
Page 1 of 20

Multi-Entity Bayesian Networks Without Multi-Tears

Paulo C. G. da Costa and Kathryn B. Laskey

George Mason University
4400 University Drive

Fairfax, VA 22030-4400
[pcosta, klaskey]@gmu.edu

Abstract
An introduction is provided to Multi-Entity Bayesian
Networks (MEBN), a logic system that integrates
First Order Logic (FOL) with Bayesian probability
theory. MEBN extends ordinary Bayesian networks to
allow representation of graphical models with
repeated sub-structures. Knowledge is encoded as a
collection of Bayesian network fragments (MFrags)
that can be instantiated and combined to form highly
complex situation-specific Bayesian networks. A
MEBN theory (MTheory) implicitly represents a joint
probability distribution over possibly unbounded
numbers of hypotheses, and uses Bayesian learning to
refine a knowledge base as observations accrue.
MEBN provides a logical foundation for the emerging
collection of highly expressive probability-based
languages. A running example illustrates the
representation and reasoning power of the MEBN
formalism.

Introduction
Uncertainty is a ubiquitous feature of the world,

and probability theory is a natural candidate to
represent uncertain phenomena. Application of
probability to artificial intelligence was initially
hindered by skepticism about tractability of inference
and feasibility of representation. This situation
changed dramatically with the introduction of
Bayesian networks (BNs) (Lauritzen & Spiegelhalter
1988, Pearl 1988) and their application to diverse
areas such as language understanding (Charniak &
Goldman 1989a, 1989b), visual recognition (Binford
et al. 1987), medical diagnosis (Heckerman 1990),
and search (Hansson & Mayer 1989). Heckerman
(1995b) provides a review of recent applications of
Bayesian Networks.

As Bayesian networks grew in popularity, their
limitations became increasingly apparent. Although a

powerful tool, BNs are not expressive enough for
many real-world applications. More specifically,
Bayesian Networks assume a simple attribute-value
representation – that is, each problem instance
involves reasoning about the same fixed number of
attributes, with only the evidence values changing
from problem instance to problem instance. This
type of representation is inadequate for many
problems of practical importance. Many domains
require reasoning about varying numbers of related
entities of different types, where the numbers, types
and relationships among entities cannot be specified
in advance and may themselves be uncertain. As will
be demonstrated below, Bayesian networks are
insufficiently expressive for such problems.

On the other hand, systems based on first-order
logic (FOL) have the ability to represent entities of
different types interacting with each other in varied
ways. Sowa states that first-order logic “has enough
expressive power to define all of mathematics, every
digital computer that has ever been built, and the
semantics of every version of logic, including itself”
(Sowa 2000, page 41). For this reason, FOL has
become the de facto standard for logical systems from
both a theoretical and practical standpoint. However,
systems based on classical first-order logic lack a
theoretically principled, widely accepted, logically
coherent methodology for reasoning under
uncertainty.

As a result, a number of languages have appeared
that extend the expressiveness of standard BNs in
various ways (see section on related work below).
As probabilistic languages become increasingly
expressive, there is a need for a fuller characterization
of their theoretical properties. Different communities
appear to be converging around certain fundamental
approaches to representing uncertain information

Page 2 of 20

about the attributes, behavior, and interrelationships
of structured entities (cf., Heckerman et al. 2004).
This paper discusses some of the primary
representational challenges that must be addressed by
a logical formalism that combines first-order logic
and probability. As a vehicle for presenting these
ideas, we have chosen Multi-entity Bayesian
networks (MEBN), a knowledge representation
formalism that combines the expressive power of
first-order logic with a sound and logically consistent
treatment of uncertainty (Laskey 2005). MEBN
syntax is designed to highlight the relationship
between a MEBN theory and its first-order logic
counterpart. Although our examples are presented
using MEBN, our main focus is the underlying
logical notions and not the language per se. That is,
MEBN syntax should be viewed not as a competitor
to other syntactic conventions such as plates or
probabilistic relational models, but as a vehicle for
expressing logical notions that cut across surface
syntactic differences.

MEBN is not a computer language such as Java or
C++, or an application such as Netica or Hugin
(although it would be possible to construct software
applications that implement MEBN). Rather, it is
formal system that instantiates first-order Bayesian
logic. That is, MEBN provides syntax, a set of model
construction and inference processes, and semantics
that together provide a means of defining probability
distributions over unbounded and possibly infinite
numbers of interrelated hypotheses. As such, MEBN
provides a logical foundation for the many emerging
languages that extend the expressiveness of Bayesian
networks.

The purpose of this paper is to provide an
accessible introduction to first-order probabilistic
logic in general and MEBN in particular. In the
context of a running example, we illustrate the
limitations of standard BNs for situations that
demand a more powerful representation formalism.
We then gradually introduce additional elements into
our example to illustrate the power of the additional
representation capability provided by integrating
first-order logic and probability.

Of Planets and Starships
We begin with a simple problem that can be

modeled using standard BNs. Then, assuming the
model as satisfactory for its purposes, we gradually
expand it to embrace more general situations.

Choosing a particular real-life domain would risk
getting bogged down in domain-specific detail. For
this reason, we opted to construct a case study based
on the popular Paramount series Star Trek. Our
examples have been constructed to be accessible to
anyone having some familiarity with space-based
science fiction.

Figure 1 – Decision Support Systems in the 24th Century

A Simple BN Model
Figure 1 illustrates the operation of a 24th century

decision support system tasked with helping Captain
Picard to assimilate reports, assess their significance,
and choose an optimal response. Of course, present-
day systems are much less sophisticated than the
system of Figure 1. We therefore begin our
exposition narrating a highly simplified problem of
detecting enemy starships.

In this simplified problem, the main task of a
decision system is to model the problem of detecting
Romulan starships (here considered as hostile by the
United Federation of Planets) and assessing the level
of danger they bring to our own starship, the
Enterprise. All other starships were considered either
friendly or neutral. Starship detection is performed by
the Enterprise’s suite of sensors, which can correctly
detect and discriminate starships with an accuracy of
95%. However, Romulan starships could be in “cloak
mode,” which would make them invisible to the
Enterprise’s sensors. Even for the most current sensor
technology, the only hint of a nearby starship in cloak
mode is a slight magnetic disturbance caused by the
enormous amount of energy required for cloaking.

Page 3 of 20

The Enterprise has a magnetic disturbance sensor, but
it is very hard to distinguish background magnetic
disturbance from that generated by a nearby starship
in cloak mode.

Figure 2 – The Basic Starship Bayesian Network

This simplified situation is modeled by the BN in
Figure 21, which also considers the characteristics of
the zone of space where the action takes place. Each
node in our BN has a finite number of mutually
exclusive, collectively exhaustive states. The node
Zone Nature (ZN) is a root node, and its prior
probability distribution can be read directly from
Figure 2 (e.g. 80% for deep space). The probability
distribution for Magnetic Disturbance Report (MDR)
depends on the values of its parents ZN and Cloak
Mode (CM). The strength of this influence is
quantified via the conditional probability table (CPT)
for node MDR, shown in Table 1. Similarly, Operator
Species (OS) depends on ZN, and the two report
nodes depend on CM and the hypothesis on which
they are reporting.

Table 1 – Conditional Probability table for node MDR
Magnetic Disturb. Rep. Zone

Nature
Cloak
Mode Low Medium High

True 80.0 13.0 7.0 Deep
Space False 85.0 10.0 5.0

True 20.0 32.0 48.0 Planetary
Systems False 25.0 30.0 45.0

True 5.0 10.0 85.0 Black Hole
Boundary False 6.9 10.6 82.5

Graphical models provide a powerful modeling

framework and have been applied to many real world
problems involving uncertainty. There is a large and
growing literature on Bayesian network theory and

1 Bayesian network screen shots were constructed using Netica™,
http://www.norsys.com.

applications (e.g. Charniak 1991, Jensen 1996, 2001,
Neapolitan 1990, Oliver & Smith 1990, Pearl 1988).

How Complex Can We Go?
The model depicted above is of little use in a “real

life” starship environment. After all, hostile starships
cannot be expected to approach Enterprise one at a
time so as to render its simple BN model usable. If
four starships were closing in on the Enterprise, we
would need to replace the BN of Figure 2 with the
one shown in Figure 3. But even if we had a BN for
each possible number of nearby starships, we still
would not know which BN to use at any given time,
because we don’t know in advance how many
starships the Enterprise is going to encounter. In
short, BNs lack the expressive power to represent
entity types (e.g., starships) that can be instantiated as
many times as required for the situation at hand.

