
 

Abstract— Static replicas have been proven useful in providing 
fault tolerance and load balancing, but they may not provide 
enough assurance on the continuous availability of mission-
cr itical data in face of a determined denial-of-service (DoS) 
attacker . A roaming replica scheme can provide higher  
availability assurance, but the overhead associated with replica 
movement and lookup is high. In this paper, we propose ARRP, 
an adaptive roaming replication protocol in which static replicas 
are used normally but if a cer tain percentage of static replicas has 
already been shut down, then a small number of roaming replicas 
will be added and stored in randomly selected hosts that are 
changed per iodically. In par ticular , we analyze the appropr iate 
threshold when the roaming replica scheme should be enabled by 
empir ically investigating the tradeoff between availability, 
per formance, and overhead. Simulation results show that ARRP 
can effectively mitigate the impacts of DoS attacks and host 
failures to ensure continuous availability of cr itical data, with 
better  per formance and reasonable overhead compared to only 
using static replicas.  
 

Index Terms—Data Replication, Assurance, Availability, 
Denial-of-Service Attacks. 

I. INTRODUCTION 

Data replication on the Internet is becoming more and more 
common. By placing replicas at multiple locations people can 
access the data more quickly and reliably. By replicating data 
single point of failure can be avoided, as this is a particularly 
desirable property for mission-critical applications. 

Consider a military operation scenario where the soldiers 
are the clients, base station serves as the server with battlefield 
information being the critical data exchanged between them. 
Assume that the soldiers periodically contact the base station 
and get critical data. If the base station is shut down by a DoS 
attack or due to some other problem, the soldiers can no longer 
access this data. However, if the same data were replicated at 
different places, then the soldiers can access the critical data 
via the replicas.  

There are mainly three objectives with such a data 
replication strategy. First, as explained in the previous 
example, if the main server is down due to host failures or 
attacks, the clients can still have access to the critical data 
from the replicas. Second, replicas may provide faster access 
to clients. Third, by allowing clients to access different 
replicas, Load balancing can be achieved. 

One of the common ways to replicate data is by using static 
copies. In this approach the server designates some nodes as 
replicas and transfers data to them. To maintain the 

consistency of replicated data, the server periodically updates 
the replicas. This approach achieves the second and third 
objectives. One problem with static replicas is that if an 
adversary locates all the static replicas, they can launch 
targeted DoS attacks as discussed in [9] to shut down these 
replicas. For greater assurance more replicas can be stored in 
the network, but this may incur too much overhead as all 
replicas have to be updated when the original copy is updated. 

To mitigate this problem, a roaming replica method is 
proposed in our previous paper [4]. In this approach, instead 
of using a large number of static replicas, only a small number 
of roaming replicas are used. The server periodically moves 
the replicas to different hosts, and the clients use a discovery 
protocol to find the location of replicas in a secure manner. It 
is demonstrated in [4] that by moving data periodically greater 
assurance on data availability can be achieved.  

The main problem with the roaming replica approach is the 
necessity to move replicas periodically and to discover the 
current location of a replica. Even during periods when there 
are no attacks or attack level is low, data still needs to be 
moved periodically. Clients have to run the discovery protocol 
every time to find the location of replicas. In this paper, we 
propose an Adaptive Roaming Replication Protocol (ARRP) 
which aims to integrate both schemes of static replicas and 
roaming replicas. In this approach roaming replicas are 
included in addition to static replicas only if the attack level is 
above the threshold, otherwise only static replicas are used. In 
this way the survivability of replicas is increased and the 
overhead of roaming replicas is minimized. The main question 
that remains to be determined is: what is the most appropriate 
threshold needed to enable the roaming replica scheme. 

In an attempt to answer this question, we analyze the 
tradeoff relationship between Availability, Performance, and 
Overhead in the presence of attacks. Availability is a measure 
of how survivable the replicas are in face of DoS attacks. If 
either the server of at least one of the replicas is available, then 
the critical data is available. Performance is a measure of how 
long it would take for a client to get the critical data from the 
server or an available replica. If more replicas are deployed, 
there is a better chance that a client can quickly find a replica 
close to it, thereby improving the performance. On the other 
hand, in the presence of DoS attacks, as it takes more time to 
find an available replica performance decreases. Overhead is 
composed of four components, namely movement overhead, 
discovery overhead, storage overhead, and update overhead. 
Movement overhead is about message transmissions needed to 
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move roaming replicas to a different location. Discovery 
overhead is about message transmissions needed to find an 
available replica. Storage and update overheads are 
proportional to the number of replicas used in the system. In 
the simulation and evaluation, we create a random network 
topology with 300 nodes and try to find the performance and 
overhead for various client loads in presence of various 
degrees of replica failures.  

