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Preface

This is a collection of class notes, handouts, homework assignments, and exam problems
developed over the past years teaching courses in Process Systems Engineering at the Univer-
sity of South Carolina. Most of the material relates to ECHE 550, Chemical Process Dynamics
and Control. This course covers the basics of dynamic modeling, solution and analysis of or-
dinary differential equations using Laplace methods, feedback control, and some advanced
control topics. Information is also included from other courses, specifically ECHE 589 In-
termediate Process Control. The intermediate course includes more advanced topics, such as
numerical optimization and discrete time dynamic modeling.

This offering is not provided as a text book for a course. Manyimportant topics are not
covered in sufficient detail, while some derivations are provided in excruciating depth. This
is expected to provide extra depth and additional examples for topics that may be lacking in
other text books. Additionally, practice problems are provided and tutorial materials on Mat-
lab/Simulink are included.

Ed Gatzke
gatzke@sc.edu
Department of Chemical Engineering
University of South Carolina
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Chapter 1

Mathematics Review

Objectives

This is a review of various mathematical topics that you probably have seen in previous
mathematics courses. Complete the problems where indicated with “EXERCISE” . Some
topics are just mentioned, without specific review questions.

Function of One Variable

You should understand the basic concept of a mathematical function / algebraic function.
In this course, we examine process dynamics. Things change with time, so some value like
the pressure in a tank,P could be some function of time,P (t) or P (t) = f(t), or in a specific
caseP (t) = 5sin(3t + 2). In other cases, you could have a parameter that changes with
temperature, like a chemical reaction rate. This could be expressed asr(T ) = ke

E
RT whereE,

k, andR are assumed constant.
The mathematical function provides a mapping. Ascalar function maps one value to an-

other value.f(x) : R
1 → R

1. This can be considered a input-output relationship. Some
people also use the analogy of a “black-box” you put some number in (theindependent vari-
able) and another comes out (thedependent variable).

Some examples as functions of time:
f(t) = sin(5 t)

f(t) = 2 t
f(t) = e3t

Additional examples including constants
f(t) = c e

t
τ , τ > 0, c > 0

Reaction rater as a function of temperatureT :
r(T ) = k0e

E
RT

Note thatko, R, andE are constants.
You should know how to graph functions without the use of a calculator or computer,

specifically any function of time (time as independent variable). For some functions, you may
want to pick a variety of values oft and evaluate the function values, then graphf(t) vs. t. For
a sum of functionsf = f1 +f2 you can plotf1 andf2 and add them point by point. When you
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multiply two functions,f = f1 f2 you can graphf1 andf2 then multiply them at each point.
In many cases, you need only graph the “interesting” points of the response where something
significantly changes. Interesting points could be att = 0, t = 1, or t = ∞. For trigonometric
functions, multiples ofπ/2 may be “interesting”.

1. EXERCISE, graph the following functions by hand:

(a) f(t) = e3t

(b) f(t) = e−3t

(c) f(t) = e−0.3t

(d) f(t) = sin(t) + 2t

(e) f(t) = 2t + t2

(f) f(t) = et − t3 + sin(t) − 1

(g) f(t) = t (sin(t))

Function of Two or More Variables

Sometimes, a value will be a function of multiple different values. Again, the mathematical
function provides a mapping. A function can also map one value to another value.f(x) :
R

n → R
1, n > 0.

Example, in a topographic (elevation) map, elevation is a function of map position :
ELEV ATION = z = f(x, y) or z = −(x2 + y2).
Example, reaction rate expression as a function of concentrations and temperature:
r = f(CA, CB, T ) = 3.0 e

3

8.14 T C2
A CB

Example, distance from the point(4, 2)
d = f(x, y) =

√

(x − 4)2 + (y − 2)2

2. Exercise:

(a) What is the function describing points on a circle of radiusr as a function ofx and
y?

(b) What is the function describing points on a sphere of radiusr as a function ofx,
y, andz?

(c) What is the function that determines the distance from the point(3,−1, 2)?

(d) Assuming an ideal gas, what is the function for pressure of a gas as a function of
volume, temperature, and moles of gas?

(e) Given that you have a function of only two variables with points inx × y and a
specified function ofx andy, you should realize thatf(x, y) gives values that can
be plotted in 3 dimensions. This surface (manifold) specifies the function. Try to
sketchz = f(x, y) = x2 + y2 in 3D.
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Solving Equations of One Variable

If you have a function of one variable, you may be able to find asolutionto the equation
f(x) = 0. This means you find a value ofx thatsatisfiesthe equation. The values ofx that
satisfy the equation are also called therootsof the equation.

Sometimes you can easily solve the equationanalytically. This means that you get a
closed-form expression for the solution that satisfies the equation. For the functionf(x) = x3,
x = 0 is the solution to the equation. For the quadratic equation,ax2 + bx + c, the roots are
x = −b±

√
b2−4ac

2a
. YOU SHOULD KNOW THIS EQUATION. Note, imaginary roots do not

mean that something is incorrect. In many process systems engineering problems, roots of a
polynomial should have imaginary components.

In many cases, you may have a simple polynomial function thatrequires the roots to be
found. This means, givenf(x), what are values ofx to makef(x) = 0?

• In the general case,(x−r1)(x−r2)...(x−rn) = 0, roots =r1, r2, ... rn that satisfyf(x)

• In the specific second order case, quadratic equation for:ax2 + bx + c = 0 with 2 roots
atx = −b±

√
b2−4ac

2a

• There are analytical expressions for roots of polynomials up to fifth order, but they are
in general very, very complex.

There are a variety of numerical methods to find roots. You mayhave a very complex nonlinear
expression,f(x), that is not easily factored into roots or solved directly. To solvef(x) = 0
you can graph the expression, then examine the graph to locatezero crossingsat the values of
x that satisfy the function. Using the bisection method, you can evaluate the function at two
points,xL andxR, xR ≥ xL. Assuming thatf(xL) ≤ 0 andf(xU) ≥ 0, you know a root must
lie in the regionxL ≤ x ≤ xR. Bisect the region to findxM = xL + xR−xL

2
and evaluate the

function atxM . Update bounds, keeping the region that must contain a solution.

3. EXERCISE: Find analytically solutions to the following equations:

(a) f(x) = (x − 3)(x2 − x + 12)

(b) f(x) = (x2 + 6x + 8) (x − 4) x

(c) f(x) = 2x2 + 3x + 5

(d) f(x) = x2 + x + 10

4. EXERCISE: Find numerical solutions that satisfy the following equations.

(a) f(x) = ex − x3 + sin(x) − 1, multiple different solutions,x in radians

(b) f(ω) = π + tan−1(20ω) − 2ω, ω in radians
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Solving Equations of Multiple Variables

In some cases, you have multiple unknown values. Using a degree of freedom analysis,
you must have as many independent equations as unknown values in order to find a solution.
For example, given the following equations:

3 = x + ey

2 = yx

You can say thatx = 1 − ey using equation 1, theny = 2
x

or y = 2
1−ey . Now, the second

equation isf(y) = 2
1−ey − y which can be satisfied iff(y) = 0, so try to findy such that

f(y) = 0, if it exists. Once you find a value fory that satisfies the function, you can determine
values forx from equation 1. Alternatively, for a 2D nonlinear case, youcan plotf1(x, y) = 0
andf2(x, y) = 0 and determine the points where the two lines intercept.