Figure 3 – The BN for Four Starships

In spite of its naiveté, let us briefly hold on to the
premise that only one starship can be approaching the
Enterprise at a time, so that the model of Figure 2 is
valid. Furthermore, suppose we are traveling in deep
space, our sensor report says there is no trace of a
nearby starship (i.e. the state of node SR state is
Nothing), and we receive a report of a strong
magnetic disturbance (i.e. the state of node MDR is
High). Table 1 shows that the likelihood ratio for a
high MDR is 7/5 = 1.4 in favor of a starship in cloak
mode. Although this favors a cloaked starship in the
vicinity, the evidence is not overwhelming.

Repetition is a powerful way to boost the
discriminatory power of weak signals. As an example
from airport terminal radars, a single pulse reflected
from an aircraft usually arrives back to the radar
receiver very weakened, making it hard to set apart
from background noise. However, a steady sequence

Page 4 of 20

of reflected radar pulses is easily distinguishable from
background noise. Following the same logic, it is
reasonable to assume that an abnormal background
disturbance will show random fluctuation, whereas a
disturbance caused by a starship in cloak mode would
show a characteristic temporal pattern. Thus, when
there is a cloaked starship nearby, the MDR state at
any time depends on its previous state. A BN similar
to the one in Figure 4 could capitalize on this for
pattern recognition purposes.

Dynamic Bayesian Networks (DBNs) allow nodes
to be repeated over time (Murphy 1998). The model
of Figure 4 has both static and dynamic nodes, and
thus is a partially dynamic Bayesian network
(PDBN), also known as a temporal Bayesian network
(e.g. Takikawa et al. 2001). While DBNs and PDBNs
are useful for temporal recursion, a more general
recursion capability is needed, as well as a
parsimonious syntax for expressing recursive
relationships.

Figure 4 – The BN for One Starship with Recursion

This section has provided just a glimpse of the
issues that confront an engineer attempting to apply
Bayesian networks to realistically complex problems.
The next section extends the complexity of our model
to show how MEBN logic handles many of the
difficulties commonly encountered in knowledge
representation.

Using MEBN Logic
The limited model of the previous section would be

of little use in increasing the Captain’s awareness of
the level of danger faced by the Enterprise. In
addition to the model’s naïve assumptions, there were
clear omissions such as the assessment of the threat
posed by a given starship, its ability and willingness

to attack our own vessel, etc. These and other
pertinent issues are addressed in the context of a
richer scenario for which the power of MEBN is
required.

A More “Realistic” Sci-fi Scenario
Like present-day Earth, 24th Century outer space is

not a politically trivial environment. Our first
extension introduces different alien species with
diverse profiles. Although MEBN logic can represent
the full range of species inhabiting the Universe in
the 24th century, for purposes of this paper we prefer
to use a simpler model. We therefore limit the
explicitly modeled species to Friends2, Cardassians,
Romulans, and Klingons while addressing encounters
with other possible races using the general label
Unknown.

Cardassians are constantly at war with the
Federation, so any encounter with them is considered
a hostile event. Fortunately, they do not possess
cloaking technology, which makes it easier to detect
and discriminate them. Romulans, are more
ambiguous, behaving in a hostile manner in roughly
half their encounters with Federation starships.
Klingons, which also possess cloaking technology,
have a peace agreement with the Federation of
Planets, but their treacherous and aggressive behavior
makes them less reliable than friends. Finally, when
facing an unknown species, the historical log of such
events shows that out of every ten new encounters,
only one was hostile.

Apart from the species of its operators, a truly
“realistic” model would consider each starship’s type,
offensive power, the ability of inflict harm to the
Enterprise given its range, and numerous other
features pertinent to the model’s purpose. We will
address these issues as we present the basic constructs
of MEBN logic.

Understanding MFrags
MEBN logic represents the world as comprised of

entities that have attributes and are related to other
entities. Random variables represent features of
entities and relationships among entities. Knowledge
about attributes and relationships is expressed as a
collection of MEBN fragments (MFrags) organized

2 The interest reader can find further information on the Star Trek
series in a plethora of websites dedicated to preserve or to extend
the history of series, such as www.startrek.com, www.ex-astris-
scientia.org, or techspecs.acalltoduty.com.

Page 5 of 20

into MEBN Theories (MTheories). An MFrag
represents a conditional probability distribution for
instances of its resident RVs given their parents in the
fragment graph and the context nodes. An MTheory
is a set of MFrags that collectively satisfies
consistency constraints ensuring the existence of a
unique joint probability distribution over instances of
the RVs represented in each of the MFrags within the
set.

 Like a BN, an MFrag contains nodes, which
represent RVs, arranged in a directed graph whose
edges represent direct dependence relationships. An
isolated MFrag can be roughly compared with a
standard BN with known values for its root nodes and
known local distributions for its non-root nodes. For
example, the MFrag of Figure 5 represents
knowledge about the degree of danger to which our
own starship is exposed. The fragment graph has
seven nodes. The four nodes at the top of the figure
are context nodes; the two darker nodes below the
context nodes are the input nodes; and the bottom
node is a resident node.

A node in an MFrag may have a parenthesized list
of arguments. These arguments are placeholders for
entities in the domain. For example, the argument st
to HarmPotential(st, t) is a placeholder for an entity
that might harm us, while the argument t is a
placeholder for the time step this instance represents.
To refer to an actual entity in the domain, the
argument is replaced with a unique identifier. By
convention, unique identifiers begin with an

exclamation point, and no two distinct entities can
have the same unique identifier. By substituting
unique identifiers for a RV’s arguments, we can make
instances of the RV. For example,
HarmPotential(!ST1, !T1) and HarmPotential(!ST2,
!T1) are two instances of HarmPotential(st, t) that
both occur in the time step !T1.

The resident nodes of an MFrag have local
distributions that define how their probabilities
depend on the values of their parents in the fragment
graph. In a complete MTheory, each random variable
has exactly one home MFrag, where its local
distribution is defined.3 Input and context nodes (e.g.,
OpSpec(st) or IsOwnStarship(s)) influence the
distribution of the resident nodes, but their
distributions are defined in their own home MFrags.

Context nodes represent conditions that must be
satisfied for the influences and local distributions of
the fragment graph to apply. Context nodes are
Boolean nodes: that is, they may have value True,
False, or Absurd.4 Context nodes having value True
are said to be satisfied. As an example, if we
substitute the unique identifier for the Enterprise (i.e.,

3 Although standard MEBN logic does not support
polymorphism, it could be extended to a typed polymorphic
version that would permit a random variable to be resident in
more than one MFrag.
4 State names in this paper are alphanumeric strings beginning
with a letter, including True and False. However, Laskey (2005)
uses the symbols T for True, F for False, and ⊥ for Absurd, and
requires other state names to begin with an exclamation point
(because they are unique identifiers)

Figure 5 – The DangerToSelf MFrag

Page 6 of 20

!ST0) for the variable s in IsOwnStarship(s), the
resulting hypothesis will be true. If, instead, we
substitute a different starship unique identifier (say,
!ST1), then this hypothesis will be false. Finally, if we
substitute the unique identifier of a non-starship (say,
!Z1), then this statement is absurd (i.e., it is absurd to
ask whether or not a zone in space is one’s own
starship).

To avoid cluttering the fragment graph, we do not
show the states of context nodes as we do with input
and resident nodes, because they are Boolean nodes
whose values are relevant only for deciding whether
to use a resident random variable’s local distribution
or its default distribution.

No probability values are shown for the states of
the nodes of the fragment graph in Figure 5. This is
because nodes in a fragment graph do not represent
individual random variables with well-defined
probability distributions. Instead, a node in an MFrag
represents a generic class of random variables. To
draw inferences or declare evidence, we must create
instances of the random variable classes.