The remainder of this paper is organized as follows. In 
Section II, we discuss the related work. In Sections III and IV, 
roaming data redundancy scheme and ARRP scheme are 
discussed. In Section V we describe the experimental setup 
and simulation and discuss the evaluation on the tradeoff 
between availability, performance, and overhead. Finally, we 
conclude and discuss future work in Section VI. 

II. RELATED WORKS 

Most of the work related to replica placement focuses on 
providing Quality of Service (QoS) to clients. A method using 
Tapestry method was proposed by Chen et al. [3]. In this work 
the network is treated as a dissemination tree and the method 
addresses the placement of replicas in order to achieve load 
balancing. In [1], Bartolini et al. propose a method for placing 
replicas based on the traffic estimations and current replica 
location. In [11], Szymaniak et al. propose HotZone, an 
algorithm to place replicas in wide-area network such that the 
client to replica latency is minimized. This algorithm work 
very well in terms of performance, but they do not address the 
issue about the availability of critical data. 

In [12], Tang and Xu discuss the problem of placing 
replicas of an object in content distributed systems to meet 
QoS requirements while minimizing the replicating cost. The 
authors used replica-aware model and replica-blind model for 
different problem specifications. In the replica-aware model 
the server knows the location of the replicas and the user and 
redirects the user request to the replica which is close to the 
user, which is NP-complete problem. In the replica-blind 
model, the server randomly selects one replica and sends the 
user request to that replica, which can be solved in polynomial 
time. Still, this work does not address replica availability. 

In [5], Khattab et al. propose a method in which n out of m 
servers are selected to be active servers, rendering the 
remaining m - n servers acting as honeypots. To mitigate DoS 
attacks a different set of n servers are randomly selected to be 
active after some time.  In [6], the same authors propose a 
method in which the server roams among a pool of servers. 
This method requires modifications to TCP connection state as 
servers are moved physically. Only legitimate clients can 
follow the location of the server. Although this approach 
achieves fault tolerance and increases availability, the 
overhead of moving servers can be high. Their results show an 
increase of about 14% in average response time when there are 
no attacks. In contrast, our approach adds a small number of 
roaming replicas only when replica failure rate is high. 

In [9], Srivatsa and Liu discuss the targeted file attacks and 
propose a LocationGuard scheme to counter the attacks. In this 
approach, each client uses a lookup guard which takes a stored 
location key to securely calculate the location of the target file 
or its replica in an overlay network. The adversary is hidden 

from the target location because it does not know the 
corresponding location key. However, this scheme may not 
tolerate a determined attacker who launches multiple DoS 
attacks by guessing and gradually taking down more replicas.  

As for the discovery of available replicas, there have been 
several distributed hash table (DHT) based replica lookup 
protocols, e.g. Chord [10], CAN [7], Pastry [8], and Tapestry 
[3]. These schemes allow for lookup in a small and bounded 
number of hops. However, in presence of determined DoS 
attacks, these schemes will also require a lot of retries.  

III. ROAMING DATA REDUNDANCY 

The Roaming Data Redundancy Scheme was proposed in 
our previous paper [4]. This scheme basically consists of two 
protocols, a Redundant Data Moving Protocol (RDMP) and a 
Redundant Data Discovery Protocol (RDDP). RDMP allows 
host to move replicas of the critical data periodically to 
different hosts. RDDP allows roaming replicas of critical data 
to be discovered by clients. Both protocols are designed to 
incorporate multiple types of critical data, with each type of 
critical data maintained by a different host. 

A. Assumptions 

Before presenting the scheme, we discuss the assumptions 
that we make about the critical data service and the adversary. 
We assume that there are multiple types of critical data present 
in the network. All legitimate clients are aware of which host is 
the main server of which type of critical data. To protect the 
privacy and integrity of critical data and location of redundant 
copies we assume all the communication is encrypted. For 
broadcast messages we assume that the messages are 
encrypted with the shared key between the main server and 
client hosts, whereas all the unicast messages are encrypted 
using public key encryption. And also we assume that all the 
hosts in the network can be trusted. They do not collude with 
adversary by leaking the private keys. 