5. EXERCISE: Find solutions to the following equations:

3 = x2y

4 = x +
1

y

Check your solution to make sure your values forx andy satisfy both equations.

6. EXERCISE: Find solutions to the following equations:

4 = x2 + y2

0 = x2 − y

Slope of a Line

You must be able to find the slope (derivative) of a function,df
dt

(t) or df
dx

(x) given the
function and know the derivative of simple functions. Note that the derivative of a function of
time is also a function of time! You should also remember how to use the chain rule!

7. EXERCISE, calculate the derivative of the following functions:

(a) f(t) = 3t3 + 2t + 7

(b) f(t) =
√

t

(c) f(t) = et

(d) f(t) = sin(at) + 3t2

(e) f(x) = (eax)2

(f) f(t) = sin(3t4)

The derivative evaluated at a point,df
dt

(t)
∣

∣

t=ts
is the slope of the functionf(t) at timet = ts.

This also defines the slope of the line tangent tof(t) at timet = ts.

8. EXERCISE Graphf(t) = t2 + t and find the value of function and the value of the
slope forf(t) = t2 + t at t = 0, t = −1, t = 1

12



Basic Algebra Properties

You should know how to solve basic equations using algebraicproperties, such as the
distributive property,ax + bx = (a + b) x.

In some cases, you will have to solve an equation that includes a variety of constants. To
solve forx in the equationax = by + cx with constantsa, b, c. First, get terms withx on one
side:ax− cx = by, then use distributive property:(a− c)x = by, finally divide to solve forx
in terms ofy and some constants:x = by

(a−c)

9. Solve the following equation forf(x) = 0:

f(x) = (2x) + 5x + 6x) − x(2 + 3x)

10. Solve the following equation forx.

ax = xy + d + 3

11. Evaluate the follow fractions with different denominators just to make sure you know
what a common denominator is.

(a) 2
3

+ 5
7

Partial Fraction Expansion

Partial Fraction Expansion of fractions with polynomials in the numerator and denomi-
nator allows for simplification of complex polynomials. Useyour preferred method simplify
complex fractions involving polynomials.

12. EXERCISE Find A and B in the following expression

5x + 2

(2x + 1)(3x + 2)
=

A

2x + 1
+

B

3x + 2

Determinant of a Matrix

13. EXERCISE: find the determinant of the following matrices:

(a)
[

1 2
3 4

]

(b)
[

1 2
2 4

]

(c)




1 1 0
1 1 2
1 2 4




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Multiple Linear Equations

You can find the solution of multiple linear equations by row reduction / Gaussian elim-
ination. Linear equations are simple coefficients and variables (nox2 terms, noex terms,
just ax = b with a andb constant coefficients.) You have learned a variety of ways tosolve
systems of linear equations, but a standard method is often called row reduction or Gaussian
elimination.

14. EXERCISE: Solve the following set of linear equations by hand:

1x + 1y + 1z = 0

1x + 2y + 3z = 1

3x + 3y + 1z = 2

Scalar values

Numbers can be aconstant scalar(3, -0.1,e, π) or avariable scalar(x, y, z). These are
just basic real numbers.

Vector Values

There are many examples of vectors in 3 dimensions,





1
2
3



,





x
y
z



 or





x1

x2

x3



. Note that

you are not limited to 3 dimensions, you could specify all four concentrations in a reactor at a
given time:









CA

CB

CC

CD









Or you could specify all flow rates in a process at some time:

[F1 F2 F3 F4 F5 F6 F7 F8 ]T

Partial Derivative / Gradient of a Multivariable Function

Partial derivative as slope of the tangent surface in direction of one variable.

15. EXERCISES

(a) What isδf
δx

of f(x, y) = x2 + y2?

(b) What isδf
δx

of f(x, y) = x2 + y2 evaluated atx = 1, y = 1?
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(c) What is the gradient off(x, y) = x2 + y2?
[ δf

δx
δf
δy

]

(d) What is the equation of the plane tangent tof(x, y) = x2 + y2 atx = 2, y = 1?

Integration of a Function

16. EXERCISE Integrate the following basic functions:

(a) f(x) = x2

(b) f(x) = eax

(c) f(x) = sin(ax)

(d) f(x) = cos(bx)

(e) f(x) = ln(x) (Integration by parts)

(f) f(x) = x2ex (Integration by parts)

Differential Equations

Basic differential equations such as:

dy

dx
= y

This can be solved by separation of variables,

dy

y
= dx

Integrating to getln(y) = x + c. Assumingc = 0, y = ex wherey is a function ofx. The
same differential equation can be put in the form

df

dt
(t) = f(t)

with the solutionf(t) = cet. Obviously, given that you knowf(t) = cet, df
dt

= cet, so
f(t) = cet is the differential equation solution, where the constantc can be found from initial
conditions forf(t) or df

dt
(t)

17. EXERCISE: Go to http://www.ncsu.edu/felder-public/ILSdir/ilsweb.html and take the
learning style test.Record your four results.
Go to http://www.ncsu.edu/felder-public/ILSdir/styles.htm and read about your learning
style.

18. EXERCISE: Send Dr. Gatzke an email:gatzke@sc.edu Please include:

(a) Your learning style test results from the previous exercise.

(b) Your preferred email address. You may include more than one.

(c) Your permanent home address and phone number for future survey informa-
tion.

15
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Chapter 2

Linear Algebra

Objective

Demonstrate solution methods for systems of linear equations. Show that a system of
equations can be represented in matrix-vector form.

x

z

100

30

y

40

Flowrates in kmol/hr

20

Figure 2.1: Two distillation columns in series.

2.1 Example System

Two distillation columns in series with a additional feed stream mixing in with the bottoms
stream of the first column. The flow rate of three streams are unknown. As indicated in the
Figure 2.1, the flow rate of streamsx, y, andz are unknown. No reaction is taking place. The
steadystate flow rates must be calculated.

Basic Mass Balance:

accumulation = in − out + created − destroyed

Mass Balance on first column (In this case, assume steady state: accumulation= 0):

0 = 100 − 40 − x

17



Mass balance on mixing point:

0 = x + 30 − y

Mass balance on second column:

0 = y − 20 − z

Three linear equations:

0 = 100 − 40 − x

0 = x + 30 − y

0 = y − 20 − z

Note that you could write too many equations.You could write an overall balance:

0 = 100 − 40 − 20 − z

Ending up with an overspecified system of equations, 4 equations, 3 unknowns. Stick with
the three equations from above for now.

Note that these are linear equations.The unknown variables have constant linear coef-
ficients, nonlinear terms do not appear (nox2, no

√
x, noex).

