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Abstract 
An introduction is provided to Multi-Entity Bayesian 
Networks (MEBN), a logic system that integrates 
First Order Logic (FOL) with Bayesian probability 
theory. MEBN extends ordinary Bayesian networks to 
allow representation of graphical models with 
repeated sub-structures.  Knowledge is encoded as a 
collection of Bayesian network fragments (MFrags) 
that can be instantiated and combined to form highly 
complex situation-specific Bayesian networks. A 
MEBN theory (MTheory) implicitly represents a joint 
probability distribution over possibly unbounded 
numbers of hypotheses, and uses Bayesian learning to 
refine a knowledge base as observations accrue.  
MEBN provides a logical foundation for the emerging 
collection of highly expressive probability-based 
languages.  A running example illustrates the 
representation and reasoning power of the MEBN 
formalism. 

Introduction 
Uncertainty is a ubiquitous feature of the world, 

and probability theory is a natural candidate to 
represent uncertain phenomena. Application of 
probability to artificial intelligence was initially 
hindered by skepticism about tractability of inference 
and feasibility of representation. This situation 
changed dramatically with the introduction of 
Bayesian networks (BNs) (Lauritzen & Spiegelhalter 
1988, Pearl 1988) and their application to diverse 
areas such as language understanding (Charniak & 
Goldman 1989a, 1989b), visual recognition (Binford 
et al. 1987), medical diagnosis (Heckerman 1990), 
and search  (Hansson & Mayer 1989). Heckerman 
(1995b) provides a review of recent applications of 
Bayesian Networks. 

As Bayesian networks grew in popularity, their 
limitations became increasingly apparent. Although a 

powerful tool, BNs are not expressive enough for 
many real-world applications. More specifically, 
Bayesian Networks assume a simple attribute-value 
representation – that is, each problem instance 
involves reasoning about the same fixed number of 
attributes, with only the evidence values changing 
from problem instance to problem instance.  This 
type of representation is inadequate for many 
problems of practical importance.  Many domains 
require reasoning about varying numbers of related 
entities of different types, where the numbers, types 
and relationships among entities cannot be specified 
in advance and may themselves be uncertain. As will 
be demonstrated below, Bayesian networks are 
insufficiently expressive for such problems.  

On the other hand, systems based on first-order 
logic (FOL) have the ability to represent entities of 
different types interacting with each other in varied 
ways. Sowa states that first-order logic “has enough 
expressive power to define all of mathematics, every 
digital computer that has ever been built, and the 
semantics of every version of logic, including itself” 
(Sowa 2000, page 41). For this reason, FOL has 
become the de facto standard for logical systems from 
both a theoretical and practical standpoint.  However, 
systems based on classical first-order logic lack a 
theoretically principled, widely accepted, logically 
coherent methodology for reasoning under 
uncertainty. 

As a result, a number of languages have appeared 
that extend the expressiveness of standard BNs in 
various ways (see section on related work below).   
As probabilistic languages become increasingly 
expressive, there is a need for a fuller characterization 
of their theoretical properties.  Different communities 
appear to be converging around certain fundamental 
approaches to representing uncertain information 
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about the attributes, behavior, and interrelationships 
of structured entities (cf., Heckerman et al. 2004).  
This paper discusses some of the primary 
representational challenges that must be addressed by 
a logical formalism that combines first-order logic 
and probability.  As a vehicle for presenting these 
ideas, we have chosen Multi-entity Bayesian 
networks (MEBN), a knowledge representation 
formalism that combines the expressive power of 
first-order logic with a sound and logically consistent 
treatment of uncertainty (Laskey 2005). MEBN 
syntax is designed to highlight the relationship 
between a MEBN theory and its first-order logic 
counterpart. Although our examples are presented 
using MEBN, our main focus is the underlying 
logical notions and not the language per se. That is, 
MEBN syntax should be viewed not as a competitor 
to other syntactic conventions such as plates or 
probabilistic relational models, but as a vehicle for 
expressing logical notions that cut across surface 
syntactic differences. 

MEBN is not a computer language such as Java or 
C++, or an application such as Netica or Hugin 
(although it would be possible to construct software 
applications that implement MEBN). Rather, it is 
formal system that instantiates first-order Bayesian 
logic. That is, MEBN provides syntax, a set of model 
construction and inference processes, and semantics 
that together provide a means of defining probability 
distributions over unbounded and possibly infinite 
numbers of interrelated hypotheses.  As such, MEBN 
provides a logical foundation for the many emerging 
languages that extend the expressiveness of Bayesian 
networks.  

The purpose of this paper is to provide an 
accessible introduction to first-order probabilistic 
logic in general and MEBN in particular.  In the 
context of a running example, we illustrate the 
limitations of standard BNs for situations that 
demand a more powerful representation formalism. 
We then gradually introduce additional elements into 
our example to illustrate the power of the additional 
representation capability provided by integrating 
first-order logic and probability. 

Of Planets and Starships  
We begin with a simple problem that can be 

modeled using standard BNs. Then, assuming the 
model as satisfactory for its purposes, we gradually 
expand it to embrace more general situations. 

Choosing a particular real-life domain would risk  
getting bogged down in domain-specific detail. For 
this reason, we opted to construct a case study based 
on the popular Paramount series Star Trek. Our 
examples have been constructed to be accessible to 
anyone having some familiarity with space-based 
science fiction. 

Figure 1 – Decision Support Systems in the 24th Century 

A Simple BN Model 
Figure 1 illustrates the operation of a 24th century 

decision support system tasked with helping Captain 
Picard to assimilate reports, assess their significance, 
and choose an optimal response. Of course, present-
day systems are much less sophisticated than the 
system of Figure 1.  We therefore begin our 
exposition narrating a highly simplified problem of 
detecting enemy starships.  

In this simplified problem, the main task of a 
decision system is to model the problem of detecting 
Romulan starships (here considered as hostile by the 
United Federation of Planets) and assessing the level 
of danger they bring to our own starship, the 
Enterprise. All other starships were considered either 
friendly or neutral. Starship detection is performed by 
the Enterprise’s suite of sensors, which can correctly 
detect and discriminate starships with an accuracy of 
95%. However, Romulan starships could be in “cloak 
mode,” which would make them invisible to the 
Enterprise’s sensors. Even for the most current sensor 
technology, the only hint of a nearby starship in cloak 
mode is a slight magnetic disturbance caused by the 
enormous amount of energy required for cloaking. 
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The Enterprise has a magnetic disturbance sensor, but 
it is very hard to distinguish background magnetic 
disturbance from that generated by a nearby starship 
in cloak mode.   

Figure 2 – The Basic Starship Bayesian Network 

This simplified situation is modeled by the BN in 
Figure 21, which also considers the characteristics of 
the zone of space where the action takes place. Each 
node in our BN has a finite number of mutually 
exclusive, collectively exhaustive states. The node 
Zone Nature (ZN) is a root node, and its prior 
probability distribution can be read directly from 
Figure 2 (e.g. 80% for deep space). The probability 
distribution for Magnetic Disturbance Report (MDR) 
depends on the values of its parents ZN and Cloak 
Mode (CM). The strength of this influence is 
quantified via the conditional probability table (CPT) 
for node MDR, shown in Table 1. Similarly, Operator 
Species (OS) depends on ZN, and the two report 
nodes depend on CM and the hypothesis on which 
they are reporting. 