Even though adversary cannot decrypt the messages, we 
assume that the adversary can do traffic analysis and can also 
perform replay attacks. We also assume that the adversary is 
aware of the location of all the hosts in the network. The 
adversary can also attack the m hosts simultaneously and can 
shut them down all at once. 

B. Redundant Data Moving Protocol 

Redundant Data Moving Protocol consists of n processes 
rdm[0..n-1]. Each host participating in the protocol has an 
input cd, which represents the critical data maintained by the 
host, which is the owner of the critical data of the host. The 
owner has the authority to manage the roaming replicas of the 
data. Each rdm[i] also maintains an array rd[0..n-1] which 
represents the replicas of the other hosts’  critical data currently 
kept by this host. Each host also maintains an array sq[0..n-1] 
that represents the next sequence number to be used by each 
process to send the next request message to move the critical 
data. Periodically rdm[i] selects the next keeper of its critical 
data, broadcasts the dlt message, to notify the keeper to delete 
the outdated message and sends unicast message to transfer the 
critical data to the next keeper. If process rdm[j] keeps a 
roaming replica, then rdm[j] sends a dltack message to rdm[i] 



 

to acknowledge the deletion. If rdm[j] is the next keeper of the 
roaming replica then rdm[j] sends a movack message to 
acknowledge the reception of the critical data.  

C. Redundant Data Discovery Protocol 

The Redundant Data Discovery Protocol consists of n 
processes rdd[0..n-1]. Each process rdd[i] maintains an input 
array rd[0..n-1] which is provided by rdm[i] in the redundant 
data moving protocol and represents the replicas of the other 
hosts’  critical data currently kept by this host. Each process 
rdd[i] also maintains an array sq[0..n-1] that represents the 
next sequence number to be used by each process to send the 
next query. Each process rdd[i] in the RDDP can send to every 
other process a drqst(sq[i], tgt, i) request message, where sq[i] 
is the sequence number of the drqst message sent by rdd[i], tgt 
is the index of the target critical data and i is the index of 
rdd[i]. Every time rdd[i] sends out a drqst message, sq[i] 
needs to be incremented by 1 in every process in order to keep 
consistency. If process rdd[j] currently keeps a roaming 
replica, then rdd[j] will send a drply(sq[i], tgt, j) message to 
rdd[i], where sq[i] is the  corresponding sequence number of 
rdd[i], tgt is the index of the target critical data, and j is the 
index of rdd[j]. The other processes that do not keep track of 
the critical data will discard the message. Figure 1 illustrates 
the basic operations in RDMP and RDDP. 
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Figure 1: Basic operations of Redundant Data Moving Protocol (RDMP) and 
Redundant Data Discovery Protocol (RDDP). 

IV. ADAPTIVE ROAMING REPLICATION PROTOCOL 

It has been shown in [4] that the roaming replica scheme 
effectively mitigates the impacts of DoS attacks and host 
failures and provides higher assurance on the continuous 
availability of critical data. However, the main disadvantage of 
the pure roaming replica scheme is about its overheads due to 
the movement and discovery of roaming replicas. These 
overheads remain even when the level of DoS attack is very 
low, and as a result, they may cancel the benefit of availability 
guarantee and discourage the adoption of this scheme. 

To address this problem, we propose the Adaptive Roaming 
Replication Protocol that integrates both schemes of static and 
roaming replicas. The static replica scheme is still used at all 
times. Each client caches the addresses of a few static replicas 
that are close to it, such that the client can access the closest 
available replica first and shorten the latency. If none of the 
cached addresses of static replicas is reachable, then the client 
will use the RDDP protocol to find an available replica, either 
static or roaming. The server is able to derive an estimate of 
the percentage of failed static replicas when it periodically 
updates the replicas. When the percentage of failed replicas 
exceeds a certain threshold th, the roaming replica scheme is 

enabled to add a small number of roaming replicas to the 
network. Since there are still some available static replicas in 
the network, the client can attempt to access the cached static 
replica positions to see if they are still available. If so, then the 
client will access the data from the available static replica. 
Only when these attempts fail the client will resort to RDDP 
protocol to find a roaming replica. Later if some failed replicas 
recover and the server detects that the percentage of failed 
replicas falls below th, it turns off the roaming replica scheme. 
This is easily achieved by requesting the current holders of a 
roaming replica to remove it from their storage without 
designating the next roaming replica holders. 

