning situation, (2) a justification for why this is a new problem rather than 
being only superficially different, (3) a discussion of the feasibility of solving the problem, 
(4) a description of the issues that are believed to be important in attacking this new problem 
(e.g., tradeoffs, important variables that should be controlled, etc.) and (5) a suggested 
agenda for future research in the area. Each of these points should be justified by appealing 
to properties of some particular domain or domains. To demonstrate the novelty of the 
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task, for example, one good approach is to show that existing methods fail (or are inappli- 
cable). To show that it is feasible to solve the problem, a convincing strategy is to propose 
and implement a method that solves the problem. Without such justification and illustration, 
the paper is unlikely to persuade the readers that this is an important kind of new problem 
or that it is a problem where research progress can be made. 

An exploratory research paper should enable (and encourage) readers to pursue the research 
items on the agenda of part (5). To achieve this, the description of the research problem 
must be so clear that any reader could apply the description to decide whether another 
problem in a new domain was an instance of the research problem in question. It should 
be possible for the reader to replicate and explore, in a new domain, the problems and 
issues described. 

Three good examples of exploratory research papers are (1) Amarel's [1968] paper on 
reformulation in the missionaries-and-cannibals problem, (2) the first paper describing LEX 
[Mitchell, Utgoff, & Banerji, 1983], and (3) the first LEAP paper [Mitchell, Mahadevan, & 
Steinberg, 1985]. Each of these papers described either hand examples or partial implementa- 
tions of systems. None of the papers provided empirical verification of the kind required 
in later research phases. But each clearly described a new kind of learning situation and 
analyzed the important issues and open research questions in the area. Each paper was 
tightly coupled to a domain, which provided the motivating examples for the claims in 
the paper. 

One critical feature that each of the three papers share is exceptionally clear and convincing 
writing. High quality writing is even more important in exploratory papers than it is in 
papers describing other phases of research. This is because the material in exploratory 
papers necessarily involves new domains and new ways of looking at problems. Conse- 
quently, it is less familiar to readers and tends to fall outside established paradigms. 

There are many areas of the machine learning field that are ripe for exploration and 
that would benefit from the publication of good exploratory research papers. Consider, 
for example, the area of knowledge integration, which studies the problem of how to integrate 
new knowledge into a large existing knowledge base quickly and easily. There is a great 
need for a precise definition of this task and a methodology for evaluating proposed knowl- 
edge integration methods. 

Another area in which exploratory research is proceeding is the area of learning robots. 
What are the learning tasks facing a robot? How can we measure our progress as we attack 
these tasks? A paper answering these questions would be a valuable contribution to the field. 

Concluding remarks 

According to the research model described above, a research field cannot remain vital unless 
it devotes some portion of its energies to exploratory research. It is this research that identifies 
new, important problems to attack. Without exploratory research, it is easy for a field to 
degenerate into "algorithm polishing" activities that yield only modest improvements in 
performance and stick within the safe boundaries of established paradigms. 
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This  ed i tor ia l  has  d e s c r i b e d  the  m a k e u p  of  a h igh -qua l i t y  exp lo ra to ry  r e s e a r c h  paper .  

I e n c o u r a g e  au tho r s  to c o n s i d e r  these  c r i t e r ia  and  to s u b m i t  exp lo ra to ry  r e sea rch  paper s  

to M a c h i n e  L e a r n i n g .  

T h o m a s  G. D ie t t e r i ch  
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