Table 1 – Conditional Probability table for node MDR 
Magnetic Disturb. Rep. Zone 

Nature 
Cloak 
Mode Low Medium High 

True 80.0 13.0 7.0 Deep 
Space False 85.0 10.0 5.0 

True 20.0 32.0 48.0 Planetary 
Systems False 25.0 30.0 45.0 

True 5.0 10.0 85.0 Black Hole 
Boundary False 6.9 10.6 82.5 
 
Graphical models provide a powerful modeling 

framework and have been applied to many real world 
problems involving uncertainty. There is a large and 
growing literature on Bayesian network theory and 
                                     
1 Bayesian network screen shots were constructed using Netica™, 
http://www.norsys.com. 

applications (e.g. Charniak 1991, Jensen 1996, 2001, 
Neapolitan 1990, Oliver & Smith 1990, Pearl 1988). 

How Complex Can We Go? 
The model depicted above is of little use in a “real 

life” starship environment. After all, hostile starships 
cannot be expected to approach Enterprise one at a 
time so as to render its simple BN model usable. If 
four starships were closing in on the Enterprise, we 
would need to replace the BN of Figure 2 with the 
one shown in Figure 3. But even if we had a BN for 
each possible number of nearby starships, we still 
would not know which BN to use at any given time, 
because we don’t know in advance how many 
starships the Enterprise is going to encounter. In 
short, BNs lack the expressive power to represent 
entity types (e.g., starships) that can be instantiated as 
many times as required for the situation at hand. 

Figure 3 – The BN for Four Starships 

In spite of its naiveté, let us briefly hold on to the 
premise that only one starship can be approaching the 
Enterprise at a time, so that the model of Figure 2 is 
valid. Furthermore, suppose we are traveling in deep 
space, our sensor report says there is no trace of a 
nearby starship (i.e. the state of node SR state is 
Nothing), and we receive a report of a strong 
magnetic disturbance (i.e. the state of node MDR is 
High). Table 1 shows that the likelihood ratio for a 
high MDR is 7/5 = 1.4 in favor of a starship in cloak 
mode. Although this favors a cloaked starship in the 
vicinity, the evidence is not overwhelming. 

Repetition is a powerful way to boost the 
discriminatory power of weak signals. As an example 
from airport terminal radars, a single pulse reflected 
from an aircraft usually arrives back to the radar 
receiver very weakened, making it hard to set apart 
from background noise. However, a steady sequence 
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of reflected radar pulses is easily distinguishable from 
background noise. Following the same logic, it is 
reasonable to assume that an abnormal background 
disturbance will show random fluctuation, whereas a 
disturbance caused by a starship in cloak mode would 
show a characteristic temporal pattern. Thus, when 
there is a cloaked starship nearby, the MDR state at 
any time depends on its previous state. A BN similar 
to the one in Figure 4 could capitalize on this for 
pattern recognition purposes.  

Dynamic Bayesian Networks (DBNs) allow nodes 
to be repeated over time (Murphy 1998). The model 
of Figure 4 has both static and dynamic nodes, and 
thus is a partially dynamic Bayesian network 
(PDBN), also known as a temporal Bayesian network 
(e.g. Takikawa et al. 2001). While DBNs and PDBNs 
are useful for temporal recursion, a more general 
recursion capability is needed, as well as a 
parsimonious syntax for expressing recursive 
relationships. 

Figure 4 – The BN for One Starship with Recursion 

This section has provided just a glimpse of the 
issues that confront an engineer attempting to apply 
Bayesian networks to realistically complex problems. 
The next section extends the complexity of our model 
to show how MEBN logic handles many of the 
difficulties commonly encountered in knowledge 
representation.  

Using MEBN Logic  
The limited model of the previous section would be 

of little use in increasing the Captain’s awareness of 
the level of danger faced by the Enterprise. In 
addition to the model’s naïve assumptions, there were 
clear omissions such as the assessment of the threat 
posed by a given starship, its ability and willingness 

to attack our own vessel, etc. These and other 
pertinent issues are addressed in the context of a 
richer scenario for which the power of MEBN is 
required. 

A More “Realistic” Sci-fi Scenario 
Like present-day Earth, 24th Century outer space is 

not a politically trivial environment. Our first 
extension introduces different alien species with 
diverse profiles. Although MEBN logic can represent 
the full range of species inhabiting the Universe in 
the 24th century, for purposes of this paper we prefer 
to use a simpler model. We therefore limit the 
explicitly modeled species to Friends2, Cardassians, 
Romulans, and Klingons while addressing encounters 
with other possible races using the general label 
Unknown. 

Cardassians are constantly at war with the 
Federation, so any encounter with them is considered 
a hostile event. Fortunately, they do not possess 
cloaking technology, which makes it easier to detect 
and discriminate them. Romulans, are more 
ambiguous, behaving in a hostile manner in roughly 
half their encounters with Federation starships. 
Klingons, which also possess cloaking technology, 
have a peace agreement with the Federation of 
Planets, but their treacherous and aggressive behavior 
makes them less reliable than friends. Finally, when 
facing an unknown species, the historical log of such 
events shows that out of every ten new encounters, 
only one was hostile. 

Apart from the species of its operators, a truly 
“realistic” model would consider each starship’s type, 
offensive power, the ability of inflict harm to the 
Enterprise given its range, and numerous other 
features pertinent to the model’s purpose. We will 
address these issues as we present the basic constructs 
of MEBN logic. 

Understanding MFrags 
MEBN logic represents the world as comprised of 

entities that have attributes and are related to other 
entities. Random variables represent features of 
entities and relationships among entities. Knowledge 
about attributes and relationships is expressed as a 
collection of MEBN fragments (MFrags) organized 
                                     
2 The interest reader can find further information on the Star Trek 
series in a plethora of websites dedicated to preserve or to extend 
the history of series, such as www.startrek.com,  www.ex-astris-
scientia.org, or techspecs.acalltoduty.com. 
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into MEBN Theories (MTheories). An MFrag 
represents a conditional probability distribution for 
instances of its resident RVs given their parents in the 
fragment graph and the context nodes. An MTheory 
is a set of MFrags that collectively satisfies 
consistency constraints ensuring the existence of a 
unique joint probability distribution over instances of 
the RVs represented in each of the MFrags within the 
set. 

 Like a BN, an MFrag contains nodes, which 
represent RVs, arranged in a directed graph whose 
edges represent direct dependence relationships. An 
isolated MFrag can be roughly compared with a 
standard BN with known values for its root nodes and 
known local distributions for its non-root nodes. For 
example, the MFrag of Figure 5 represents 
knowledge about the degree of danger to which our 
own starship is exposed. The fragment graph has 
seven nodes. The four nodes at the top of the figure 
are context nodes; the two darker nodes below the 
context nodes are the input nodes; and the bottom 
node is a resident node. 

A node in an MFrag may have a parenthesized list 
of arguments.  These arguments are placeholders for 
entities in the domain.  For example, the argument st 
to HarmPotential(st, t) is a placeholder for an entity 
that might harm us, while the argument t is a 
placeholder for the time step this instance represents.  
To refer to an actual entity in the domain, the 
argument is replaced with a unique identifier. By 
convention, unique identifiers begin with an 

exclamation point, and no two distinct entities can 
have the same unique identifier. By substituting 
unique identifiers for a RV’s arguments, we can make 
instances of the RV. For example, 
HarmPotential(!ST1, !T1) and HarmPotential(!ST2, 
!T1) are two instances of HarmPotential(st, t) that 
both occur in the time step !T1. 

The resident nodes of an MFrag have local 
distributions that define how their probabilities 
depend on the values of their parents in the fragment 
graph. In a complete MTheory, each random variable 
has exactly one home MFrag, where its local 
distribution is defined.3 Input and context nodes (e.g., 
OpSpec(st) or IsOwnStarship(s)) influence the 
distribution of the resident nodes, but their 
distributions are defined in their own home MFrags.  