To find the probability distribution for an instance
of DangerToSelf(s, t), we first identify all instances of
HarmPotential(st, t) and OpSpec(st) for which the
context constraints are satisfied. If there are none, we
use the default distribution that assigns value Absurd
with probability 1. Otherwise, to complete the
definition of the MFrag of Figure 5, we must specify
a local distribution for its lone resident node,
DangerToSelf(s, t). The pseudo-code of Figure 5
defines a local distribution for the danger to a starship
due to all starships that influence its danger level.
Local distributions in standard BNs are typically
represented by static tables, which limits each node to
a fixed number of parents. On the other hand, an
instance of a node in an MTheory might have any
number of parents. Thus, MEBN implementations
(i.e. languages based on MEBN logic) must provide
an expressive language for defining local
distributions. We use pseudo-code to convey the idea
of using local expressions to specify probability
distributions, while not committing to a particular
syntax.

Lines 3 to 5 cover the case in which there is at least
one nearby starship operated by Cardassians and
having the ability to harm the Enterprise. In this
uncomfortable situation for our starship, the
probability of an unacceptable danger to self is 0.90
plus the minimum of 0.10 and the result of
multiplying 0.025 by the total number of starships
that are harmful and operated by Cardassians. Also

the remaining belief (i.e. the difference between
100% and the belief in state Unacceptable is divided
between High (80% of the remainder) and Medium
(20% of the remainder) whereas belief in Low is zero.
The remaining lines use similar formulas to cover the
other possible configurations in which there exist
starships with potential to harm Enterprise (i.e.
HarmPotential(st, t) = True).

The last conditional statement of the local
expression covers the case in which no nearby
starships can inflict harm upon the Enterprise (i.e. all
nodes HarmPotential(st, t) have value False). In this
case, the value for DangerToSelf(s, t) is Low with
probability 1.

Figure 6 depicts an instantiation of the Danger To
Self MFrag for which we have four starships nearby,
three of them operated by Cardassians and one by the
Romulans. Also, the Romulan and two of the
Cardassian starships are within a range at which they
can harm the Enterprise, whereas the other
Cardassian starship is too far away to inflict any
harm.

Figure 6 – An Instance of the DangerToSelf MFrag

Following the procedure described in Figure 5, the
belief for state Unacceptable is .975 (.90 + .025*3)
and the beliefs for states High, Medium, and Low are
.02 ((1-.975)*.8), .005 ((1-.975)*.2), and zero respec-
tively.

In short, the pseudo-code covers all possible input
node configurations by linking the danger level to the
number of nearby starships that have the potential to
harm our own starship. The formulas state that if
there are any Cardassians nearby, then the
distribution for danger level given the number of
Cardassians will be:

Page 7 of 20

1 Cardassian ship - [0.925, 0.024, 0.006, 0];
2 Cardassian ships - [0.99, 0.008, 0.002, 0];
3 Cardassian ships - [0.975, 0.2, 0.05, 0];
4 or more Cardassian ships - [1, 0, 0, 0]
Also, if there are only Romulans with

HarmPot(s) = True, then the distribution becomes:
1 Romulan ship - [.73, .162, .081, .027];
2 Romulan ships - [.76, .144, .072, .024];
... ,
10 or more Romulan ships - [1, 0, 0, 0]
For a situation in which only starships operated by

unknown species can harm Enterprise, the probability
distribution is more evenly distributed:

1 Unknown ship - [.02, .48, .48, .02];
2 Unknown ships - [.04, .46, .46, .04];
... ,
10 or more Unknown ships - [.20, .30, .30, .20]
Finally, if there are only friendly starships nearby

with the ability to harm the Enterprise, then the
distribution becomes [0, 0, 0.01, .99]. The last line
indicates that if that no starship can harm the
Enterprise, then the danger level will be Low for sure.

As noted previously, a powerful representational
formalism is needed to represent complex scenarios
at a reasonable level of fidelity. In our example, we
could have added additional detail and explored many
nuances. For example, a large number of nearby
Romulan ships might indicate a coordinated attack
and therefore indicate greater danger than an isolated
Cardassian ship. Our example was purposely kept
simple in order to clarify the basic capabilities of the
logic. It is clear that more complex knowledge
patterns could be accommodated as needed to suit the

requirements of the application. MEBN logic has
built-in logical MFrags that provide the ability to
express anything that can be expressed in first-order
logic. Laskey (2005) proves that MEBN logic can
implicitly express a probability distribution over
interpretations of any consistent, finitely axiom-
atizable first-order theory. This provides MEBN with
sufficient expressive power to represent virtually any
scientific hypothesis.

Recursive MFrags
One of the main limitations of BNs is their lack of

support for recursion. Extensions such as dynamic
Bayesian networks provide the ability to define
certain kinds of recursive relationships. MEBN
provides theoretically grounded support for very
general recursive definitions of local distributions.
Figure 7 depicts an example of how an MFrag can
represent temporal recursion.

As we can see from the context nodes, in order for
the local distribution to apply, z has to be a zone and
st has to be a starship that has z as its current position.
In addition, tprev and t must be TimeStep entities, and
tprev is the step preceding t.

Other varieties of recursion can also be represented
in MEBN logic by means of MFrags that allow
influences between instances of the same random
variable. Allowable recursive definitions must ensure
that no random variable instance can influence its
own probability distribution.

As in non-recursive MFrags, the input nodes in a
recursive MFrag include nodes whose local

Figure 7 – The Zone MFrag

Page 8 of 20

distributions are defined in another MFrag (i.e.,
CloakMode(st)). In addition, the input nodes may
include instances of recursively-defined nodes in the
MFrag itself. For example, the input node ZoneMD(z,
tprev) represents the magnetic disturbance in zone z
at the previous time step, which influences the current
magnetic disturbance ZoneMD(z, t). The recursion is
grounded by specifying an initial distribution at time
!T0 that does not depend on a previous magnetic
disturbance.

Figure 8 illustrates how recursive definitions can be
applied to construct a situation-specific Bayesian
Network (SSBN) to answer a query. Our query
concerns the magnetic disturbance at time !T3 in zone
!Z0, where !Z0 is known to contain our own
uncloaked starship !ST0 and exactly one other
starship !ST1, which is known to be cloaked. To build
the graph shown in this picture, we begin by creating
an instance of the home MFrag of the query node
ZoneMD(!Z0,!T3). That is, we substitute !Z0 for z
and !T3 for t, and then create all instances of the
remaining random variables that meet the context
constraints. Next, we build any CPTs we can already
build. CPTs for ZoneMD(!Z0,!T3), ZoneNature(!Z0),
ZoneEShips(!Z0), and ZoneFShips(!Z0) can be
constructed because they are resident in the retrieved
MFrag. Single-valued CPTs for CloakMode(!ST0),
CloakMode(!ST1), and !T3=!T0 can be specified
because the values of these random variables are
known.

This leaves us with one node, ZoneMD(!Z0,!T2),
for which we have no CPT. To construct its CPT, we
must retrieve its home MFrag, and instantiate any
random variables that meet its context constraints and
have not already been instantiated. The new random
variables created in this step are ZoneMD(!Z0,!T1)
and !T2=!T0. We know the value of the latter, and
we retrieve the home MFrag of the former. This
process continues until we have added all the nodes
of Figure 8. At this point we can construct CPTs for
all random variables, and the SSBN is complete.5

The MFrag depicted in Figure 7 defines the local
distribution that applies to all these instances, even
though for brevity we only displayed the probability
distributions (local and default) for node

5 For efficiency reasons, most knowledge-based model
construction systems would not explicitly represent root evidence
nodes such as CloakMode(!ST0) or !T1=!T0 or barren nodes such
as ZoneFShips(!Z0) and ZoneFShips(!Z0). For expository
purposes, we have taken the logically equivalent, although less
computationally efficient, approach of including all these nodes
explicitly.

ZoneMD(z, t). Note that when there is no starship
with cloak mode activated, the probability
distribution for magnetic disturbance given the zone
nature does not change with time. When there is at
least one starship with cloak mode activated, then the
magnetic disturbance tends to fluctuate regularly with
time in the manner described by the local expression.
For the sake of simplicity, we assumed that the local
distribution depends only on whether there is a
cloaked starship nearby.

Figure 8 – SSBN Constructed from Zone MFrag

We also assumed that the initial distribution for the
magnetic disturbance when there are cloaked
starships is equal to the stationary distribution given
the zone nature and the number of cloaked starships
present initially. Of course, it would be possible to
write different local expressions expressing a
dependence on the number of starships, their size,
their distance from the Enterprise, etc.