You can rearrange the set of three equations (without the overall balance equation) to get
all the variable terms on the left side and the constants on the right. After some The set of
equations can be written as:

1x + 0y + 0z = 60

−1x + 1y + 0z = 30

0x − 1y + 1z = −20 (2.1)

As we will see later, this can be more compactly written as:

A x = b

You may already realize that the solution to this problem isx = 60, y = 90, andz = 70.
For more complex systems, this is not quite so easy. To solve the three linear equations
simultaneously in a general manner, you can perform row reduction using three possible row
operations:

RULES

1. Add (or subtract) one row to (or from) another

2. Multiply or divide a row by a scalar value (any real scalar6= 0)

3. Swap position of rows
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Typically you would perform these operations until you havea triangular representation (all
0’s above or below the diagonal). The triangular form allowsfor quick solution.

The set of linear equations in Equation 2.1 can be compactly written using only the coef-
ficients as:

1 0 0
−1 1 0
0 −1 1

∣

∣

∣

∣

∣

∣

60
30

−20

We need to perform steps 1-3 to get the system of equations in triangular form with ones
on the diagonal and zeros below the diagonal, like

1 a b
0 1 c
0 0 1

∣

∣

∣

∣

∣

∣

d
e
f

We can look at the original system of equations and realize that we must get zeros in
position 2,1 (row 2, column 1) and position 3,2 (row 3, column2). You can multiply row 2 by
−1 using Rule 2:

1 0 0
1 −1 0
0 −1 1

∣

∣

∣

∣

∣

∣

60
−30
−20

Next, swap position of rows 2 and 3 using Rule 3 to get:

1 0 0
0 −1 1
1 −1 0

∣

∣

∣

∣

∣

∣

60
−20
−30

Then, subtract row 1 from row 3 using Rule 1 to get:

1 0 0
0 −1 1
0 −1 0

∣

∣

∣

∣

∣

∣

60
−20
−90

Then, multiply rows 2 and 3 by−1 using Rule 2:

1 0 0
0 1 −1
0 1 0

∣

∣

∣

∣

∣

∣

60
20
90

Subtract row 2 from row 3 using Rule 1 again to get:

1 0 0
0 1 −1
0 0 1

∣

∣

∣

∣

∣

∣

60
20
70

Now, all coefficients below the diagonal are 0. The solution can be found quickly. From
equation 3 (row 3),z = 70. Using equation 2 (row 2)y − z = 20, but you know thatz = 70
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soy = 90. Equation 1 (row 1) givesx = 60, so the overall solution isx = 60, y = 90, and
z = 70.

CHECK SOLUTIONS: You can plug your solution back into the original three equations
and verify that the equations are satisfied.THIS WILL HELP YOU ON EXAMS.

Note that the general Gaussian elimination or row reductionmethod specifies that you
start with column 1 and perform operations until all coefficients below the diagonal are 0, then
move to column 2 and perform operations until all coefficients below the diagonal are zero,
etc.

2.2 Linear Equations - Special Cases

In general, there are three possibilities for a “square” setof linear equations.

2.2.1 Case A - One solution

Consider a simpler system:x + y = 1 andx − y = 1. Graphically, you can plot the two
lines and look for the intersection of two lines which occursat x = 1, y = 0. The system of
equations is:

1 1
1 −1

∣

∣

∣

∣

1
1

Subtracting row 1 from row 2 gives:

1 1
0 −2

∣

∣

∣

∣

1
0

This implies−2y = 0 or y = 0 andx + y = 1 or x = 1 as you already realized.
In 3 dimensions (3 unknowns) each row represents a plane. Twoequations can intersect to

give a line, and a line can intersect with a third plane to givea point, the single solution (in a
single solution case).

2.2.2 Case B - No solution

Consider the systemx + y = 1 andx + y = 2. Graphically, this represents two lines that
never intersect.

1 1
1 1

∣

∣

∣

∣

1
2

Note that column 1 and column 2 are identical. Subtracting row 1 from row 2 gives:

1 1
0 0

∣

∣

∣

∣

1
1

You know that0x+0y = 1 cannot be true. For a “square” system, if Gaussian elimination
results in a 0 on the diagonal, this may be the case.

20



2.2.3 Case C - Many solutions

Consider the systemx + y = 1 and2x + 2y = 2. Graphically, this represents two lines
that are coincident.

1 1
2 2

∣

∣

∣

∣

1
2

Subtracting twice the value of row 1 from row 2 gives:

1 1
0 0

∣

∣

∣

∣

1
0

These equations are consistent.0x + 0y = 0 andx + y = 1 are consistent. There is no
single solution, as many solutions make the equationx + y + 1 consistent.

2.3 Nonsquare Systems

The original example was for a “square” system with 3 unknowns and 3 equations. You
may often end up with more (or fewer) equations than unknowns.

Consider the original set of equations:

1x + 0y + 0z = 60

−1x + 1y + 0z = 30

0x − 1y + 1z = −20

One additional equation can be specified using a mass balanceon the entire system,0 =
100 + 30 − 40 − 20 − z.

1x + 0y + 0z = 60

−1x + 1y + 0z = 30

0x − 1y + 1z = −20

0x + 0y + 1z = 70 (2.2)

These four linear equations are not “linearly independent.” You can test this by using row
operations to make two rows identical. Simultaneously adding row 1 and row 3 to row 2 will
make row 2 the same as row 4.

1x + 0y + 0z = 60

0x + 0y + 1z = 70

0x − 1y + 1z = −20

0x + 0y + 1z = 70 (2.3)

This set of equations can still be satisfied using the original solutionx = 60, y = 90, and
z = 70. In other cases, having more equations than unknowns may complicate the solution
process a bit.
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2.3.1 Reconciliation and Nonsquare Systems

For curve fitting, parameters that appear linearly can be formulated as a nonsquare solution
to a linear algebraic system of equations. Given that you have some (scalar valued) measured
value,y, that depends on a process parameter,x. Assume the model takes the form:

y = mx + b (2.4)

Technically, you only need two data points to findm andb, the model parameters. Assum-
ing that you have more than two data points, we often desire todetermine the “best-fit” for the
line. These parameters minimize the sum of the square of the model error. For an experiment
with four data points:

y(1) = m x(1) + b

y(2) = m x(2) + b

y(2) = m x(3) + b

y(4) = m x(4) + b (2.5)

Here, you know values ofy andx but m andb are your unknown values. This can be
written as a set of equations:









y(1)
y(2)
y(3)
y(4)









=









x(1) 1
x(2) 1
x(3) 1
x(4) 1









[

m
b

]

You can get the “best-fit” solution to this overspecified set of equations using the psuedo-
inverse of the matrix:

x = (AT A)−1AT b

2.4 Vectors

A group of unknown (or known) values can be “stacked” to form avector. In the example
problem, the unknownsx, y, andz can be described by the vectorx:

x =





x
y
z





The solution to the problem has a known value and can be written as a vectorxsoln:

xsoln =





60
90
70





Note that the underbar is used to distinguish betweenx (the vector) andx the unknown. A
vector is NOT limited to 2 or 3 unknowns (dimension of the vector).
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2.5 The Matrix