Context nodes represent conditions that must be 
satisfied for the influences and local distributions of 
the fragment graph to apply. Context nodes are 
Boolean nodes: that is, they may have value True, 
False, or Absurd.4 Context nodes having value True 
are said to be satisfied. As an example, if we 
substitute the unique identifier for the Enterprise (i.e., 
                                     
3 Although standard MEBN logic does not support 
polymorphism, it could be extended to a typed polymorphic 
version that would permit a random variable to be resident in 
more than one MFrag.  
4 State names in this paper are alphanumeric strings beginning 
with a letter, including True and False. However, Laskey (2005) 
uses the symbols T for True, F for False, and ⊥ for Absurd, and 
requires other state names to begin with an exclamation point 
(because they are unique identifiers) 

Figure 5 – The DangerToSelf MFrag 
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!ST0) for the variable s in IsOwnStarship(s), the 
resulting hypothesis will be true. If, instead, we 
substitute a different starship unique identifier (say, 
!ST1), then this hypothesis will be false. Finally, if we 
substitute the unique identifier of a non-starship (say, 
!Z1), then this statement is absurd (i.e., it is absurd to 
ask whether or not a zone in space is one’s own 
starship).  

To avoid cluttering the fragment graph, we do not 
show the states of context nodes as we do with input 
and resident nodes, because they are Boolean nodes 
whose values are relevant only for deciding whether 
to use a resident random variable’s local distribution 
or its default distribution. 

No probability values are shown for the states of 
the nodes of the fragment graph in Figure 5. This is 
because nodes in a fragment graph do not represent 
individual random variables with well-defined 
probability distributions. Instead, a node in an MFrag 
represents a generic class of random variables. To 
draw inferences or declare evidence, we must create 
instances of the random variable classes. 

To find the probability distribution for an instance 
of DangerToSelf(s, t), we first identify all instances of 
HarmPotential(st, t) and OpSpec(st) for which the 
context constraints are satisfied.  If there are none, we 
use the default distribution that assigns value Absurd 
with probability 1.  Otherwise, to complete the 
definition of the MFrag of Figure 5, we must specify 
a local distribution for its lone resident node, 
DangerToSelf(s, t). The pseudo-code of Figure 5 
defines a local distribution for the danger to a starship 
due to all starships that influence its danger level. 
Local distributions in standard BNs are typically 
represented by static tables, which limits each node to 
a fixed number of parents. On the other hand, an 
instance of a node in an MTheory might have any 
number of parents. Thus, MEBN implementations 
(i.e. languages based on MEBN logic) must provide 
an expressive language for defining local 
distributions. We use pseudo-code to convey the idea 
of using local expressions to specify probability 
distributions, while not committing to a particular 
syntax.  

Lines 3 to 5 cover the case in which there is at least 
one nearby starship operated by Cardassians and 
having the ability to harm the Enterprise. In this 
uncomfortable situation for our starship, the 
probability of an unacceptable danger to self is 0.90 
plus the minimum of 0.10 and the result of 
multiplying 0.025 by the total number of starships 
that are harmful and operated by Cardassians. Also 

the remaining belief (i.e. the difference between 
100% and the belief in state Unacceptable is divided 
between High (80% of the remainder) and Medium 
(20% of the remainder) whereas belief in Low is zero. 
The remaining lines use similar formulas to cover the 
other possible configurations in which there exist 
starships with potential to harm Enterprise (i.e. 
HarmPotential(st, t) = True).  

The last conditional statement of the local 
expression covers the case in which no nearby 
starships can inflict harm upon the Enterprise (i.e. all 
nodes HarmPotential(st, t) have value False). In this 
case, the value for DangerToSelf(s, t) is Low with 
probability 1. 

Figure 6 depicts an instantiation of the Danger To 
Self MFrag for which we have four starships nearby, 
three of them operated by Cardassians and one by the 
Romulans. Also, the Romulan and two of the 
Cardassian starships are within a range at which they 
can harm the Enterprise, whereas the other 
Cardassian starship is too far away to inflict any 
harm. 

Figure 6 – An Instance of the DangerToSelf MFrag 

Following the procedure described in Figure 5, the 
belief for state Unacceptable is .975 (.90 + .025*3) 
and the beliefs for states High, Medium, and Low are 
.02 ((1-.975)*.8),  .005 ((1-.975)*.2), and zero respec-
tively. 

In short, the pseudo-code covers all possible input 
node configurations by linking the danger level to the 
number of nearby starships that have the potential to 
harm our own starship. The formulas state that if 
there are any Cardassians nearby, then the 
distribution for danger level given the number of 
Cardassians will be: 
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1 Cardassian ship  - [0.925, 0.024, 0.006, 0]; 
2 Cardassian ships - [0.99, 0.008, 0.002, 0]; 
3 Cardassian ships - [0.975, 0.2, 0.05, 0]; 
4 or more Cardassian ships - [1, 0, 0, 0] 
Also, if there are only Romulans with 

HarmPot(s) = True, then the distribution becomes:  
1 Romulan ship   - [.73, .162, .081, .027]; 
2 Romulan ships  - [.76, .144, .072, .024]; 
... , 
10 or more Romulan ships - [1, 0, 0, 0] 
For a situation in which only starships operated by 

unknown species can harm Enterprise, the probability 
distribution is more evenly distributed:  

1 Unknown ship  - [.02, .48, .48, .02];  
2 Unknown ships  - [.04, .46, .46, .04];  
... , 
10 or more Unknown ships - [.20, .30, .30, .20] 
Finally, if there are only friendly starships nearby 

with the ability to harm the Enterprise, then the 
distribution becomes [0, 0, 0.01, .99]. The last line 
indicates that if that no starship can harm the 
Enterprise, then the danger level will be Low for sure.  

As noted previously, a powerful representational 
formalism is needed to represent complex scenarios 
at a reasonable level of fidelity. In our example, we 
could have added additional detail and explored many 
nuances.  For example, a large number of nearby 
Romulan ships might indicate a coordinated attack 
and therefore indicate greater danger than an isolated 
Cardassian ship. Our example was purposely kept 
simple in order to clarify the basic capabilities of the 
logic. It is clear that more complex knowledge 
patterns could be accommodated as needed to suit the 

requirements of the application.  MEBN logic has 
built-in logical MFrags that provide the ability to 
express anything that can be expressed in first-order 
logic.  Laskey (2005) proves that MEBN logic can 
implicitly express a probability distribution over 
interpretations of any consistent, finitely axiom-
atizable first-order theory. This provides MEBN with 
sufficient expressive power to represent virtually any 
scientific hypothesis.  

Recursive MFrags 
One of the main limitations of BNs is their lack of 

support for recursion. Extensions such as dynamic 
Bayesian networks provide the ability to define 
certain kinds of recursive relationships. MEBN 
provides theoretically grounded support for very 
general recursive definitions of local distributions. 
Figure 7 depicts an example of how an MFrag can 
represent temporal recursion. 

As we can see from the context nodes, in order for 
the local distribution to apply, z has to be a zone and 
st has to be a starship that has z as its current position. 
In addition, tprev and t must be TimeStep entities, and 
tprev is the step preceding t.  

Other varieties of recursion can also be represented 
in MEBN logic by means of MFrags that allow 
influences between instances of the same random 
variable.  Allowable recursive definitions must ensure 
that no random variable instance can influence its 
own probability distribution. 

As in non-recursive MFrags, the input nodes in a 
recursive MFrag include nodes whose local 

Figure 7 – The Zone MFrag 
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distributions are defined in another MFrag (i.e., 
CloakMode(st)).  In addition, the input nodes may 
include instances of recursively-defined nodes in the 
MFrag itself. For example, the input node ZoneMD(z, 
tprev) represents the magnetic disturbance in zone z 
at the previous time step, which influences the current 
magnetic disturbance ZoneMD(z, t).  The recursion is 
grounded by specifying an initial distribution at time 
!T0 that does not depend on a previous magnetic 
disturbance.  