MFrags provide a flexible means to represent
knowledge about specific subjects within the domain
of discourse, but the true gain in expressive power is
revealed when we aggregate these “knowledge
patterns” to form a coherent model of the domain of

7 The alert reader may notice that root evidence nodes and barren
nodes that were included in the constructed network of Figure 8
are not included here. As noted above, explicitly representing
these nodes is not necessary.

Page 9 of 20

discourse that can be instantiated to reason about
specific situations and refined through learning. It is
important to note that just collecting a set MFrags
that represent specific parts of a domain is not enough
to ensure a coherent representation of that domain.
For example, it would be easy to specify a set of
MFrags with cyclic influences, or one having
multiple conflicting distributions for a random
variable in different MFrags. The following section
describes how to define complete and coherent
domain models as collections of MFrags.

Building MEBN models with MTheories
In order to build a coherent model we have to make

sure that our set of MFrags collectively satisfies
consistency constraints ensuring the existence of a
unique joint probability distribution over instances of
the random variables mentioned in the MFrags. Such
a coherent collection of MFrags is called an
MTheory. An MTheory represents a joint probability
distribution for an unbounded, possibly infinite
number of instances of its random variables. This
joint distribution is specified by the local and default
distributions within each MFrag together with the
conditional independence relationships implied by the
fragment graphs.

The MFrags described above are part of a
generative MTheory for the intergalactic conflict
domain. A generative MTheory summarizes
statistical regularities that characterize a domain.
These regularities are captured and encoded in a
knowledge base using some combination of expert
judgment and learning from observation. To apply a
generative MTheory to reason about particular
scenarios, we need to provide the system with
specific information about the individual entity
instances involved in the scenario. On receipt of this
information, we can use Bayesian inference both to
answer specific questions of interest (e.g., how high
is the current level of danger to the Enterprise?) and
to refine the MTheory (e.g., each encounter with a
new species gives us additional statistical data about
the level of danger to the Enterprise from a starship
operated by an unknown species). Bayesian
inference is used to perform both problem-specific
inference and learning in a sound, logically coherent
manner.

Findings are the basic mechanism for incorporating
observations into MTheories. A finding is represented
as a special 2-node MFrag containing a node from the
generative MTheory and a node declaring one of its

states to have a given value. From a logical point of
view, inserting a finding into an MTheory
corresponds to asserting a new axiom in a first-order
theory. In other words, MEBN logic is inherently
open, having the ability to incorporate new axioms as
evidence and update the probabilities of all random
variables in a logically consistent way.

In addition to the requirement that each random
variable must have a unique home MFrag, a valid
MTheory must ensure that all recursive definitions
terminate in finitely many steps and contain no
circular influences. Finally, as we saw above, random
variable instances may have a large, and possibly
unbounded number of parents. A valid MTheory
must satisfy an additional condition to ensure that the
local distributions have reasonable limiting behavior
as more and more parents are added. Laskey (2005)
proved that when an MTheory satisfies these
conditions (as well as other technical conditions that
are unimportant to our example), then there exists a
joint probability distribution on the set of instances of
its random variables that is consistent with the local
distributions assigned within its MFrags.
Furthermore, any consistent, finitely axiomatizable
FOL theory can be translated to infinitely many
MTheories, all having the same purely logical
consequences, that assign different probabilities to
statements whose truth-value is not determined by the
axioms of the FOL theory. MEBN logic contains a set
of built-in logical MFrags (including quantifier,
indirect reference, and Boolean connective MFrags)
that provide the ability to represent any sentence in
first-order logic. If the MTheory satisfies additional
conditions, then a conditional distribution exists
given any finite sequence of findings that does not
logically contradict the logical constraints of the
generative MTheory. MEBN logic thus provides a
logical foundation for systems that reason in an open
world and incorporate observed evidence in a
mathematically sound, logically coherent manner.

Figure 9 shows an example of a generative
MTheory for our Star Trek domain. For the sake of
conciseness, the local distribution formulas and the
default distributions are not shown here.

The Entity Type, at the right side of Figure 9, is
meant to formally declare the possible types of entity
that can be found in the model. This is a generic
MFrag that allows the creation of domain-oriented
types (which are represented by TypeLabel entities)
and forms the basis for a Typed system. In our simple
model we did not address the creation or the explicit
support for entity types. Standard MEBN logic as

Page 10 of 20

defined in Laskey (2005) is untyped, meaning that a
knowledge engineer who wishes to represent types
must explicitly define the necessary logical
machinery. The Entity Type MFrag of Figure 9
defines an extremely simple kind of type structure.
MEBN can be extended with MFrags to
accommodate any flavor of typed system, including
more complex capabilities such as sub-typing,
polymorphism, multiple-inheritance, etc.

It is important to understand the power and
flexibility that MEBN logic gives to knowledge base
designers by allowing multiple, equivalent ways of
portraying the same knowledge. Indeed, the
generative MTheory of Figure 9 is just one of the
many possible (consistent) sets of MFrags that can be
used to represent a given joint distribution. There, we
attempted to cluster the random variables in a way
that naturally reflects the structure of the objects in
that scenario (i.e. we adopted an object oriented
approach to modeling), but this was only one design
option among the many allowed by the logic. As an
example of such flexibility, Figure 10 depicts the
same knowledge contained in the Starship MFrag of
Figure 9 (right side) using three different MFrags. In
this case, the modeler might have opted for
decomposing an MFrag in order to get the extra
flexibility of smaller, more specific MFrags that can
be combined in different ways. Another knowledge
engineer might prefer the more concise approach of
having all knowledge in just one MFrag. Ultimately,
the approach to be taken when building an MTheory
will depend on many factors, including the model’s

purpose, the background and preferences of the
model’s stakeholders, the need to interface with
external systems, etc.

First Order Logic (or one of its subsets) provides
the theoretical foundation for the type systems used in
popular object-oriented and relational languages.
MEBN logic provides the basis for extending the
capability of these systems by introducing a sound
mathematical basis for representing and reasoning
under uncertainty. Among the advantages of a
MEBN-based typed system is the ability to represent
type uncertainty. As an example, suppose we had two
different types of space traveling entities, starships
and comets, and we are not sure about the type of a
given entity. In this case, the result of a query that
depends on the entity type will be a weighted average
of the result given that the entity is a comet and the
result given that it is a starship. Further advantages of
a MEBN-based type system include the ability to
refine type-specific probability distributions using
Bayesian learning, assign probabilities to possible
values of unknown attributes, reason coherently at
multiple levels of resolution, and other features
related to representing and reasoning with incomplete
and/or uncertain information.

Another powerful aspect of MEBN, the ability to
support finite or countably infinite recursion, is
illustrated in the Sensor Report and Zone MFrags,
both of which involve temporal recursion. The Time
Step MFrag includes a formal specification of the
local distribution for the initial step of the time
recursion (i.e. when t=!T0) and of its recursive steps

Figure 9 – The Star Trek Generative MTheory

Page 11 of 20

(i.e. when t does not refer to the initial step). Other
kinds of recursion can be represented in a similar
manner.

MEBN logic also has the ability to represent and
reason about hypothetical entities. Uncertainty about
whether a hypothesized entity actually exists is called
existence uncertainty. In our example model, the
random variable Exists(st) is used to reason about
whether its argument is an actual starship. For
example, we might be unsure whether a sensor report
corresponds to one of the starships we already know
about, a starship of which we were previously
unaware, or a spurious sensor report.

In this case, we can create a starship instance, say
!S4, and assign a probability of less than 1.0 that
Exists(!S4) has value True. Then, any queries
involving !S4 will return results weighted
appropriately by our belief in the existence of !S4.
Furthermore, our belief in Exists(!S4) is updated by
Bayesian conditioning as we obtain more evidence
relevant to whether !S4 denotes a previously
unknown starship. Representing existence uncertainty
is particularly useful for counterfactual reasoning and
reasoning about causality (Druzdzel & Simon 1993,
Pearl 2000).