V. EXPERIMENTAL SETUP AND RESULTS 

A. Simulation Model 

We have developed a simplified model of our roaming 
replica scheme in C++ and conducted a number of experiments 
to study the effect of different parameters. We first created 300 
node network topology using BRITE [13]. To evaluate the 
effectiveness of our simulation we tested our results on 
different topological networks sparse, medium and dense 
networks whose nodes have average degrees of 2, 5 and 8 
respectively. We assume that these three different topologies 
cover various network densities. In addition we assume that all 
links in the network are 10Mbps unless specified otherwise.  

Initially, the server selects 20 nodes as static replicas and 
transfers critical data to them. In each time unit clients try to 
contact their closest available replica and gets critical data. 
Replicas can go down due to the presence of DoS attacks and 
node failures. To implement the node failures and DoS attacks 
on replicas, we used a probabilistic method in which a random 
number is generated to determine whether a replica is up or 
down. We ran the simulations under replica failure 
probabilities of 25%, 50% and 75% respectively.  

In addition to the static replicas we used 3 replicas as 
roaming replicas. In each time period the server selects 3 new 
replicas and uses RDMP protocol to send critical data to them. 
Even if the attacker is able to find a subset of the roaming 
replicas, the attack is successful only during the time period 
because after each time period the roaming replicas change 
their location. 

We assume that the clients cache the location of some 
closest static replicas. The client first checks the cached 
locations before applying RDDP protocol to find an available 
replica. In the simulation we assume that the client caches 1, 2 
or 3 closest static replicas respectively and the results are 
compared with the basic static replica placement method 
where a legitimate client knows the location of all static 
replicas (e.g. by looking up some public directory). 

We ran the simulation for 100 time units with server 
updating the replica position for every time unit. The 
simulation is run for 20 times and each point in the graph 
represents the average over 20 runs. All the client requests are 
distributed uniformly throughout the time period. 

B. Evaluation 

We use the above model to conduct various simulations in 
order to evaluate the availability, performance, and overhead 



 

of the ARRP scheme. In particular, we analyze the tradeoff 
between the three aspects.  

1) Availability 
We first analyze how survivable the roaming replicas are 

against a determined attacker. In theory, if the number of hosts 
in the service network is n, with r roaming replicas among the 
n hosts, and the attacker is able to launch an attack in parallel, 
then the probability that the attacker hits all the r roaming 
replicas at the same time is given by 
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With the parameters used in our simulation (300 nodes, 3 
roaming replicas, and 30 attacks at the same time), the 
probability is just 0.09%, which is very low.  

In order to quantify the availability more concretely, we 
design the following experiment. In the roaming replica 
scheme, every time unit we let the original source server 
randomly choose 1, 2, 3, or 4 servers out of 300 total servers 
to keep the roaming replicas. Every time unit the adversary 
randomly chooses 30 servers to attack simultaneously. If all 
the current roaming redundant copies are hit by the DoS 
attacks, then the attack is regarded successful and we measure 
the time elapsed in time units. Otherwise, in the next time unit 
the original source server again randomly chooses 1, 2, or 3 
servers and the adversary again randomly chooses 30 servers 
to attack. The longer the elapsed time before the attack 
succeeds the better the availability is, since the network proves 
to be more survivable to the attack. The results are compared 
with the static replica scheme in which 10, 20, and 30 static 
replicas are stored in a total of 300 servers. At the beginning of 
the simulation the source chooses 10, 20, or 30 servers to keep 
the redundant copies and the attacker randomly selects 30 
servers to attack. If the adversary hits a server that keeps a 
redundant copy, the adversary shuts it down. The adversary 
uses its remaining attacks to keep attacking until it locates and 
shuts down all the servers that keep a redundant copy, and we 
measure the time elapsed in time units. 

Figure 2 shows the statistics of 1000 runs for our roaming 
data redundancy model – 1, 2, 3, and 4 roaming copies in 300 
total servers under 30 attacks. As we increase the number of 
roaming copies, the time needed for the adversary to succeed 
increases exponentially. Therefore by increasing the number of 
roaming copies by just one, we can achieve exponential 
increase in the difficulty for the adversary. 

Figure 3 shows the statistics for our comparison model – 
10, 20, 30 static copies distributed in 300 total servers. Note 
that the number of simultaneous attacks is 30 so that the 
adversary is able to successfully shut down all the static 
replicas. While the increase of the number of static replicas 
increases the time necessary for a successful attack, the 
increase is smooth and the average time needed for a 
successful attack is apparently shorter than when 2 or 3 
roaming copies are used.  