A matrix is similar to a vector, having 2 dimensions. One may think of it as a group of
vectors augmented together. A Matrix has a size,m × n representingm rows andn columns.
The values form andn are sometimes written as subscripts for the matrix. For example, the
2x3 matrixA

2×3
with two rows and three columns may have values:

A
2×3

=

[

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

]

Note that each of the six elements has two indices. The first index is the row, the second is
the column. For the applications in this class, a matrix willhave constant coefficient values.
Some example matrices:

A
2×3

=

[

0 −2 1
5 1 0.2

]

B
3×3

=





6 0 0
−2 0 −1
3 −1 5





Square Matrix - A matrix with indices equal (m = n).
Note: A vector can be seen as a special matrix having only 1 column.
Transpose- The transpose operator swaps the indices of a matrix (or vector). For example,

for A
2×3

as before:

(

A
2×3

)T

=





a1,1 a2,1

a1,2 a2,2

a1,3 a2,3





Example. For the matrixA

A =

[

1 2
3 4

]

AT =

[

1 3
2 4

]

Finally, one can take the transpose of a vector. Forx =





x
y
z





xT = [x y z] =





x
y
z





T

Row Vector - The transpose of a vector is also known as a row vector.
Dot Product - The dot product of two vectors is the sum of the product of theelements

taken individually. Examples:

x · x =





x
y
z



 ·





x
y
z



 = x2 + y2 + z2
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



1
2
3



 ·





x
y
z



 = 1x + 2y + 3z





1
2
3



 ·





4
5
6



 = 1 × 4 + 2 × 5 + 3 × 6 = 32

Matrix Multiplication - Two matrices can be multiplied together. For exampleA
m×n

can be multiplied byB
n×j

. Matrix A hasm rows andn columns, whileB hasn rows andj
columns.

A
m×n

=











. . . r1 . . .

. . . r2 . . .
...

. . . rm . . .











Here, each row up torm is a row vector withn elements.

B
n×j

=







...
...

...
c1 c2 . . . cj
...

...
...







Here, each column up to columncj is a vector (column vector) withn elements. To
computeA

m×n
B

n×j
or simplyA × B or justA B

A
m×n

B
n×j

=











rT
1 · c1 rT

1 · c2 . . . rT
1 · cj

rT
2 · c1 rT

2 · c2 . . . rT
2 · cj

...
...

...
rT
m · c1 rT

m · c2 . . . rT
m · cj











Method - To computeA
m×n

B
n×j

, the result will havej columns. The first column of the
result is computed by taking the dot product ofB

1×j
(first column ofB) with the transpose

of all the rows ofA. The second column of the result is computed by taking the dotproduct
of B

2×j
(second column ofB) with the transpose of all the rows ofA. Repeat up to thejth

column ofB which produces thejth column of the result.
Note: In general,A B 6= B A.
Conformable - In order to multiplyA

m×n
B

n×j
the “inner” dimensions must be equal. In

A
m×n

B
n×j

, if the first matrix hasn columns and the second matrix mustn rows.
Matrix Multiplication Examples:

[

1 2
3 4

] [

5 6
7 8

]

=

[

5 + 14 6 + 16
15 + 28 18 + 32

]

=

[

19 22
43 50

]

[

−1 2
1 1

] [

4
5

]

=

[

−4 + 10
4 + 5

]

=

[

6
9

]
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[

−1 2
1 1

] [

x
y

]

=

[

−x + 2y
x + y

]





2 3
1 −1
5 0





[

2 0
−2 1

]

=





4 − 6 3
2 + 2 −1
10 + 0 0



 =





−2 3
4 −1
10 0





2.6 Column Example

Consider again the equations from the original distillation column example:

1x + 0y + 0z = 60

−1x + 1y + 0z = 30

0x − 1y + 1z = −20

Notice that the variables (with constant coefficients) are on the left side and constant values
are on the right hand side. This set of linear equations can berepresented in the compact
notationA x = b where

A =





1 0 0
−1 1 0

0 −1 1





x =





x
y
z





b =





60
30
−20





Identity Matrix - The identity matrix has values of one on the diagonal and zeros else-
where. It is defined asI and for a square matrixA I = A andI A = A.

I =





1 0 0
0 1 0
0 0 1





2.6.1 How to solve sets of linear equations

We need a solution to the matrix equationA x = b. You cannot “divide” by a matrix:

x 6= b /A

There is no “division” operator for a matrix. Instead, an inverse is defined for some square
matrices such that
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A
(

A
)−1

= I

Also,
(

A
)−1

A = I

Now, to solveA x = b for x

First, multiply on the left by
(

A
)−1

(

A
)−1

A x =
(

A
)−1

b

Realizing that
(

A
)−1

A = I replace
(

A
)−1

A with I.

I x =
(

A
)−1

b

Now, realizingI x is x, the solution is

x =
(

A
)−1

b

Note that multiplying on the right will not lead to a solution.

A x
(

A
)−1

= b
(

A
)−1

2.6.2 How determine a matrix inverse

To solveA x = b, you need to know
(

A
)−1

. We are going to use row reduction to calculate
(

A
)−1

. Start withA | I. use row reduction techniques untilA is I.
(

A
)−1

if it exists will be
on the right whereI was originally.

Inverse Example

Solve the following forx using
(

A
)−1

:
[

1 2
3 4

]

x =

[

5
6

]

For this procedure, one must first calculate
(

A
)−1

. Set upA | I as:

1 2
3 4

∣

∣

∣

∣

1 0
0 1

Use row reduction to get

1 0
0 1

∣

∣

∣

∣

? ?
? ?

Then verify thatA
(

A
)−1

= I. Use
(

A
)−1

to calculatex usingx =
(

A
)−1

b. Verify
solution again to be safe.

START
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Start by using row reduction on

1 2
3 4

∣

∣

∣

∣

1 0
0 1

Multiply row 2 by 1/3 to get :

1 2
1 4

3

∣

∣

∣

∣

1 0
0 1

3

Then subtract row 1 from row 2 to get:

1 2
0 −2

3

∣

∣

∣

∣

1 0
−1 1

3

Now, multiply row 2 by -3/2 to get:

1 2
0 1

∣

∣

∣

∣

1 0
3
2

−1
2

To get the left side looking like the identity matrix, subtract 2 times row 2 from row 1.
Note that this is a compound use of row reduction rules.