Because the Star Trek model was designed to
demonstrate the capabilities of MEBN logic, we
avoided issues that can be handled by the logic but
would make the model too complex. As an example,
one aspect that our model does not consider is
association uncertainty, a very common problem in

multi-sensor data fusion systems. Association
uncertainty means that we are not sure about the
source of a given report (e.g. whether a given report
refers to starship !S4, !S2 or !S1). Many weakly
discriminatory reports coming from possibly many
starships produces an exponential set of combinations
that require special hypothesis management methods
(c.f. Stone et al. 1999). In the Star Trek model we
avoided these problems by assuming our sensor suite
can achieve perfect discrimination. However, the
logic can represent and reason with association
uncertainty, and thus provides a sound logical
foundation for hypothesis management in multi-
source fusion.

Making Decisions with MEBN Logic
Captain Picard has more than an academic interest

in the danger from nearby starships. He must make
decisions with life and death consequences. Multi-
Entity Decision Graphs (MEDGs, or “medges”)
extend MEBN logic to support decision making
under uncertainty. MEDGs are related to MEBNs in
the same way influence diagrams are related to
Bayesian Networks. A MEDG can be applied to any
problem that involves optimal choice from a set of
alternatives subject to given constraints.

When a decision MFrag (i.e. one that has decision
and utility nodes) is added to a generative MTheory
such as the one portrayed in Figure 9, the result is a
MEDG. As an example, Figure 11 depicts a decision
MFrag representing Captain Picard’s choice of which

Figure 10 – Equivalent MFrag Representations of Knowledge

Page 12 of 20

defensive action to take. The decision node
DefenseAction(s) represents the set of defensive
actions available to the Captain (in this case, to fire
the ship’s weapons, to retreat, or to do nothing). The
value nodes capture Picard’s objectives, which in this
case are to protect Enterprise while also avoiding
harm to innocent people as a consequence of his
defensive actions. Both objectives depend upon
Picard’s decision, while ProtectSelf(s) is influenced
by the perceived danger to Enterprise and
ProtectOthers(s) is depends on the level of danger to
other starships in the vicinity.

Figure 11 – The Star Trek Decision MFrag

 The model described here is clearly an
oversimplification of any “real” scenario a Captain
would face. Its purpose is to convey the core idea of
extending MEBN logic to support decision-making.
Indeed, a more common situation is to have multiple,
mutually influencing, often conflicting factors that
together form a very complex decision problem, and
require trading off different attributes of value. For
example, a decision to attack would mean that little
power would be left for the defense shields; a retreat
would require aborting a very important mission.

MEDGs provide the necessary foundation to
address all the above issues. Readers familiar with
influence diagrams will appreciate that the main
concepts required for a first-order extension of
decision theory are all present in Figure 11. In other
words, MEDGs have the same core functionality and
characteristics of common MFrags. Thus, the utility
table in Survivability(s) refers to the entity whose
unique identifier substitutes for the variable s, which
according to the context nodes should be our own
starship (Enterprise in this case). Likewise, the states
of input node DangerToSelf(s, t) and the decision
options listed in DefenseAction(s) should also refer to
the same entity.

Of course, this confers to MEDGs the expressive
power of MEBN models, which includes the ability
to use this same decision MFrag to model the
decision process of the Captain of another starship.
Notice that a MEDG Theory should also comply with
the same consistency rules of standard MTheories,
along with additional rules required for influence
diagrams (e.g., value nodes are deterministic and
must be leaf nodes or have only value nodes as
children).

In our example, adding the Star Trek Decision
MFrag of Figure 11 to the generative MTheory of
Figure 9 will maintain the consistency of the latter,
and therefore the result will be a valid generative
MEDG Theory. Our simple example can be extended
to more elaborate decision constructions, providing
the flexibility to model decision problems in many
different applications spanning diverse domains.

Inference in MEBN Logic
A generative MTheory provides prior knowledge

that can be updated upon receipt of evidence
represented as finding MFrags. We now describe the
process used to obtain posterior knowledge from a
generative MTheory and a set of findings.

In a BN model such as the ones shown in Figures 2
through 4, assessing the impact of new evidence
involves conditioning on the values of evidence
nodes and applying a belief propagation algorithm.
When the algorithm terminates, beliefs of all nodes,
including the node(s) of interest, reflect the impact of
all evidence entered thus far. This process of entering
evidence, propagating beliefs, and inspecting the
posterior beliefs of one or more nodes of interest is
called a query.

MEBN inference works in a similar way (after all,
MEBN is a Bayesian logic), but following a more
complex yet more flexible process. Whereas BNs are
static models that must be changed whenever the
situation changes (e.g. number of starships, time
recursion, etc.), an MTheory implicitly represents an
infinity of possible scenarios. In other words, the
MTheory represented in Figure 9 (as well as the
MEDG obtained by aggregating the MFrag in Figure
11) is a model that can be used for as many starships
as we want, and for as many time steps we are
interested in, for as many situations as we face from
the 24th Century into the future.

Page 13 of 20

That said, the obvious question is how to perform
queries within such a model. A simple example of
query processing was given above in the section on
temporal recursion. Here, we describe the general
algorithm for constructing a situation-specific
Bayesian network (SSBN). To do so, we have to have
an initial generative MTheory (or MEDG Theory), a
Finding set (which conveys particular information
about the situation) and a Target set (which indicates
the nodes of interest to us). For comparison, let’s
suppose we have a situation that is similar to the one
in Figure 3, where four starships are within the
Enterprise’s range. In that particular case, a BN was
used to represent the situation at hand, which means
we have a model that is “hardwired” to a known
number (four) of starships, and any other number
would require a different model. A standard Bayesian
inference algorithm applied to that model would
involve entering the available information about these
four starships (i.e., the four sensor reports),
propagating the beliefs, and obtaining posterior
probabilities for the hypotheses of interest (e.g., the
four Starship Type nodes).

Similarly, MEBN inference begins when a query is
posed to assess the degree of belief in a target random
variable given a set of evidence random variables.
We start with a generative MTheory, add a set of
finding MFrags representing problem-specific
information, and specify the target nodes for our
query. The first step in MEBN inference is to

construct the SSBN, which can be seen as an ordinary
Bayesian network constructed by creating and
combining instances of the MFrags in the generative
MTheory. Next, a standard Bayesian network
inference algorithm is applied. Finally, the answer to
the query is obtained by inspecting the posterior
probabilities of the target nodes. A MEBN inference
algorithm is provided in Laskey (2005). The
algorithm presented there does not handle decision
graphs, and so we will extend it slightly for purposes
of illustrating how our MEDG Theory can be used to
support the Captain’s decision.

In our example, the finding MFrags will convey
information that we have five starships (!ST0 through
!ST4) and that the first is our own starship. For the
sake of illustration, let’s assume that our Finding set
also includes data regarding the nature of the space
zone we are in (!Z0), its magnetic disturbance for the
first time step (!T0), and sensor reports for starships
!SR1 to !SR4 for the first two time steps.

We assume that the Target set for our illustrative
query includes an assessment of the level of danger
experienced by the Enterprise and the best decision to
take given this level of danger.

Figure 12 shows a situation-specific Bayesian
network for our query7. To construct the SSBN, we
begin by creating instances of the random variables in
the Target set and the random variables for which we
have findings. The target random variables are
DangerLevel(!ST0) and DefenseAction(!ST0). The

Figure 12 – SSBN for the Star Trek MTheory with Four Starships within Enterprise’s Range

Page 14 of 20

finding random variables are the eight SRDistance
nodes (2 time steps for each of four starships) and the
two ZoneMD reports (one for each time step).
Although each finding MFrag contains two nodes, the
random variable on which we have a finding and a
node indicating the value to which it is set, we
include only the first of these in our situation-specific
Bayesian network, and declare as evidence that its
value is equal to the observed value indicated in the
finding MFrag.

The next step is to retrieve and instantiate the home
MFrags of the finding and target random variables.
When each MFrag is instantiated, instances of its
random variables are created to represent known
background information, observed evidence, and
queries of interest to the decision maker. If there are
any random variables with undefined distributions,
then the algorithm proceeds by instantiating their
respective home MFrags. The process of retrieving
and instantiating MFrags continues until there are no
remaining random variables having either undefined
distributions or unknown values. The result, if this
process terminates, is the SSBN or, in our case, a
situation-specific decision graph (SSDG). In some
cases the SSBN can be infinite, but under conditions
given in Laskey (2005), the algorithm produces a
sequence of approximate SSBNs for which the
posterior distribution of the target nodes converges to
their posterior distribution given the findings.
Mahoney and Laskey (1998) define a SSBN as a
minimal Bayesian network sufficient to compute the
response to a query. A SSBN may contain any
number of instances of each MFrag, depending on the
number of entities and their interrelationships. The
SSDG in Figure 12 is the result of applying this
process to the MEDG Theory in Figures 9 and 11
with the Finding and Target set we just defined.