Figure 8 illustrates how recursive definitions can be 
applied to construct a situation-specific Bayesian 
Network (SSBN) to answer a query. Our query 
concerns the magnetic disturbance at time !T3 in zone 
!Z0, where !Z0 is known to contain our own 
uncloaked starship !ST0 and exactly one other 
starship !ST1, which is known to be cloaked. To build 
the graph shown in this picture, we begin by creating 
an instance of the home MFrag of the query node 
ZoneMD(!Z0,!T3).  That is, we substitute !Z0 for z 
and !T3 for t, and then create all instances of the 
remaining random variables that meet the context 
constraints.  Next, we build any CPTs we can already 
build. CPTs for ZoneMD(!Z0,!T3), ZoneNature(!Z0), 
ZoneEShips(!Z0), and ZoneFShips(!Z0) can be 
constructed because they are resident in the retrieved 
MFrag. Single-valued CPTs for CloakMode(!ST0), 
CloakMode(!ST1), and !T3=!T0 can be specified 
because the values of these random variables are 
known.   

This leaves us with one node, ZoneMD(!Z0,!T2), 
for which we have no CPT.  To construct its CPT, we 
must retrieve its home MFrag, and instantiate any 
random variables that meet its context constraints and 
have not already been instantiated.  The new random 
variables created in this step are ZoneMD(!Z0,!T1) 
and !T2=!T0.  We know the value of the latter, and 
we retrieve the home MFrag of the former.  This 
process continues until we have added all the nodes 
of Figure 8.  At this point we can construct CPTs for 
all random variables, and the SSBN is complete.5 

The MFrag depicted in Figure 7 defines the local 
distribution that applies to all these instances, even 
though for brevity we only displayed the probability 
distributions (local and default) for node 
                                     
5 For efficiency reasons, most knowledge-based model 
construction systems would not explicitly represent root evidence 
nodes such as CloakMode(!ST0) or !T1=!T0 or barren nodes such 
as ZoneFShips(!Z0) and ZoneFShips(!Z0).  For expository 
purposes, we have taken the logically equivalent, although less 
computationally efficient, approach of including all these nodes 
explicitly. 

ZoneMD(z, t). Note that when there is no starship 
with cloak mode activated, the probability 
distribution for magnetic disturbance given the zone 
nature does not change with time. When there is at 
least one starship with cloak mode activated, then the 
magnetic disturbance tends to fluctuate regularly with 
time in the manner described by the local expression. 
For the sake of simplicity, we assumed that the local 
distribution depends only on whether there is a 
cloaked starship nearby.  

Figure 8 – SSBN Constructed from Zone MFrag 

We also assumed that the initial distribution for the 
magnetic disturbance when there are cloaked 
starships is equal to the stationary distribution given 
the zone nature and the number of cloaked starships 
present initially.  Of course, it would be possible to 
write different local expressions expressing a 
dependence on the number of starships, their size, 
their distance from the Enterprise, etc. 

MFrags provide a flexible means to represent 
knowledge about specific subjects within the domain 
of discourse, but the true gain in expressive power is 
revealed when we aggregate these “knowledge 
patterns” to form a coherent model of the domain of 
                                     
7 The alert reader may notice that root evidence nodes and barren 
nodes that were included in the constructed network of Figure 8 
are not included here. As noted above, explicitly representing 
these nodes is not necessary. 
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discourse that can be instantiated to reason about 
specific situations and refined through learning. It is 
important to note that just collecting a set MFrags 
that represent specific parts of a domain is not enough 
to ensure a coherent representation of that domain. 
For example, it would be easy to specify a set of 
MFrags with cyclic influences, or one having 
multiple conflicting distributions for a random 
variable in different MFrags. The following section 
describes how to define complete and coherent 
domain models as collections of MFrags. 

Building MEBN models with MTheories 
In order to build a coherent model we have to make 

sure that our set of MFrags collectively satisfies 
consistency constraints ensuring the existence of a 
unique joint probability distribution over instances of 
the random variables mentioned in the MFrags. Such 
a coherent collection of MFrags is called an 
MTheory. An MTheory represents a joint probability 
distribution for an unbounded, possibly infinite 
number of instances of its random variables. This 
joint distribution is specified by the local and default 
distributions within each MFrag together with the 
conditional independence relationships implied by the 
fragment graphs.  

The MFrags described above are part of a 
generative MTheory for the intergalactic conflict 
domain.  A generative MTheory summarizes 
statistical regularities that characterize a domain.  
These regularities are captured and encoded in a 
knowledge base using some combination of expert 
judgment and learning from observation.  To apply a 
generative MTheory to reason about particular 
scenarios, we need to provide the system with 
specific information about the individual entity 
instances involved in the scenario. On receipt of this 
information, we can use Bayesian inference both to 
answer specific questions of interest (e.g., how high 
is the current level of danger to the Enterprise?) and 
to refine the MTheory (e.g., each encounter with a 
new species gives us additional statistical data about 
the level of danger to the Enterprise from a starship 
operated by an unknown species).  Bayesian 
inference is used to perform both problem-specific 
inference and learning in a sound, logically coherent 
manner. 

Findings are the basic mechanism for incorporating 
observations into MTheories. A finding is represented 
as a special 2-node MFrag containing a node from the 
generative MTheory and a node declaring one of its 

states to have a given value.  From a logical point of 
view, inserting a finding into an MTheory 
corresponds to asserting a new axiom in a first-order 
theory. In other words, MEBN logic is inherently 
open, having the ability to incorporate new axioms as 
evidence and update the probabilities of all random 
variables in a logically consistent way. 

In addition to the requirement that each random 
variable must have a unique home MFrag, a valid 
MTheory must ensure that all recursive definitions 
terminate in finitely many steps and contain no 
circular influences. Finally, as we saw above, random 
variable instances may have a large, and possibly 
unbounded number of parents.  A valid MTheory 
must satisfy an additional condition to ensure that the 
local distributions have reasonable limiting behavior 
as more and more parents are added. Laskey (2005) 
proved that when an MTheory satisfies these 
conditions (as well as other technical conditions that 
are unimportant to our example), then there exists a 
joint probability distribution on the set of instances of 
its random variables that is consistent with the local 
distributions assigned within its MFrags. 
Furthermore, any consistent, finitely axiomatizable 
FOL theory can be translated to infinitely many 
MTheories, all having the same purely logical 
consequences, that assign different probabilities to 
statements whose truth-value is not determined by the 
axioms of the FOL theory. MEBN logic contains a set 
of built-in logical MFrags (including quantifier, 
indirect reference, and Boolean connective MFrags) 
that provide the ability to represent any sentence in 
first-order logic. If the MTheory satisfies additional 
conditions, then a conditional distribution exists 
given any finite sequence of findings that does not 
logically contradict the logical constraints of the 
generative MTheory. MEBN logic thus provides a 
logical foundation for systems that reason in an open 
world and incorporate observed evidence in a 
mathematically sound, logically coherent manner. 

Figure 9 shows an example of a generative 
MTheory for our Star Trek domain. For the sake of 
conciseness, the local distribution formulas and the 
default distributions are not shown here. 