1 0
0 1

∣

∣

∣

∣

−2 1
3
2

−1
2

You now have
(

A
)−1

=

[

−2 1
3
2

−1
2

]

Now verify thatA
(

A
)−1

= I

[

1 2
3 4

] [

−2 1
3
2

−1
2

]

=

[

1(−2) + 2(3
2
) 1(1) + 2(−1

2
)

3(−2) + 4(3
2
) 3(1) + 4(−1

2
)

]

=

[

1 0
0 1

]

You may also verify that
(

A
)−1

A = I

[

−2 1
3
2

−1
2

] [

1 2
3 4

]

=

[

−2 + 3 −4 + 4
3
2
− 3

2
3 − 2

]

=

[

1 0
0 1

]

Now, compute the solution,x =
(

A
)−1

b.

x =

[

−2 1
3
2

−1
2

] [

5
6

]

=

[

−10 + 6
15
2
− 3

]

=

[

−4
41

2

]

Again, verify the solution is the solution to the original equations:
[

1 2
3 4

]

x =

[

5
6

]

[

1 2
3 4

] [

−4
41

2

]

=

[

−4 + 9
−12 + 18

]

=

[

5
6

]

Just as expected...
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2.6.3 Steady State Control Example

Two pumps are used to fill two tanks. The pumps usually operateat 50%, keeping the
tanks at levels of 75 inches and 80 inches respectively.It isknown that a1% increase in pump
1 increases the height of tank 1 by 5 inches and the height of tank 2 by 3 inches. For a1%
change in pump 2, the height of tank 2 increases by 4 inches. Itis desired to change the
operating levels of the tanks to 110 inches and 89 inches.

P1

P2

H1

H2

Figure 2.2: Pump / Tank example

What do you know:

5 ∆P1(%) = ∆H1(inches)

3 ∆P1(%) + 4 ∆P1(%) = ∆H2(inches)

You know the target (reference, setpoint) forH1 andH2 as 110 and 89. This translates into
∆H1 = 110 − 75 = 35 and∆H2 = 89 − 80 = 9. You need to increase tank 1 by 35 inches
and increase tank 2 by 9 inches. You do not know the final valuesof the pump speeds. You do
know the original steadystate values,50% and50%, realizing that:

Pfinal = Pss + ∆P

You can now set up linear equations to solve for∆P1 and∆P2, then calculate the final
values for the pump speeds.

[

5 0
3 4

] [

∆P1

∆P2

]

=

[

∆H1

∆H2

]

2.7 Visualization

Each row inA x = b is a single linear equation. For a 2D problem (x with 2 elements /
unknowns) the equation defines a line in the(x, y) plane. Two equations define two lines, and
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the unique solution toA x = b is the pointx where the lines intersect. In some cases, there
may be many solutions toA x = b and in some cases there may be no solutions toA x = b.

y

x

y

x

y

x

Figure 2.3: Three 2D examples with two equations. Each equation (row) represents a line.
The first case has one solution, the second case has no solution, and the third case has many
solutions.

For a 3D problem, each row defines the equation for a plane in 3 space. The intersection of
2 non-parallel planes is a line in 3 space, and the intersection of a line and a plane in 3 space is
a point. Again, in some cases there may be a single solution, many solutions, or no solutions.

For higher dimensions, each equation defines ahyperplanein an dimensional space,Rn.

2.7.1 Linear Transform

A vector inR
n meansx hasn elements. Matrix multiplication of a matrix of sizem × n

times a vector of sizen × 1 “maps” the vector fromR
n to R

m.

RR
nm

A x___

x_

Figure 2.4: Matrix multiplication as a mapping fromRn to R
m.

2.7.2 Range

The range of a matrix is the space of all possible points that may be mapped to in a matrix
multiplication of that matrix times an unknown vector.

Range Example 1

For example, the matrix
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A =





1 1 0
1 1 0
0 0 0





can only map to points on the linex + y in 3D as follows.

A x = 2x + 2y + 0z

The columns of the matrix define possible directions for the matrix to transform a vector. In
this example, columns 1 and 2 are the same, and column 3 is the zero vector.A x wherex

takes any real value will always be on the line defined by the direction





1
1
0



.

Range Example 2

In another example, the matrix

A =





1 0 0
1 1 0
0 0 0





can only map to a variety of points in 3D as follows.

Ax =





1
1
0



x +





0
1
0



 y +





0
0
0



 z

Again, the columns of the matrix define possible directions for the matrix to transform a

vector. In this example, only points in the directions of





1
1
0



 and





0
1
0



 can be reached

when multiplyingAx. These two directions form a plane in 3 dimensional space.

RR
nm

A x___

Range of A__

Figure 2.5: Range ofA as space inRm of all possible mappings fromRn using matrix multi-
plication.
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Range Example 3

In another example, the matrix

A =





1 0 1
1 1 2
0 0 0





can only map to a variety of points in 3D as follows.

Ax =





1
1
0



x +





0
1
0



 y +





0
0
0



 z

Here, column 3 is linearly dependent upon columns 1 and 2. This means that you can find
some combination of columns 1 and 2 that give column 3. Column3 lies in the plane defined
by columns 1 and column 2.

Underlying point: For Ax = b to have a solution, theb must be in the range ofA.

For the last examples, ifb =





?
?
1



 (if b has element in thez position) there will not be a

solution toA x = b. In such a case, the possible range ofA does not includeb.

Range Example 4

In another example, the matrix

A =





1 0 1
1 1 2
0 0 1





can map to all of the points in 3D as follows.

Ax =





1
1
0



x +





0
1
0



 y +





1
2
1



 z

Here, column 3 is NOT linearly dependent upon columns 1 and 2.This means that you
can find some combination of columns 1, 2, and 3 that give any point in 3 dimensions.

Rank - The rank of a matrix is the number of linearly independent columns. For a square
matrix of sizen×n, there is a unique solution if there aren independent columns. The matrix
would have rankn.
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Chapter 3

Laplace Transforms / Deviation Variables

3.1 Simple System Example

Consider a tank draining from an initial height ofho at timet = 0. With no flow into the tank
(Fin = 0) andFout = αh(t) the mass balance can be written:

A
dh

dt
(t) = 0 − α h(t)

Moving α h(t) to the left half side and dividing byα gives:

A

α

dh

dt
(t) + h(t) = 0

A is the tank area (constant) andα is the proportionality constant for flow out of the tank.
These parameters can be replaced byτ = A/α to give the following differential equation:

τ
dy

dt
(t) + y(t) = 0 (3.1)

The initial tank height at time t = 0 can be assumed to bey(t)|t=0 = yo. Take the
Laplace transform of Equation 3.1:

L

{

τ
dy

dt
(t)

}

+ L {y(t)} = 0

L{y(t)} is easy,L{y(t)} = y(s) so we have:

L

{

τ
dy

dt
(t)

}

+ y(s) = 0

L
{

τ dy
dt

(t)
}

is a bit more complex. First, you can realize thatτ is constant. Convince yourself
of this! TheL operator on a constant times a function is the same as a constant times the
Laplace of the function:

L {c f(t)} =

∫ ∞

0

c e−st f(t) = c

∫ ∞

0

e−st f(t) = c L {f(t)}
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So you can take the constant value outside theL operator:

τ L

{

dy

dt
(t)

}

+ y(s) = 0

Now, you must remember thatL
{

df
dt

(t)
}

is justs f(s) − f(t)|t=0.