 Another important use for the SSBN algorithm is
to help in the task of performing Bayesian learning,
which is treated in MEBN logic as a sequence of
MTheories.

Learning from Data
Learning graphical models from observations is

usually divided in two different categories: inferring
the parameters of the local distributions when the
structure is known, and inferring the structure itself.
In MEBN, by structure we mean the possible values
of the random variables, their organization into
MFrags, the fragment graphs, and the functional
forms of the local distributions.

Figure 13 shows an example of parameter learning
in MEBN logic in which we adopt the assumption
that one can infer the length of a starship on the basis
of the average length of all starships. This generic
domain knowledge is captured by the generative
MFrag, which specifies a prior distribution based on
what we know about starship lengths.

One strong point about using Bayesian models in
general and MEBN logic in particular is the ability to
refine prior knowledge as new information becomes
available. In our example, let’s suppose that we
receive precise information on the length of starships
!ST2, !ST3, and !ST5; but have no information
regarding the incoming starship !ST8.

The first step of this simple parameter learning
example is to enter the available information to the
model in the form of findings (see box
StarshipLenghInd Findings). Then, we pose a query
on the length of !ST8. The SSBN algorithm will
instantiate all the random variables that are related to
the query at hand until it finishes with the SSBN
depicted in Figure 13 (box SSBN with Findings). In
this example, the MFrags satisfy graph-theoretic
conditions under which a re-structuring operation
called finding absorption (Buntine 1994b) can be
applied without changing the structure of the MFrags.
Therefore, the prior distribution of the random
variable GlobalAvgLength can be replaced by the
posterior distribution obtained when adding evidence
in the form of findings.

As a result of this learning process, the probability
distribution for GlobalAvgLength has been refined in
light of the new information conveyed by the
findings. The resulting, more precise distribution can
now be used not only to predict the length of !ST8 but
for future queries as well. In our specific example, the
same query would retrieve the SSBN in the lower
right corner of Figure 13 (box SSBN with Findings
Absorbed). One of the major advantages of the
finding absorption operation is that it greatly
improves the tractability of both learning and SSBN
inference. We can also apply finding absorption to
modify the generative MFrags themselves, thus
creating a new generative MTheory that has the same
conditional distribution given its findings as our
original MTheory. In this new MTheory, the
distribution of GlobalAvgLength has been modified to
incorporate the observations and the finding random
variables are set with probability 1 to their observed
values. Restructuring MTheories via finding
absorption can increase the efficiency of SSBN
construction and of inference.

Page 15 of 20

Structure learning in MEBN works in a similar
fashion. As an example, let’s suppose that when
analyzing the data that was acquired in the parameter
learning process above, a domain expert raises the
hypothesis that the length of a given starship might
depend on its class. To put it into a “real-life”
perspective, let’s consider two classes: Explorers and
Warbirds. The first usually are vessels crafted for
long distance journeys with a relatively small crew
and payload. Warbirds, on the other hand, are heavily
armed vessels designed to be flagships of a combatant
fleet, usually carrying lots of ammunition, equipped
with many advanced technology systems and a large
crew. Therefore, our expert thinks it likely that the
average length of Warbirds may be greater than the
average length of Explorers.

In short, the general idea of this simple example is
to mimic the more general situation in which we have
a potential link between two attributes (i.e. starship
length and class) but at best weak evidence to support
the hypothesized correlation. This is a typical
situation in which Bayesian models can use incoming
data to learn both structure and parameters of a
domain model. Generally speaking, the solution for
this class of situations is to build two different
structures and apply Bayesian inference to evaluate
which structure is more consistent with the data as it
becomes available.

The initial setup of the structure learning process
for this specific problem is depicted in Figure 14.
Each of our two possible structures is represented by
its own generative MFrag. The first MFrag is the
same as before: the length of a starship depended
only on a global average length that applied to
starships of all classes. The upper left MFrag of

Figure 14, StarshipLengthInd MFrag conveys this
hypothesis. The second possible structure,
represented by the ClassAvgLength and Starship-
LengthDep MFrags, covers the case in which a
starship class influences its length.

Figure 14 – Structure Learning in MEBN

The two structures are then connected by the
Starship Length MFrag, which has the format of a
multiplexor MFrag. The distribution of a multiplexor
node such as StarshipLength(st) always has one
parent selector node defining which of the other
parents is influencing the distribution at a given
situation.

In this example, where we have only two possible
structures, the selector parent will be a two-state
node. Here, the selector parent is the Boolean
LengthDependsOnClass(!Starship). When this node
has value False then StarshipLength(cl) will be equal
to StarshipLengthInd(st), the distribution of which
does not depend on the starship’s class. Conversely, if
the selector parent has value True then
StarshipLength(cl) will be equal to StarshipLength-

Figure 13 – Parameter Learning in MEBN

Page 16 of 20

Dep(st), which is directly influenced by ClassAvg-
Length(StarshipClass(st)).

Figure 15 shows the result of applying the SSBN
algorithm to the generative MFrags in Figure 14. The
SSBN on the left doesn’t have the findings included,
but only information about the existence of four
starships. It can be noted that we choose our prior for
the selector parent (the Boolean node on the top of
the SSBN) to be the uniform distribution, which
means we assumed that both structures (i.e. class
affecting length or not) have the same prior
probability.

For the SSBN in the right side we included the
known facts that !ST2 and !ST3 belong to the class of
starships !Explorer, and that !ST5 and !ST8 are
Warbird vessels. Further, we included the lengths of
three ships for which we have length reports. The
result of the inference process was not only an
estimate of the length of !ST8 but a clear
confirmation that the data available strongly supports
the hypothesis that the class of a starship directly
influences its length.

It may seem cumbersome to define different
random variables, StarshipLengthInd and Starship-
LengthDep, for each hypothesis about the influences
on a starship’s length. As the number of structural
hypotheses becomes large, this can become quite
unwieldy. Fortunately, we can circumvent this
difficulty by introducing a typed version of MEBN
and allowing the distributions of random variables to
depend on the type of their argument. A detailed
presentation of typed MEBN is beyond the scope of
this paper.

This basic construction is compatible with the
standard approaches to Bayesian structure learning in

graphical models (e.g. Cooper & Herskovits 1992,
Friedman & Koller 2000, Heckerman et al. 1995a,
Jordan 1999).

Unifying Classical Logic and Probability
In classical logic, the most that can be said about a

hypothesis that can be neither proven nor disproven is
that its truth-value is unknown. Practical reasoning
demands more. Captain Picard’s life depends on
assessing the plausibility of many hypotheses he can
neither prove nor disprove. Yet, he also needs first-
order logic’s ability to express generalizations about
properties of and relationships among entities. In
short, he needs a probabilistic logic with first-order
expressive power.

Although there have been many attempts to
integrate classical first-order logic with probability,
MEBN is the first fully first-order Bayesian logic
(Laskey, 2005). MEBN logic can assign probabilities
in a logically coherent manner to any set of sentences
in first-order logic, and can assign a conditional
probability distribution given any consistent set of
finitely many first-order sentences. That is, anything
that can expressed in first-order logic can be assigned
a probability by MEBN logic. The probability
distribution represented by an MTheory can be
updated via Bayesian conditioning to incorporate any
finite sequence of findings that are consistent with the
MTheory and can be expressed as sentences in first-
order logic. If findings contradict the logical content
of the MTheory, this can be discovered in finitely
many steps. Although exact inference may not be
possible for some queries, if SSBN construction will
converge to the correct result if one exists.

Figure 15 – SSBNs for the Parameter Learning Example

Page 17 of 20

Semantics in classical logic is typically defined in
terms of possible worlds. Each possible world assigns
values to random variables8 in a manner consistent
with the theory’s axioms. For example, in the
scenario illustrated in Figure 8, every possible world
must assign value True to CloakMode(!ST1) and !Z0
to StarshipZone(!ST0), because the values of these
random variables are assumed known in the scenario.
The value of the random variable ZoneNature(!Z0)
must be one of DeepSpace, PlanetarySystems, or
BlackHoleBoundary, but subject to that constraint, it
may have different values in different possible
worlds.