The Entity Type, at the right side of Figure 9, is 
meant to formally declare the possible types of entity 
that can be found in the model. This is a generic 
MFrag that allows the creation of domain-oriented 
types (which are represented by TypeLabel entities) 
and forms the basis for a Typed system. In our simple 
model we did not address the creation or the explicit 
support for entity types. Standard MEBN logic as 
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defined in Laskey (2005) is untyped, meaning that a 
knowledge engineer who wishes to represent types 
must explicitly define the necessary logical 
machinery. The Entity Type MFrag of Figure 9 
defines an extremely simple kind of type structure. 
MEBN can be extended with MFrags to 
accommodate any flavor of typed system, including 
more complex capabilities such as sub-typing, 
polymorphism, multiple-inheritance, etc. 

It is important to understand the power and 
flexibility that MEBN logic gives to knowledge base 
designers by allowing multiple, equivalent ways of 
portraying the same knowledge. Indeed, the 
generative MTheory of Figure 9 is just one of the 
many possible (consistent) sets of MFrags that can be 
used to represent a given joint distribution. There, we 
attempted to cluster the random variables in a way 
that naturally reflects the structure of the objects in 
that scenario (i.e. we adopted an object oriented 
approach to modeling), but this was only one design 
option among the many allowed by the logic. As an 
example of such flexibility, Figure 10 depicts the 
same knowledge contained in the Starship MFrag of 
Figure 9 (right side) using three different MFrags. In 
this case, the modeler might have opted for 
decomposing an MFrag in order to get the extra 
flexibility of smaller, more specific MFrags that can 
be combined in different ways. Another knowledge 
engineer might prefer the more concise approach of 
having all knowledge in just one MFrag. Ultimately, 
the approach to be taken when building an MTheory 
will depend on many factors, including the model’s 

purpose, the background and preferences of the 
model’s stakeholders, the need to interface with 
external systems, etc. 

First Order Logic (or one of its subsets) provides 
the theoretical foundation for the type systems used in 
popular object-oriented and relational languages. 
MEBN logic provides the basis for extending the 
capability of these systems by introducing a sound 
mathematical basis for representing and reasoning 
under uncertainty. Among the advantages of a 
MEBN-based typed system is the ability to represent 
type uncertainty. As an example, suppose we had two 
different types of space traveling entities, starships 
and comets, and we are not sure about the type of a 
given entity. In this case, the result of a query that 
depends on the entity type will be a weighted average 
of the result given that the entity is a comet and the 
result given that it is a starship. Further advantages of 
a MEBN-based type system include the ability to 
refine type-specific probability distributions using 
Bayesian learning, assign probabilities to possible 
values of unknown attributes, reason coherently at 
multiple levels of resolution, and other features 
related to representing and reasoning with incomplete 
and/or uncertain information. 

Another powerful aspect of MEBN, the ability to 
support finite or countably infinite recursion, is 
illustrated in the Sensor Report and Zone MFrags, 
both of which involve temporal recursion. The Time 
Step MFrag includes a formal specification of the 
local distribution for the initial step of the time 
recursion (i.e. when t=!T0) and of its recursive steps 

Figure 9 – The Star Trek Generative MTheory 
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(i.e. when t does not refer to the initial step). Other 
kinds of recursion can be represented in a similar 
manner. 

MEBN logic also has the ability to represent and 
reason about hypothetical entities. Uncertainty about 
whether a hypothesized entity actually exists is called 
existence uncertainty. In our example model, the 
random variable Exists(st) is used to reason about 
whether its argument is an actual starship.  For 
example, we might be unsure whether a sensor report 
corresponds to one of the starships we already know 
about, a starship of which we were previously 
unaware, or a spurious sensor report.  

In this case, we can create a starship instance, say 
!S4,  and assign a probability of less than 1.0 that 
Exists(!S4) has value True. Then, any queries 
involving !S4 will return results weighted 
appropriately by our belief in the existence of !S4. 
Furthermore, our belief in Exists(!S4) is updated by 
Bayesian conditioning as we obtain more evidence 
relevant to whether !S4 denotes a previously 
unknown starship. Representing existence uncertainty 
is particularly useful for counterfactual reasoning and 
reasoning about causality (Druzdzel & Simon 1993, 
Pearl 2000). 

Because the Star Trek model was designed to 
demonstrate the capabilities of MEBN logic, we 
avoided issues that can be handled by the logic but 
would make the model too complex. As an example, 
one aspect that our model does not consider is 
association uncertainty, a very common problem in 

multi-sensor data fusion systems. Association 
uncertainty means that we are not sure about the 
source of a given report (e.g. whether a given report 
refers to starship !S4, !S2 or !S1). Many weakly 
discriminatory reports coming from possibly many 
starships produces an exponential set of combinations 
that require special hypothesis management methods 
(c.f. Stone et al. 1999). In the Star Trek model we 
avoided these problems by assuming our sensor suite 
can achieve perfect discrimination. However, the 
logic can represent and reason with association 
uncertainty, and thus provides a sound logical 
foundation for hypothesis management in multi-
source fusion. 

Making Decisions with MEBN Logic 
Captain Picard has more than an academic interest 

in the danger from nearby starships. He must make 
decisions with life and death consequences. Multi-
Entity Decision Graphs (MEDGs, or “medges”) 
extend MEBN logic to support decision making 
under uncertainty. MEDGs are related to MEBNs in 
the same way influence diagrams are related to 
Bayesian Networks. A MEDG can be applied to any 
problem that involves optimal choice from a set of 
alternatives subject to given constraints.  

When a decision MFrag (i.e. one that has decision 
and utility nodes) is added to a generative MTheory 
such as the one portrayed in Figure 9, the result is a 
MEDG. As an example, Figure 11 depicts a decision 
MFrag representing Captain Picard’s choice of which 

Figure 10 – Equivalent MFrag Representations of Knowledge 
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defensive action to take. The decision node 
DefenseAction(s) represents the set of defensive 
actions available to the Captain (in this case, to fire 
the ship’s weapons, to retreat, or to do nothing). The 
value nodes capture Picard’s objectives, which in this 
case are to protect Enterprise while also avoiding 
harm to innocent people as a consequence of his 
defensive actions.  Both objectives depend upon 
Picard’s decision, while ProtectSelf(s) is influenced 
by the perceived danger to Enterprise and 
ProtectOthers(s) is depends on the level of danger to 
other starships in the vicinity.  

Figure 11 – The Star Trek Decision MFrag 

 The model described here is clearly an 
oversimplification of any “real” scenario a Captain 
would face.  Its purpose is to convey the core idea of 
extending MEBN logic to support decision-making. 
Indeed, a more common situation is to have multiple, 
mutually influencing, often conflicting factors that 
together form a very complex decision problem, and 
require trading off different attributes of value. For 
example, a decision to attack would mean that little 
power would be left for the defense shields; a retreat 
would require aborting a very important mission.  

MEDGs provide the necessary foundation to 
address all the above issues. Readers familiar with 
influence diagrams will appreciate that the main 
concepts required for a first-order extension of 
decision theory are all present in Figure 11. In other 
words, MEDGs have the same core functionality and 
characteristics of common MFrags. Thus, the utility 
table in Survivability(s) refers to the entity whose 
unique identifier substitutes for the variable s, which 
according to the context nodes should be our own 
starship (Enterprise in this case). Likewise, the states 
of input node DangerToSelf(s, t) and the decision 
options listed in DefenseAction(s) should also refer to 
the same entity. 

Of course, this confers to MEDGs the expressive 
power of MEBN models, which includes the ability 
to use this same decision MFrag to model the 
decision process of the Captain of another starship. 
Notice that a MEDG Theory should also comply with 
the same consistency rules of standard MTheories, 
along with additional rules required for influence 
diagrams (e.g., value nodes are deterministic and 
must be leaf nodes or have only value nodes as 
children). 