τ (sy(s) − y(t)|t=0) + y(s) = 0

And we have initial conditions for the height of the tank,y(t)|t=0 = yo

τ (sy(s) − yo) + y(s) = 0

Solving fory(s):
τ sy(s) − τ yo + y(s) = 0

τ sy(s) + y(s) = τ yo

(τs + 1) y(s) = τ yo

y(s) =
τ yo

(τs + 1)

Now rearrange a little bit

y(s) = τ yo
1

(τs + 1)

y(s) = τ yo
1

(τs + 1)

1/τ

1/τ

y(s) = yo
1

(s + 1
τ
)

This you realize is a constantyo times the term 1
s+ 1

τ

. To gety(t) you must use the inverse

Laplace transform,L−1 for the 1
s+1/τ

part.

L−1 {y(s)} = L−1

{

yo
1

(s + 1
τ
)

}

Again,yo is a constant and can be factored out

L−1 {y(s)} = yo L−1

{

1

(s + 1
τ
)

}

And we know from lecture thatL {e−at} = 1
s+a

, so in our case,a = 1
τ
.

y(t) = yo e−( 1

τ
)t

This is the solution to the original differential equation!Now check your result. At time
t = 0 your solution fory(t) is yo e−( 1

τ
)0 = yo 1 = yo. This matches the initial conditions. The

derivative of your result can also be found

dy

dt
(t) =

d

dt

{

yo e−( 1

τ
)t
}

= yo − (
1

τ
) e−( 1

τ
)t
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dy

dt
(t) = −yo

τ
e−( 1

τ
)t

Plug that back in the original differential EQ, along with your solution fory(t):

τ
dy

dt
(t) + y(t) = 0

τ (−yo

τ
) e−( 1

τ
)t + yo e−( 1

τ
)t = 0

And we know we have the solution!

3.2 First-Order System Modeling

The first order system model is:

τ
dy

dt
(t) + y(t) = K u(t)

Taking the Laplace transform:

τ sy(s) − τy(t)|t=0 + y(s) = K u(s)

If we assume thaty(t)|t=0 = 0 this simplifies the equation to

τ sy(s) + y(s) = K u(s)

We can then solve fory(s)

(τ s + 1)y(s) = K u(s)

y(s) =
K

(τ s + 1)
u(s)

Here, K
(τ s+1)

is the process model relatingu(s) andy(s). This is sometimes calledg(s) =
K

(τ s+1)
. Givenu(t) you can findu(s), and given a model of your system you can findg(s).

Realizing thaty(s) = g(s)u(s) you can then findy(t).
From aprocess reaction curve(the data fory(t) andu(t) given a step in the inputu(t))

you can find the PROCESS GAINK from the equation:

K =
yfin − yinit

ufin − uinit

=
∆y

∆u

The time constant is a bit trickier. First, lets assumeu(t) is a step at timet = 0 from a
value of 0 to a new value ofA. The Laplace transform of the step function is:

u(s) =
A

s

Now, we have enough information to gety(s) andy(t)
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y(s) =
K

(τ s + 1)
u(s)

y(s) =
K

(τ s + 1)

A

s

To solve this easily, we need the partial fraction expansion:

y(s) =
K

(τ s + 1)

A

s
=

Z1

(τ s + 1)
+

Z2

s

One way to get the partial fraction expansion is: first multiply each term by the denominator
of term and set that term to zero:

(τ s + 1)
K

(τ s + 1)

A

s
= (τ s + 1)

Z1

(τ s + 1)
+ (τ s + 1)

Z2

s

(τ s + 1)|s=− 1

τ

K

(τ s + 1)

A

s
= (τ s + 1)|s=− 1

τ

Z1

(τ s + 1)
+ (τ s + 1)|s=− 1

τ

Z2

s

Some terms cancel, others don’t:

KA

s
|s=−1/τ = Z1 + 0

KA

−1/τ
= Z1 + 0

−KAτ = Z1

Do this for the second term,Z2/s

s
K

(τ s + 1)

A

s
= s

Z1

(τ s + 1)
+ s

Z2

s

Cancel similar terms and evaluate ats = 0

K

(τ s + 1)
A = s

Z1

(τ s + 1)
+ Z2

K

(τ (0) + 1)
A = 0 + Z2

KA = Z2

The result can be written:

y(s) =
K

(τ s + 1)

A

s
=

Z1

(τ s + 1)
+

Z2

s

Substitute inZ1 andZ2

y(s) =
−KAτ

(τ s + 1)
+

KA

s
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Simplify terms:

y(s) = −KA
τ

(τ s + 1)
+ KA

1

s

y(s) = −KA
τ

(τ s + 1
τ
)

1/τ

1/τ
+ KA

1

s

y(s) = −KA
1

(s + 1
τ
)

+ KA
1

s

y(s) = −KA
1

(s + 1
τ
)

+ KA
1

s

We can invert each term in this expression.L{e−at} is 1
s+a

, soL−1{ 1
(s+ 1

τ
)
} is juste−( 1

τ
) t.

We know for the step function from 0 to 1 at time 0 the Laplace transform is1
s
. The resulting

solutiony(t) is composed of two different functions,e−( 1

τ
) t and a step at time 0.

y(s) = −KA
1

(s + 1
τ
)

+ KA
1

s

L−1 {y(s)} = L−1

{

−KA
1

(s + 1
τ
)

}

+ L−1

{

KA
1

s

}

Again, using the argument about constants times a function,we can pull out theKA terms.

L−1 {y(s)} = −KA L−1

{

1

(s + 1
τ
)

}

+ KA L−1

{

1

s

}

y(t) = −KA e−( 1

τ
) t + KA

y(t) = KA(− e−( 1

τ
) t + 1)

y(t) = KA(1 − e−( 1

τ
) t)

Laplace transforms assume everything is 0 before time 0. This functiony(t) only is defined
for t ≥ 0. The two separate functions that comprisey(t) are shown in the following graph,
e−( 1

τ
) t and a unit step at time zero:

−5 0 5 10

0

0.5

1 e(1/τ)t, τ=1

−5 0 5 10

0

0.5

1

Unit step at time 0
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Graphing the actual system (the sum of the two functions):

−5 0 5 10

0

0.5

1

u(t) = Unit step at time 0

−5 0 5 10

0

0.5

1
y(t), First−order step response

e(1/τ)t, τ=1
Unit step at time 0
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3.3 Deviation Variables

Lets examine a realistic First-Order system, the tank system.