From the figures it is clear that the ARRP scheme provides 
higher availability than using only static replicas, and Figure 3 
shows that the benefits of using our approach increase when 
the number of roaming copies increases, as the average time 
needed for the attack to succeed increases by around 10 times 

with every additional roaming copy. The results also indicate 
that in this specific setup adding 3 roaming replicas to the 
service network can already achieve high availability; adding 
more replicas will just add to the overhead. 

2) Performance 
We evaluate the performance by calculating the average 

amount of time it takes to for clients to get data from replicas. 
Due to space limit we only show the simulation results for 
medium networks (with average node degree of 5). Figures 4 
and 5 show the amount of time it takes to get data from 
replicas under different replica failure rates (25%, 50%, 75%) 
in case of medium (with 50 clients) and high loads (with 100 
clients) respectively. The client requests are distributed 
uniformly over the time period.  

In the base case in which there is no roaming replica and 
the clients know the location of all static replicas, the clients 
will check the availability of replicas one by one without 
applying RDDP protocol. However as the replica failure 
increases there is a lower chance to find an available replica. 
So it takes more time to find the closest available replicas. In 
the other three cases the clients cache 1, 2, and 3 closest static 
replica locations respectively. Using RDDP protocol it is 
possible to find the closest available replica fast by sending 
broadcast request, because it does not require a lot of retries 
when the replica failure rate is high. 

From the figures we can see that as the replica failure 
increases, the average amount of time to get data also 
increases. Moreover, as the load increases the time taken to 
process the requests also increases, thereby each client request 
has to wait for longer time on average. This explains the 
increase in average amount of time to get data as the load 
increases.  

Figure 2: Time for successful DoS attacks, with 300 nodes, 30 
simultaneous attacks, and 1, 2, 3, 4 roaming replicas respectively. 
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Figure 3: Time for successful DoS attacks, with 300 nodes, 30 
simultaneous attacks, and 10, 20, 30 static replicas respectively. 
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Figure 4: Performance against the percentage of replica failures for 50 clients 
in medium network.  
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Figure 5: Performance against the percentage of replica failures for 100 
clients in medium network.  

3) Overhead 
We want to determine how much overhead the proposed 

approach incurs when different threshold is used. As discussed 
in Section I, the overhead is composed of movement overhead, 
discovery overhead, storage overhead and update overhead. 
Among these four components, movement overhead, storage 
overhead and update overhead are proportional to the number 
of roaming replicas, and we have shown that only a very small 
number of roaming replicas are needed to achieve high 
availability. The discovery overhead, however, is dependent 
on how many accesses end up using RDDP to find an available 
replica. To estimate this value, we use the same simulation 
model to develop a random sequence of 2000 client accesses 
and experiment it with different percentage of static replica 
failures. The number of cached static replica addresses is 
assumed to be 3.   

The results are shown in Figure 6. When the percentage of 
replica failure is below 65%, less than 10% of all accesses will 
use RDDP. This figure provides us two insights. First, the 
discovery overhead due to RDDP is small when the replica 
failure percentage is low. Second, the appropriate threshold 
should be higher than 65%, because when the replica failure 
percentage is less than 65% most clients can still find an 
available replica close to it without resorting to RDDP. 
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Figure 6: The percentage of total accesses that use RDDP protocol to find a 
replica under different percentage of static replica failure.  

VI. CONCLUDING REMARKS 

In this paper, we point out the need for greater assurance of 
the continuous availability of critical data services, and show 
that current solutions are not sufficient to provide the desired 
level of assurance under determined DoS attacks. We then 
introduce a novel adaptive roaming replica scheme called 
ARRP that aims to ensure constant availability of critical data 
by adding a small number of roaming replicas when the 
percentage of static replica failure is higher than a threshold. 
Simulation results show that ARRP can effectively mitigate the 
impacts of DoS attacks and host failures to ensure continuous 
availability of critical data, with better performance and 
reasonable overhead compared to only using static replicas. 

In the future work, we will implement a prototype of ARRP 
and evaluate it with client access sequences recorded from a 
real service network and synthetic attack traffic data. 
Moreover, we will investigate how frequently the roaming 
replicas should be moved so that they can survive the attacks 
with less overhead. Furthermore, we will study the impacts 
that the topology of the network and the routing algorithm has 
on the overall performance and overhead of ARRP. 
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