In our example, adding the Star Trek Decision 
MFrag of Figure 11 to the generative MTheory of 
Figure 9 will maintain the consistency of the latter, 
and therefore the result will be a valid generative 
MEDG Theory. Our simple example can be extended 
to more elaborate decision constructions, providing 
the flexibility to model decision problems in many 
different applications spanning diverse domains. 

Inference in MEBN Logic 
A generative MTheory provides prior knowledge 

that can be updated upon receipt of evidence 
represented as finding MFrags. We now describe the 
process used to obtain posterior knowledge from a 
generative MTheory and a set of findings. 

In a BN model such as the ones shown in Figures 2 
through 4, assessing the impact of new evidence 
involves conditioning on the values of evidence 
nodes and applying a belief propagation algorithm. 
When the algorithm terminates, beliefs of all nodes, 
including the node(s) of interest, reflect the impact of 
all evidence entered thus far.  This process of entering 
evidence, propagating beliefs, and inspecting the 
posterior beliefs of one or more nodes of interest is 
called a query. 

MEBN inference works in a similar way (after all, 
MEBN is a Bayesian logic), but following a more 
complex yet more flexible process. Whereas BNs are 
static models that must be changed whenever the 
situation changes (e.g. number of starships, time 
recursion, etc.), an MTheory implicitly represents an 
infinity of possible scenarios. In other words, the 
MTheory represented in Figure 9 (as well as the 
MEDG obtained by aggregating the MFrag in Figure 
11) is a model that can be used for as many starships 
as we want, and for as many time steps we are 
interested in, for as many situations as we face from 
the 24th Century into the future. 
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That said, the obvious question is how to perform 
queries within such a model. A simple example of 
query processing was given above in the section on 
temporal recursion. Here, we describe the general 
algorithm for constructing a situation-specific 
Bayesian network (SSBN). To do so, we have to have 
an initial generative MTheory (or MEDG Theory), a 
Finding set (which conveys particular information 
about the situation) and a Target set (which indicates 
the nodes of interest to us). For comparison, let’s 
suppose we have a situation that is similar to the one 
in Figure 3, where four starships are within the 
Enterprise’s range. In that particular case, a BN was 
used to represent the situation at hand, which means 
we have a model that is “hardwired” to a known 
number (four) of starships, and any other number 
would require a different model. A standard Bayesian 
inference algorithm applied to that model would 
involve entering the available information about these 
four starships (i.e., the four sensor reports), 
propagating the beliefs, and obtaining posterior 
probabilities for the hypotheses of interest (e.g., the 
four Starship Type nodes).  

Similarly, MEBN inference begins when a query is 
posed to assess the degree of belief in a target random 
variable given a set of evidence random variables.  
We start with a generative MTheory, add a set of 
finding MFrags representing problem-specific 
information, and specify the target nodes for our 
query.  The first step in MEBN inference is to 

construct the SSBN, which can be seen as an ordinary 
Bayesian network constructed by creating and 
combining instances of the MFrags in the generative 
MTheory. Next, a standard Bayesian network 
inference algorithm is applied.  Finally, the answer to 
the query is obtained by inspecting the posterior 
probabilities of the target nodes. A MEBN inference 
algorithm is provided in Laskey (2005). The 
algorithm presented there does not handle decision 
graphs, and so we will extend it slightly for purposes 
of illustrating how our MEDG Theory can be used to 
support the Captain’s decision. 

In our example, the finding MFrags will convey 
information that we have five starships (!ST0 through 
!ST4) and that the first is our own starship. For the 
sake of illustration, let’s assume that our Finding set 
also includes data regarding the nature of the space 
zone we are in (!Z0), its magnetic disturbance for the 
first time step (!T0), and sensor reports for starships 
!SR1 to !SR4 for the first two time steps.  

We assume that the Target set for our illustrative 
query includes an assessment of the level of danger 
experienced by the Enterprise and the best decision to 
take given this level of danger. 

Figure 12 shows a situation-specific Bayesian 
network for our query7. To construct the SSBN, we 
begin by creating instances of the random variables in 
the Target set and the random variables for which we 
have findings. The target random variables are 
DangerLevel(!ST0) and DefenseAction(!ST0). The 

Figure 12 – SSBN for the Star Trek MTheory with Four Starships within Enterprise’s Range 
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finding random variables are the eight SRDistance 
nodes (2 time steps for each of four starships) and the 
two ZoneMD reports (one for each time step). 
Although each finding MFrag contains two nodes, the 
random variable on which we have a finding and a 
node indicating the value to which it is set, we 
include only the first of these in our situation-specific 
Bayesian network, and declare as evidence that its 
value is equal to the observed value indicated in the 
finding MFrag. 

The next step is to retrieve and instantiate the home 
MFrags of the finding and target random variables. 
When each MFrag is instantiated, instances of its 
random variables are created to represent known 
background information, observed evidence, and 
queries of interest to the decision maker. If there are 
any random variables with undefined distributions, 
then the algorithm proceeds by instantiating their 
respective home MFrags.  The process of retrieving 
and instantiating MFrags continues until there are no 
remaining random variables having either undefined 
distributions or unknown values. The result, if this 
process terminates, is the SSBN or, in our case, a 
situation-specific decision graph (SSDG). In some 
cases the SSBN can be infinite, but under conditions 
given in Laskey (2005), the algorithm produces a 
sequence of approximate SSBNs for which the 
posterior distribution of the target nodes converges to 
their posterior distribution given the findings.  
Mahoney and Laskey (1998) define a SSBN as a 
minimal Bayesian network sufficient to compute the 
response to a query. A SSBN may contain any 
number of instances of each MFrag, depending on the 
number of entities and their interrelationships. The 
SSDG in Figure 12 is the result of applying this 
process to the MEDG Theory in Figures 9 and 11 
with the Finding and Target set we just defined. 

 Another important use for the SSBN algorithm is 
to help in the task of performing Bayesian learning, 
which is treated in MEBN logic as a sequence of 
MTheories. 

Learning from Data 
Learning graphical models from observations is 

usually divided in two different categories: inferring 
the parameters of the local distributions when the 
structure is known, and inferring the structure itself. 
In MEBN, by structure we mean the possible values 
of the random variables, their organization into 
MFrags, the fragment graphs, and the functional 
forms of the local distributions. 

Figure 13 shows an example of parameter learning 
in MEBN logic in which we adopt the assumption 
that one can infer the length of a starship on the basis 
of the average length of all starships. This generic 
domain knowledge is captured by the generative 
MFrag, which specifies a prior distribution based on 
what we know about starship lengths.   

One strong point about using Bayesian models in 
general and MEBN logic in particular is the ability to 
refine prior knowledge as new information becomes 
available. In our example, let’s suppose that we 
receive precise information on the length of starships 
!ST2, !ST3, and !ST5; but have no information 
regarding the incoming starship !ST8. 

The first step of this simple parameter learning 
example is to enter the available information to the 
model in the form of findings (see box 
StarshipLenghInd Findings). Then, we pose a query 
on the length of !ST8. The SSBN algorithm will 
instantiate all the random variables that are related to 
the query at hand until it finishes with the SSBN 
depicted in Figure 13 (box SSBN with Findings). In 
this example, the MFrags satisfy graph-theoretic 
conditions under which a re-structuring operation 
called finding absorption (Buntine 1994b) can be 
applied without changing the structure of the MFrags. 
Therefore, the prior distribution of the random 
variable GlobalAvgLength can be replaced by the 
posterior distribution obtained when adding evidence 
in the form of findings. 