A
dh

dt
(t) = Fi(t) − α h(t)

Assume the flow manipulated and has units ofm3

s
. The height of the tank will be measured,

and the height of the tank is given in units ofm. The area of the tank is2 m2. For the outlet
term to be consistent with the units of other terms (m3

s
), α must have units ofm

2

s
. Assumeα

has a value of0.1 m2

s
. The mass balance can be written as:

2
dh

dt
(t) = Fi(t) − 0.1 h(t)

Now, assume that you normally operate this tank at a flow rate of entering the tank of
0.5 m3

s
. This means we know the steady state flow rate into the tank,Fiss = 0.5 m3

s
. This also

means we can figure out the steady state height of the tank fromthe mass balance. At steady
state,dh

dt
(t) = 0

2
dh

dt
(t) = Fi(t) − 0.1 h(t)

dh

dt
|ss = Fiss − 0.1 hss

0 = 0.5
m3

s
− 0.1

m2

s
hss

−0.5
m3

s
= −0.1

m2

s
hss

5 m = hss

So now we knowhss, the steady state height of the tank. Now to make our life easier
when taking Laplace transform, we put everything inDeviation Variables. This means we
subtract the steady state from the normal functions of time.The purpose of this is to make the
functions all start at a value of 0. Currently, a step response for the tank system looks like:

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

F
i(t

)

F
i
(t) = Unit step at time 0

−10 0 10 20 30 40 50 60 70
5

10

15

h(
t)

h(t), First−order step response
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Using the variables in deviation form, assumey(t) = h(t) − hss. This means that if we
start at steady state at time 0,y(t) will equal 0 at the initial steady state value,y(t)|t=0 = 0.
The other deviation variable can be writtenu(t) = Fi(t) − Fiss. This means the inputu(t)
equals 0 at the initial starting point,u(t)|t=0 = 0. Also, taking the derivative WRT time of
y(t) = h(t) − hss yields

dy

dt
(t) =

dh

dt
(t) − dhss

dt
(t)

But hss does not change with time.

dy

dt
(t) =

dh

dt
(t) − 0

dy

dt
(t) =

dh

dt

The dynamic mass balance is written as:

2
dh

dt
(t) = Fi(t) − 0.1 h(t)

The steady state mass balance is written as:

0 = Fiss − hss

Subtracting the steady state mass balance from the dynamic mass balance gives:

2
dh

dt
(t) − 0 = Fi(t) − Fiss − 0.1 h(t) − (−hss)

2
dh

dt
(t) = (Fi(t) − Fiss) − (0.1 h(t) − hss)

And replacing what we can with deviation variables:

2
dy

dt
(t) = u(t) − 0.1 y(t)

To put this in the “traditional”τ dy
dt

+ y = Ku form, divide by0.1.

2

0.1

dy

dt
(t) =

1

0.1
u(t) − 1 y(t)

20
dy

dt
(t) + y(t) = 10 u(t)

So we know thatτ = 20 andK = 10 for this process.
Now, you can easily take the Laplace transform of this dynamic model.

L

{

20
dy

dt
(t)

}

+ L {y(t)} = L {10 u(t)}

20 L

{

dy

dt
(t)

}

+ L {y(t)} = 10 L {u(t)}
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20 (sy(s) − y(t)|t=0) + y(s) = 10 u(s)

Since we put everything in deviation variables,y(t)|t=0 is now 0.

20 (sy(s) − 0) + y(s) = 10 u(s)

20 sy(s) + y(s) = 10 u(s)

Solving fory(s) :

20 sy(s) + y(s) = 10 u(s)

(20 s + 1) y(s) = 10 u(s)

y(s) =
10

(20 s + 1)
u(s)

Again, you see this in the formK
τs+1

. We want to get the expression fory(s) as a function
of s, not a function ofs andu(s). We know the value foru(t). In the original variables,Fi(t)
changed from 0.5 to 1.5 at time t=0. We do not know the Laplace transform for a step from
0.5 to 1.5 at timet = 0. In deviation variables,u(t) changes from a value of 0 to a value of
1 at timet = 0. We know the Laplace transform of a step function from 0 to 1 attime t = 0.
This value isu(s) = 1

s

y(s) =
10

(20 s + 1)

1

s

Using our partial fraction expansion:

y(s) =
−200

(20 s + 1)
+

10

s

y(s) =
−200

(20 s + 1)

1/20

1/20
+

10

s

y(s) =
−10

(s + 1
20

)
+

10

s

y(s) = 10

(

1

s
− 1

(s + 1
20

)

)

y(t) = 10
(

1 − e−( 1

20
)t
)

This expression fory(t) can be plotted. Note thaty(t) andu(t) start at zero.

41



0 10 20 30 40 50 60 70
−0.5

0

0.5

1

1.5

u(
t)

u(t) = Unit step at time 0

0 10 20 30 40 50 60 70

0

5

10

y(
t)

y(t), First−order step response

What value does the response take whent = τ? In this case,τ = 20.

y(t|t=20) = 10
(

1 − e−( 1

20
)20
)

y(t|t=20) = 10
(

1 − e−1
)

y(t|t=20) = 10 (1 − 0.3678)

y(t|t=20) = 10 (0.6321)

y(|t=20) = 6.32

So at timet = τ the response is 6.32, or 63% of the final value of 10.
This can also be simulated in Simulink:

After running the simulation, the results will be put in vectors in the Matlab workspace.
These vectors are named (in this example)t, y, u, h, andf . Note that the step occurs at time
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t = 0, so you should start the simulation at timet = −10. Also note that the “To Workspace”
blocks must have the “Save Format” set to “Array”.

The following plotting command will let you plotu(t) andy(t) on the same figure:
subplot(2,1,1)
plot(t,u)
ylabel(’u(t)’)
legend(’u(t) = Unit step at time 0’,4)
subplot(2,1,2) plot(t,y)
ylabel(’y(t)’)
legend(’y(t), First-order step response’,4)
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Chapter 4

Basic Procedures for Common Problems

4.1 Steady State Multivariable Modeling and Control

1. Determine what variables are available to manipulate (inputs,∆u) and what variables
are available to measure (outputs,∆y)

2. Note how many input and output variables you have.

3. Start to write equations for theoutput variables. This means write something in the
form:

∆y1 = ???

∆y2 = ???
...

...

∆yn = ???

4. Read through the problem and establish relationships between individual inputs (∆ui)
and individual outputs (∆yj). The relationships generally represent thegain of the in-
dividual input output relationship, for example∆yj = K∆ui. For example: “Changing
input 1 by 2% decreases output 1 by 5” means∆u = 2% and∆y = −5 and

−5 = K2

Or K = −5/2 and∆y1 = −2.5∆u1.

5. Put all of the relationships into the equations. Keep reading through the word expression
until you relate all specified inputs and outputs:

∆y1 = −2.5∆u1+???

∆y2 = 4???
...

...

∆yn = ???
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6. Write out the equations with all input variable in every equation, even if they have a 0
coefficient.

∆y1 = −2.5∆u1 + 0∆u2 + 3∆u3

∆y2 = 0∆u1 + 4∆u2 + 1∆u3

∆y3 = 5∆u1 + 10∆u2 + 2∆u3

7. Realize that this can be put in the form:

∆y = K∆u

4.2 Dynamic Modeling

1. Try to figure out what is changing with time. Try to figure outwhat are manipulated
inputs (ui(t)), what are disturbances (di(t) ) and what are measurements (yi(t)).