In classical logic, inferences are valid if the
conclusion is true in all possible worlds in which the
premises are true. For example, classical logic allows
us to infer that Prev(Prev(!ST4)) has value !ST2 from
the information that Prev(!ST4) has value !ST3 and
Prev(!ST3) has value !ST2, because the first statement
is true in all possible worlds in which the latter two
statements are true. But in our scenario, classical
logic permits us to draw no conclusions about the
value of ZoneNature(!Z0) except that it is one of the
three values DeepSpace, PlanetarySystems, or Black-
HoleBoundary.

An MTheory assigns probabilities to sets of worlds.
The probability assignments ensure that the set of
worlds consistent with the logical content of the
MTheory has probability 100%. Each random
variable instance maps a possible world to the value
of the random variable in that world. In statistics,
random variables are defined as functions mapping a
sample space to an outcome set. For MEBN random
variable instances, the sample space is the set of
possible worlds. For example, ZoneNature(!Z0) maps
a possible world to the nature of the zone labeled !Z0
in that world. The probability that !Z0 is a deep space
zone is the total probability of the set of possible
worlds for which ZoneNature(!Z0) has value
DeepSpace.

In any given possible world, the generic random
variable class ZoneNature(z) maps its argument to the
nature of the zone whose identifier was substituted
for the argument z. Thus, the sample space for the
random variable class ZoneNature(z) is the set of
unique identifiers that can be substituted for the
argument z. Information about statistical regularities

8 In classical logic, the terms predicate and function are used in
place of Boolean and non-Boolean random variables,
respectively. Predicates must have value True or False, and
cannot have value Absurd.

among zones is represented by the local distributions
of the MFrags whose arguments are zones. As we
saw in the section on learning, MFrags for parameter
and structure learning can help us to use information
about zones we have observed to make better
predictions about zones we have not yet seen.

As we obtain more information about which
possible world might be the actual world, we need to
adjust the probabilities of all related properties of the
world in a logically coherent manner. This is
accomplished by adding findings to our MTheory to
represent the new information, and then using
Bayesian conditioning to update the probability
distribution represented by the revised MTheory.

For example, suppose we learn there is at least one
enemy ship in !Z0. This information means that
worlds in which ZoneEShips(!Z0) has value Zero are
no longer possible. In classical logic, this new
information makes no difference to the inferences we
can draw about ZoneNature(!Z0). All three values
were possible before we learned there was an enemy
ship present, and all three values remain possible.
The situation is different in a probabilistic logic. To
revise our probabilities, we first assign probability
zero to the set of worlds in which !Z0 contains no
enemy ships. Then, we divide the probabilities of the
remaining worlds by our prior probability that
ZoneEShips(!Z0) had a value other than Zero. This
ensures that the set of worlds consistent with our new
knowledge has probability 100%. These operations
can be accomplished in a computationally efficient
manner using SSBN construction.

Just as in classical logic, all three values of
ZoneEShips(!Z0) remain possible. However, their
probabilities are different from their previous values.
Because deep space zones are more likely than other
zones to contain no ships, more of the probability in
the discarded worlds was assigned to worlds in which
!Z0 was a deep space zone than to worlds in which
!Z0 was not in deep space. Worlds that remain
possible tended to put more probability on planetary
systems and black hole boundaries than on deep
space. The result is a substantial reduction in the
probability that !Z0 is in deep space.

Achieving full first-order expressive power in a
Bayesian logic is non-trivial. This requires the ability
to represent an unbounded or possibly infinite
number of random variables, some of which may
have an unbounded or possibly infinite number of
random possible values. We also need to be able to
represent recursive definitions and random variables
that may have an unbounded or possibly infinite

Page 18 of 20

number of parents. Random variables taking values
in uncountable sets such as the real numbers present
additional difficulties. Details on how MEBN
handles these subtle issues are provided by Laskey
(2005).

Related Research
Hidden Markov models, or HMMs, (Baum &

Petrie 1966, Elliott et al. 1995, Rabiner 1989) have
been applied extensively in pattern recognition
applications. HMMs can be viewed as a special case
of dynamic Bayesian networks, or DBNs (Murphy
1998). A HMM is a DBN having hidden states with
no internal structure that d-separate observations at
different time steps. Partially dynamic Bayesian
networks, also called temporal Bayesian networks
(Takikawa et al. 2001) extend DBNs to include static
variables. These formalisms augment standard
Bayesian networks with a capability for temporal
recursion.

BUGS (Buntine 1994a, Gilks et al. 1994,
Spiegelhalter et al. 1996) is a software package that
implements the Plates language. Plates represent
repeated fragments of directed or undirected
graphical models. Visually, a plate is represented as a
rectangle enclosing a set of repeated nodes. Strengths
of plates are the ability to handle continuous
distributions without resorting to discretization, and
support for parameter learning in a wide variety of
parameterized statistical models. The main weakness
is the lack of a direct, explicit way to represent
uncertainty about model structure. There is a natural
translation from plates to MFrags. See Laskey (2005)
for more on the relashionship between plates and
MFrags.

Object-oriented Bayesian Networks (Bangsø &
Wuillemin 2000, Koller & Pfeffer 1997, Langseth &
Nielsen 2003) represent entities as instances of object
classes with class-specific attributes and probability
distributions. Probabilistic Relational Models (PRM)
(Getoor et al. 2001, Getoor et al. 2000, Pfeffer 2001,
Pfeffer et al. 1999) integrate the relational data model
(Codd 1970) and Bayesian networks. PRMs extend
standard Bayesian Networks to handle multiple entity
types and relationships among them, providing a
representation in which it is easy to obtain consistent
probabilities over a relational database. PRMs cannot
express arbitrary quantified first-order sentences and
do not support recursion. Although PRMs augmented

with DBNs can support limited forms of recursion,
they still do not support general recursive definitions.

Finally, DAPER (Heckerman et al. 2004) combines
the entity-relational model with DAG models to
express probabilistic knowledge about structured
entities and their relationships. Any model
constructed in Plates or PRM can be represented by
DAPER. Thus, DAPER is a unifying language for
expressing relational probabilistic knowledge.
DAPER expresses probabilistic models over finite
databases, and cannot represent arbitrary FOPC
expressions involving quantifiers. Therefore, like
other languages discussed above, DAPER does not
achieve full FOPC representational power. MEBN
provides the formal mathematical support to achieve
this objective, and could provide a logical foundation
for extending the expressive power of any of the
above formalisms.

Discussion and Future Work
MEBN logic brings together two different areas of

research: probabilistic reasoning and classical logic.
The ability to perform plausible reasoning with the
expressiveness of Fisrt-Order Logic opens the
possibility to address problems of greater complexity
than heretofore possible in a wide variety of
application domains.

The flexibility of the framework defined in Laskey
(2005) allows it to serve as the logical basis for any
typed knowledge representation. For example,
Quiddity*Suite™ is a frame-based relational
modeling toolkit that implements MEBN logic and is
being used to address a wide range of applications
ranging from visual target recognition to multi-sensor
data fusion to dynamic decision systems in the C3I
arena (Fung et al. 2004).

XML-based languages such as RDF and OWL are
currently being developed using subsets of FOL.
MEBN logic can provide a logical foundation for
extensions that support plausible reasoning. As an
example, we are currently developing OWL-P, a
MEBN-based extension to the semantic web language
OWL. Our objective is to create a language capable
of representing and reasoning with probabilistic
ontologies. This technology would have many
possible applications to the Semantic Web, which is
an open environment where uncertainty is a rule, thus
deeming the current deterministic approaches not the
most suitable tool for the challenge.

Page 19 of 20

Probabilistic ontologies are also a very promising
technique for addressing the semantic mapping
problem, a difficult task whose applications range
from automatic Semantic Web agents, which must be
able to deal with multiple, diverse ontologies, to
automated decision systems, which usually have to
interact and reason with many legacy systems, each
having its own distinct rules, assumptions, and
terminologies.

MEBN is still in its infancy as a logic, but has
already shown the potential to provide the necessary
mathematical foundation for plausible reasoning in an
open world characterized by many interacting entities
related to each other in diverse ways and having
many uncertain features and relationships.