As a result of this learning process, the probability 
distribution for GlobalAvgLength has been refined in 
light of the new information conveyed by the 
findings. The resulting, more precise distribution can 
now be used not only to predict the length of !ST8 but 
for future queries as well. In our specific example, the 
same query would retrieve the SSBN in the lower 
right corner of Figure 13 (box SSBN with Findings 
Absorbed). One of the major advantages of the 
finding absorption operation is that it greatly 
improves the tractability of both learning and SSBN 
inference. We can also apply finding absorption to 
modify the generative MFrags themselves, thus 
creating a new generative MTheory that has the same 
conditional distribution given its findings as our 
original MTheory. In this new MTheory, the 
distribution of GlobalAvgLength has been modified to 
incorporate the observations and the finding random 
variables are set with probability 1 to their observed 
values. Restructuring MTheories via finding 
absorption can increase the efficiency of SSBN 
construction and of inference. 
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Structure learning in MEBN works in a similar 
fashion. As an example, let’s suppose that when 
analyzing the data that was acquired in the parameter 
learning process above, a domain expert raises the 
hypothesis that the length of a given starship might 
depend on its class. To put it into a “real-life” 
perspective, let’s consider two classes: Explorers and 
Warbirds. The first usually are vessels crafted for 
long distance journeys with a relatively small crew 
and payload. Warbirds, on the other hand, are heavily 
armed vessels designed to be flagships of a combatant 
fleet, usually carrying lots of ammunition, equipped 
with many advanced technology systems and a large 
crew. Therefore, our expert thinks it likely that the 
average length of Warbirds may be greater than the 
average length of Explorers. 

In short, the general idea of this simple example is 
to mimic the more general situation in which we have 
a potential link between two attributes (i.e. starship 
length and class) but at best weak evidence to support 
the hypothesized correlation. This is a typical 
situation in which Bayesian models can use incoming 
data to learn both structure and parameters of a 
domain model. Generally speaking, the solution for 
this class of situations is to build two different 
structures and apply Bayesian inference to evaluate 
which structure is more consistent with the data as it 
becomes available. 

The initial setup of the structure learning process 
for this specific problem is depicted in Figure 14. 
Each of our two possible structures is represented by 
its own generative MFrag. The first MFrag is the 
same as before: the length of a starship depended 
only on a global average length that applied to 
starships of all classes. The upper left MFrag of 

Figure 14, StarshipLengthInd MFrag conveys this 
hypothesis. The second possible structure, 
represented by the ClassAvgLength and Starship-
LengthDep MFrags, covers the case in which a 
starship class influences its length.  

 
Figure 14 – Structure Learning in MEBN 

The two structures are then connected by the 
Starship Length MFrag, which has the format of a 
multiplexor MFrag. The distribution of a multiplexor 
node such as StarshipLength(st) always has one 
parent selector node defining which of the other 
parents is influencing the distribution at a given 
situation. 

In this example, where we have only two possible 
structures, the selector parent will be a two-state 
node. Here, the selector parent is the Boolean 
LengthDependsOnClass(!Starship). When this node 
has value False then StarshipLength(cl) will be equal 
to StarshipLengthInd(st), the distribution of which 
does not depend on the starship’s class. Conversely, if 
the selector parent has value True then 
StarshipLength(cl) will be equal to StarshipLength-

Figure 13 – Parameter Learning in MEBN 
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Dep(st), which is directly influenced by ClassAvg-
Length(StarshipClass(st)). 

Figure 15 shows the result of applying the SSBN 
algorithm to the generative MFrags in Figure 14. The 
SSBN on the left doesn’t have the findings included, 
but only information about the existence of four 
starships. It can be noted that we choose our prior for 
the selector parent (the Boolean node on the top of 
the SSBN) to be the uniform distribution, which 
means we assumed that both structures (i.e. class 
affecting length or not) have the same prior 
probability.  

For the SSBN in the right side we included the 
known facts that !ST2 and !ST3 belong to the class of 
starships !Explorer, and that !ST5 and !ST8 are 
Warbird vessels.  Further, we included the lengths of 
three ships for which we have length reports. The 
result of the inference process was not only an 
estimate of the length of !ST8 but a clear 
confirmation that the data available strongly supports 
the hypothesis that the class of a starship directly 
influences its length. 

It may seem cumbersome to define different 
random variables, StarshipLengthInd and Starship-
LengthDep, for each hypothesis about the influences 
on a starship’s length.  As the number of structural 
hypotheses becomes large, this can become quite 
unwieldy.  Fortunately, we can circumvent this 
difficulty by introducing a typed version of MEBN 
and allowing the distributions of random variables to 
depend on the type of their argument.  A detailed 
presentation of typed MEBN is beyond the scope of 
this paper. 

This basic construction is compatible with the 
standard approaches to Bayesian structure learning in 

graphical models (e.g. Cooper & Herskovits 1992, 
Friedman & Koller 2000, Heckerman et al. 1995a, 
Jordan 1999). 

Unifying Classical Logic and Probability 
In classical logic, the most that can be said about a 

hypothesis that can be neither proven nor disproven is 
that its truth-value is unknown. Practical reasoning 
demands more. Captain Picard’s life depends on 
assessing the plausibility of many hypotheses he can 
neither prove nor disprove. Yet, he also needs first-
order logic’s ability to express generalizations about 
properties of and relationships among entities. In 
short, he needs a probabilistic logic with first-order 
expressive power. 

Although there have been many attempts to 
integrate classical first-order logic with probability, 
MEBN is the first fully first-order Bayesian logic 
(Laskey, 2005).  MEBN logic can assign probabilities 
in a logically coherent manner to any set of sentences 
in first-order logic, and can assign a conditional 
probability distribution given any consistent set of 
finitely many first-order sentences.  That is, anything 
that can expressed in first-order logic can be assigned 
a probability by MEBN logic. The probability 
distribution represented by an MTheory can be 
updated via Bayesian conditioning to incorporate any 
finite sequence of findings that are consistent with the 
MTheory and can be expressed as sentences in first-
order logic. If findings contradict the logical content 
of the MTheory, this can be discovered in finitely 
many steps.  Although exact inference may not be 
possible for some queries, if SSBN construction will 
converge to the correct result if one exists. 

Figure 15 – SSBNs for the Parameter Learning Example 
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Semantics in classical logic is typically defined in 
terms of possible worlds. Each possible world assigns 
values to random variables8 in a manner consistent 
with the theory’s axioms. For example, in the 
scenario illustrated in Figure 8, every possible world 
must assign value True to CloakMode(!ST1) and !Z0 
to StarshipZone(!ST0), because the values of these 
random variables are assumed known in the scenario. 
The value of the random variable ZoneNature(!Z0) 
must be one of DeepSpace, PlanetarySystems, or 
BlackHoleBoundary, but subject to that constraint, it 
may have different values in different possible 
worlds.   

In classical logic, inferences are valid if the 
conclusion is true in all possible worlds in which the 
premises are true. For example, classical logic allows 
us to infer that Prev(Prev(!ST4)) has value !ST2 from 
the information that Prev(!ST4) has value !ST3 and 
Prev(!ST3) has value !ST2, because the first statement 
is true in all possible worlds in which the latter two 
statements are true. But in our scenario, classical 
logic permits us to draw no conclusions about the 
value of ZoneNature(!Z0) except that it is one of the 
three values DeepSpace, PlanetarySystems, or Black-
HoleBoundary.   

An MTheory assigns probabilities to sets of worlds. 
The probability assignments ensure that the set of 
worlds consistent with the logical content of the 
MTheory has probability 100%. Each random 
variable instance maps a possible world to the value 
of the random variable in that world. In statistics, 
random variables are defined as functions mapping a 
sample space to an outcome set.  For MEBN random 
variable instances, the sample space is the set of 
possible worlds. For example, ZoneNature(!Z0) maps 
a possible world to the nature of the zone labeled !Z0 
in that world. The probability that !Z0 is a deep space 
zone is the total probability of the set of possible 
worlds for which ZoneNature(!Z0) has value 
DeepSpace.  

In any given possible world, the generic random 
variable class ZoneNature(z) maps its argument to the 
nature of the zone whose identifier was substituted 
for the argument z. Thus, the sample space for the 
random variable class ZoneNature(z) is the set of 
unique identifiers that can be substituted for the 
argument z. Information about statistical regularities 
                                     
8 In classical logic, the terms predicate and function are used in 
place of Boolean and non-Boolean random variables, 
respectively. Predicates must have value True or False, and 
cannot have value Absurd. 

among zones is represented by the local distributions 
of the MFrags whose arguments are zones.  As we 
saw in the section on learning, MFrags for parameter 
and structure learning can help us to use information 
about zones we have observed to make better 
predictions about zones we have not yet seen.   

As we obtain more information about which 
possible world might be the actual world, we need to 
adjust the probabilities of all related properties of the 
world in a logically coherent manner. This is 
accomplished by adding findings to our MTheory to 
represent the new information, and then using 
Bayesian conditioning to update the probability 
distribution represented by the revised MTheory. 

For example, suppose we learn there is at least one 
enemy ship in !Z0. This information means that 
worlds in which ZoneEShips(!Z0) has value Zero are 
no longer possible. In classical logic, this new 
information makes no difference to the inferences we 
can draw about ZoneNature(!Z0).  All three values 
were possible before we learned there was an enemy 
ship present, and all three values remain possible.  
The situation is different in a probabilistic logic. To 
revise our probabilities, we first assign probability 
zero to the set of worlds in which !Z0 contains no 
enemy ships. Then, we divide the probabilities of the 
remaining worlds by our prior probability that 
ZoneEShips(!Z0) had a value other than Zero.  This 
ensures that the set of worlds consistent with our new 
knowledge has probability 100%.  These operations 
can be accomplished in a computationally efficient 
manner using SSBN construction. 

Just as in classical logic, all three values of 
ZoneEShips(!Z0) remain possible. However, their 
probabilities are different from their previous values.  
Because deep space zones are more likely than other 
zones to contain no ships, more of the probability in 
the discarded worlds was assigned to worlds in which 
!Z0 was a deep space zone than to worlds in which 
!Z0 was not in deep space.  Worlds that remain 
possible tended to put more probability on planetary 
systems and black hole boundaries than on deep 
space.  The result is a substantial reduction in the 
probability that !Z0 is in deep space.  

Achieving full first-order expressive power in a 
Bayesian logic is non-trivial. This requires the ability 
to represent an unbounded or possibly infinite 
number of random variables, some of which may 
have an unbounded or possibly infinite number of 
random possible values.  We also need to be able to 
represent recursive definitions and random variables 
that may have an unbounded or possibly infinite 
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number of parents.  Random variables taking values 
in uncountable sets such as the real numbers present 
additional difficulties.  Details on how MEBN 
handles these subtle issues are provided by Laskey 
(2005). 

Related Research  
Hidden Markov models, or HMMs, (Baum & 

Petrie 1966, Elliott et al. 1995, Rabiner 1989) have 
been applied extensively in pattern recognition 
applications. HMMs can be viewed as a special case 
of dynamic Bayesian networks, or DBNs (Murphy 
1998).  A HMM is a DBN having hidden states with 
no internal structure that d-separate observations at 
different time steps. Partially dynamic Bayesian 
networks, also called temporal Bayesian networks 
(Takikawa et al. 2001) extend DBNs to include static 
variables. These formalisms augment standard 
Bayesian networks with a capability for temporal 
recursion.  

BUGS (Buntine 1994a, Gilks et al. 1994, 
Spiegelhalter et al. 1996) is a software package that 
implements the Plates language. Plates represent 
repeated fragments of directed or undirected 
graphical models. Visually, a plate is represented as a 
rectangle enclosing a set of repeated nodes. Strengths 
of plates are the ability to handle continuous 
distributions without resorting to discretization, and 
support for parameter learning in a wide variety of 
parameterized statistical models. The main weakness 
is the lack of a direct, explicit way to represent 
uncertainty about model structure. There is a natural 
translation from plates to MFrags.  See Laskey (2005) 
for more on the relashionship between plates and 
MFrags. 

Object-oriented Bayesian Networks (Bangsø & 
Wuillemin 2000, Koller & Pfeffer 1997, Langseth & 
Nielsen 2003) represent entities as instances of object 
classes with class-specific attributes and probability 
distributions. Probabilistic Relational Models (PRM) 
(Getoor et al. 2001, Getoor et al. 2000, Pfeffer 2001, 
Pfeffer et al. 1999) integrate the relational data model 
(Codd 1970) and Bayesian networks. PRMs extend 
standard Bayesian Networks to handle multiple entity 
types and relationships among them, providing a 
representation in which it is easy to obtain consistent 
probabilities over a relational database. PRMs cannot 
express arbitrary quantified first-order sentences and 
do not support recursion. Although PRMs augmented 

with DBNs can support limited forms of recursion, 
they still do not support general recursive definitions. 

Finally, DAPER (Heckerman et al. 2004) combines 
the entity-relational model with DAG models to 
express probabilistic knowledge about structured 
entities and their relationships. Any model 
constructed in Plates or PRM can be represented by 
DAPER. Thus, DAPER is a unifying language for 
expressing relational probabilistic knowledge. 
DAPER expresses probabilistic models over finite 
databases, and cannot represent arbitrary FOPC 
expressions involving quantifiers. Therefore, like 
other languages discussed above, DAPER does not 
achieve full FOPC representational power. MEBN 
provides the formal mathematical support to achieve 
this objective, and could provide a logical foundation 
for extending the expressive power of any of the 
above formalisms. 

Discussion and Future Work 
MEBN  logic brings together two different areas of 

research: probabilistic reasoning and classical logic. 
The ability to perform plausible reasoning with the 
expressiveness of Fisrt-Order Logic opens the 
possibility to address problems of greater complexity 
than heretofore possible in a wide variety of 
application domains. 

The flexibility of the framework defined in Laskey 
(2005) allows it to serve as the logical basis for any 
typed knowledge representation. For example, 
Quiddity*Suite™ is a frame-based relational 
modeling toolkit that implements MEBN logic and is 
being used to address a wide range of applications 
ranging from visual target recognition to multi-sensor 
data fusion to dynamic decision systems in the C3I 
arena (Fung et al. 2004). 

XML-based languages such as RDF and OWL are 
currently being developed using subsets of FOL. 
MEBN logic can provide a logical foundation for 
extensions that support plausible reasoning. As an 
example, we are currently developing OWL-P, a 
MEBN-based extension to the semantic web language 
OWL. Our objective is to create a language capable 
of representing and reasoning with probabilistic 
ontologies. This technology would have many 
possible applications to the Semantic Web, which is 
an open environment where uncertainty is a rule, thus 
deeming the current deterministic approaches not the 
most suitable tool for the challenge.  
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Probabilistic ontologies are also a very promising 
technique for addressing the semantic mapping 
problem, a difficult task whose applications range 
from automatic Semantic Web agents, which must be 
able to deal with multiple, diverse ontologies, to 
automated decision systems, which usually have to 
interact and reason with many legacy systems, each 
having its own distinct rules, assumptions, and 
terminologies.  

MEBN is still in its infancy as a logic, but has 
already shown the potential to provide the necessary 
mathematical foundation for plausible reasoning in an 
open world characterized by many interacting entities 
related to each other in diverse ways and having 
many uncertain features and relationships. 
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