Acknowledgements
Grateful acknowledgement is due to the Brazilian Air
Force for supporting Paulo Costa during his PhD
studies at George Mason University. Kathryn
Laskey’s work was partially supported under a
contract with the Office of Naval Research, number
N00014-04-M-0277. The authors extend thanks to
Sepideh Mirza and Mehul Revankar for comments on
an earlier draft, to the GMU decision theory seminar
participants whose many insightful questions helped
us to clarify both our thinking and our writing, and to
Francis Fung, Tod Levitt, Mike Pool, and Ed Wright
for many helpful discussions. Last but not least, this
paper is dedicated to Danny Pearl, and to the hope
that in the 24th Century, Danny's writings and his
father's research will be remembered for their role in
bringing about Danny's dream of a world in which all
cultures and faiths live together in harmony.

References
Bangsø, O., & Wuillemin, P.-H. (2000). Object Oriented

Bayesian Networks: A Framework for Topdown
Specification of Large Bayesian Networks and
Repetitive Structures (No. CIT-87.2-00-obphw1):
Department of Computer Science, Aalborg University.

Baum, L. E., & Petrie, T. (1966). Statistical inference for
probabilistic functions of finite state Markov chains.
Annals of Mathematical Statistics, 37, 1554-1563.

Binford, T., Levitt, T. S., & Mann, W. B. (1987). Bayesian
Inference in Model-Based Machine Vision. In a. P. C. C.
T. S. Levitt (Ed.), Uncertainty in Artificial Intelligence:
Proceedings of the Third Workshop. Seattle, WA.

Buntine, W. L. (1994a). Learning with Graphical Models
(Technical Report No. FIA-94-03): NASA Ames

Research Center, Artificial Intelligence Research
Branch.

Buntine, W. L. (1994b). Operations for Learning with
Graphical Models. Journal of Artificial Intelligence
Research, 2, 159-225.

Charniak, E. (1991). Bayesian Networks Without Tears. AI
Magazine, 12, 50-63.

Charniak, E., & Goldman, R. P. (1989a). Plan recognition
in stories and in life. Paper presented at the Fifth
Workshop on Uncertainty in Artificial Intelligence,
Mountain View, California.

Charniak, E., & Goldman, R. P. (1989b, August 1989). A
semantics for probabilistic quantifier-free first-order
languages with particular application to story
understanding. Paper presented at the Eleventh
International Joint Conference on Artificial Intelligence,
Detroit, Michigan.

Codd, E. F. (1970). A relational model for large shared
data banks. Communications of the ACM, 13(6), 377-
387.

Cooper, G. F., & Herskovits, E. (1992). A Bayesian
Method for the Induction of Probabilistic Networks from
Data. Machine Learning, 9, 309-347.

Druzdzel, M. J., & Simon, H., A. (1993). Causality in
Bayesian belief networks. Paper presented at the Ninth
Annual Conference on Uncertainty in Artificial
Intelligence (UAI-93), San Francisco, CA.

Elliott, R. J., Aggoun, L., & Moore, J. B. (1995). Hidden
Markov Models: Estimation and Control. New York,
New York: Springer-Verlag.

Friedman, N., & Koller, D. (2000). Being Bayesian about
network structure. Paper presented at the Sixteenth
Conference on Uncertainty in Artificial Intelligence, San
Mateo, California.

Fung, F., Laskey, K. B., Pool, M., Takikawa, M., &
Wright, E. J. (2004). PLASMA: combining predicate
logic and probability for information fusion and decision
support. Paper presented at the AAAI Spring
Symposium, Stanford, CA.

Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001).
Learning Probabilistic Relational Models. New York,
New York: Springer-Verlag.

Getoor, L., Koller, D., Taskar, B., & Friedman, N. (2000).
Learning probabilistic relational models with structural
uncertainty. Paper presented at the ICML-2000
Workshop on Attribute-Value and Relational
Learning:Crossing the Boundaries, Standford,
California.

Gilks, W., Thomas, A., & Spiegelhalter, D. J. (1994). A
language and program for complex Bayesian modeling.
The Statistician, 43, 169-178.

Page 20 of 20

Hansson, O., & Mayer, A. (1989, August, 1989). Heuristic
search as evidential reasoning. Paper presented at the
Fifth Workshop on Uncertainty in Artificial Intelligence,
Windsor, Ontario.

Heckerman, D. (1990). Probabilistic Similarity Networks.
Unpublished Ph.D. Thesis, Stanford University,
Stanford, CA.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995a).
Learning Bayesian Networks: The Combination of
Knowledge and Statistical Data. Machine Learning(20),
197-243.

Heckerman, D., Mamdani, A., & Wellman, M. P. (1995b).
Real-world application of Bayesian networks.
Communications of the ACM, 38(3), 24-68.

Heckerman, D., Meek, C., & Koller, D. (2004).
Probabilistic models for relational data. Redmond, WA:
Microsoft Corporation.

Jensen, F. V. (1996). An Introduction to Bayesian
Networks. New York: Springer-Verlag.

Jensen, F. V. (2001). Bayesian Networks and Decision
Graphs (2001 ed.). New York: Springer-Verlag.

Jordan, M. I., (Ed.). (1999). Learning in Graphical Models.
Cambridge, MA: MIT Press.

Koller, D., & Pfeffer, A. (1997). Object-Oriented Bayesian
Networks. Paper presented at the Uncertainty in
Artificial Intelligence: Proceedings of the Thirteenth
Conference, San Francisco, CA.

Langseth, H., & Nielsen, T. (2003). Fusion of Domain
Knowledge with Data for Structured Learning in Object-
Oriented Domains. Journal of Machine Learning
Research.

Laskey, K. B. (2005, March 15, 2005). First-order
Bayesian logic. Retrieved Mar 3, 2005, from
http://ite.gmu.edu/~klaskey/publications.html

Lauritzen, S., & Spiegelhalter, D. J. (1988). Local
computation and probabilities on graphical structures
and their applications to expert systems. Journal of
Royal Statistical Society, 50(2), 157-224.

Mahoney, S. M., & Laskey, K. B. (1998). Constructing
situation specific networks. Paper presented at the
Uncertainty in Artificial Intelligence: Proceedings of the
Fourteenth Conference, San Mateo, CA.

Murphy, K. (1998). Dynamic Bayesian networks:
representation, inference and learning. Unpublished
Doctoral Dissertation, University of California,
Berkeley.

Neapolitan, R. E. (1990). Probabilistic Reasoning in Expert
Systems: Theory and Algorithms. New York: John
Wiley and Sons, Inc.

Oliver, R. M., & Smith, J. Q. (1990). Influence Diagrams,
Belief Nets and Decision Analisys (1st ed.). New York,
NY: John Willey & Sons Inc.

Pearl, J. (1988). Probabilistic reasoning in intelligent
systems: networks of plausible inference. San Mateo,
CA: Morgan Kaufmann Publishers.

Pearl, J. (2000). Causality: models, reasoning, and
inference. Cambridge, U.K.: Cambridge University
Press.

Pfeffer, A. (2001). IBAL: A Probabilistic Rational
Programming Language International. Paper presented
at the Joint Conference on Artificial Intelligence
(IJCAI).

Pfeffer, A., Koller, D., Milch, B., & Takusagawa, K. T.
(1999). SPOOK: A system for probabilistic object-
oriented knowledge representation. Paper presented at
the Uncertainty in Artificial Intelligence: Proceedings of
the Fifteenth Conference, San Mateo, CA.

Rabiner, L. R. (1989, February 1989). A tutorial on hidden
Markov models and selected applications in speech
recognition. Paper presented at the IEEE.

Sowa, J. F. (2000). Knowledge representation: logical,
philosophical, and computational foundations. Pacific
Grove: Brooks/Cole.

Spiegelhalter, D. J., Thomas, A., & Best, N. (1996).
Computation on Graphical Models. Bayesian Statistics,
5, 407-425.

Stone, L. D., Barlow, C. A., & Corwin, T. L. (1999).
Bayesian multiple target tracking. Boston, MA: Artech
House.

Takikawa, M., d’Ambrosio, B., & Wright, E. (2002). Real-
time inference with large-scale temporal Bayes nets.
Paper presented at the Uncertainty in Artificial
Intelligence.