2. Start to write dynamic mass and energy balances for the items that are changing.

3. Note the accumulation term

(a) Changing volume:V (t) = Ah(t) → Adh
dt

(t)

(b) Changing amount of species in a tank:V CA(t) → V dCA

dt
(t)

(c) Changing temperature in a tank:V ρCp(T (t) − T ∗) → V ρCp
dT
dt

(t)

4. Don’t forget reaction terms for reacting systems.V r(t) wherer(t) is the reaction rate,
usually in the formr(t) = kCA(t) (or more complex).

5. Write your equations and check units.

4.3 State Space

1. Identifyx as the values that are changing with time in your accumulation term.

2. Identify your manipulated inputsu.

3. Identify your measurement equations. Your measurementsshould be expressed as func-
tions of the states and inputs.

4. Write your dynamic equations, including terms for every state and input (with 0 coeffi-
cient if necessary).

5. Reorder the terms in you dynamic equations such that states come first in order, then
inputs. For example:

dx1

dt
= 2x1 + 3x2 + 0x3 + 2u1 + 5u2
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6. Put the dynamic equations in the form

ẋ = A x + B u

7. Write your measurement equations, including terms for every state and input (with 0
coefficient if necessary).

8. Put your measurement equations in the form:

y = C x + D u

4.4 Laplace Transform of Dynamic Equations

1. If your steady state values are not all = 0, take your dynamic model equations and
establish the steady state values for you inputs, states, and outputs. This is accomplished
by solving for unknowns with the accumulation terms = 0.

2. If your equations are nonlinear,linearize your equations.

A
dh

dt
(t) = Fin(t) −

√

h(t)

Here,
√

h(t) is nonlinear. Near steady state, it can be approximated as

√

h(t) '
√

hss +
1

2
h
− 1

2

ss (h(t) − hss)

such that

A
dh

dt
(t) = Fin(t) −

(

√

hss +
1

2
h
− 1

2

ss (h(t) − hss)

)

3. Subtract the steady state model equations from the dynamic model equations to put
everything indeviation variables. For example,y(t) = h(t)− hss andu(t) = Fin(t)−
Finss.

(a) Remember to express the accumulation term with your deviation variables. For
y(t) = h(t) − hss, taking the derivative,dy

dt
(t) = dh

dt
(t) becausehss is constant.

4. Express your dynamic problem using deviation variablesu(t), y(t), d(t). These func-
tions of time should = 0 at timet = 0.

5. Take the Laplace transform of your system.

6. Solve algebraically to get in the form

y(s) = g(s) u(s)

or
y(s)

u(s)
= g(s)
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7. If you have disturbances and inputs, your model can look like

y(s) = g(s) u(s) + gd(s) d(s)

Note that to getg(s) you can assumed(s) = 0 then solve forg(s). To getgd(s) you
assumeu(s) = 0 and solve forgd(s).

8. If you multiple inputs inputs, your model can look like

y(s) = g1(s) u1(s) + g2(s) u2(s)

9. If you have multiple inputs and multiple measurements, your model can look like

y1(s) = g11(s) u1(s) + g12(s) u2(s)

y2(s) = g21(s) u1(s) + g22(s) u2(s)

10. Given the input as a function of timeu(t) (or input and disturbances) you can determine
u(s) (or u(s) andd(s) ).

11. Plug in to get an expression fory(s) in terms of the variables

4.5 Laplace of Complex Functions

1. You should be familiar with basic functions of time (step,impulse, ramp, exponential
decay, sinusoid).

2. If the function is not 0 fort < 0 you should put the function in deviation variables. For
example, a step inFin(t) at time 0 from2 to 3 can be expressed as a unit step inu(t) at
time 0 withu(t) = Fin(t) − Finss

3. You should be able to express the complex function as a single function of time. Multi-
ply by the Heaviside function if needed. For a function that ramps from 0 with a slope
of 2 until time 10 settling out at a value of 20, this can be expressed as

f(t) = 2 t H(t) + (−2) (t − 10) H(t− 20)

4. Sketch the individual terms in your function as functionsof time, then add them together
to check your formulation. You can plug in numbers to check your function.

5. For each term, shift it in time such that the “event” occursat time zero and determine
the Laplace transform. Use the time shift operator if necessary to express the function
as somef(s). For the example:

f(s) =
2

s2
+

−2

s2
e−20s
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4.6 Solving fory(t)

1. Establishy(s) as a function ofs. (Develop dynamic model, take Laplace of model, and
determineu(s) andd(s) if needed)

2. Your response may be in the form

y(s) =
N1(s)

D1(s)
+

N2(s)

D2(s)
e−αs + ... +

N3(s)

D3(s)
e−βs

This expression with multiple terms will be treated as multiple different responses, each
shifted in time.

3. If you have a time delay,e−αs, ignore it for now.

4. Take a term fromy(s) and determine thepoles,the roots ofDi(s).

5. Perform aPartial Fraction Expansion on the term. For expressions with unique poles
pi the result looks like:

N1(s)

D1(s)
=

Z1

(s − p1)
+

Z2

(s − p2)
+ ... +

Zn

(s − pn)

For non-unique poles or imaginary roots, check the Appendix. Non-unique Poles will
result in

Z1

(s − p1)
+

Z2s

(s − p1)
+

Z3s
2

(s − p1)

while imaginary roots result in sin or cosine in youry(t)

6. Now you should be able to determine the inverse Laplace transform of each expression
to yield a function of time,y1(t).

y1(t) = Z1e
−p1t + Z2e

−p2t + ... + Zne
−pnt

7. If you had a time delay in your term, shift the response by the time delay:

y1(t) =
(

Z1e
−p1(t−α) + Z2e

−p2(t−α) + ... + Zne
−pn(t−α)

)

H(t − α)

8. Do this procedure for all your terms in the originaly(s)

9. Add up allyi(t) to gety(t)
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Chapter 5

Lead-Lag

Objective:

A constant volume, constant flowrate mixer is used in the configuration below. Determine
the unit step response for the outlet temperatureT2(t).

T1(t)

T0(t), F

T2(t), F


F
(1� 
)F

5.1 Modeling Example System

1. Dynamic Model - Develop an energy balance for the mixing tank:

d (ρV Cp(T1(t) − T ∗))

dt
= γFρCp (To(t) − T ∗) − γFρCp (T1(t) − T ∗)

ρV Cp
d (T1(t) − T ∗)

dt
= γFρCp (To(t) − T ∗) − γFρCp (T1(t) − T ∗)

V

γF

d (T1(t) − T ∗)

dt
= (To(t) − T ∗) − (T1(t) − T ∗)
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2. Determine an energy balance on the mixing point:

0 = (1 − γ)FρCp (To(t) − T ∗) + γFρCp (T1(t) − T ∗) − FρCp (T2(t) − T ∗)

0 = (1 − γ) (To(t) − T ∗) + γ (T1(t) − T ∗) − (T2(t) − T ∗)

3. Put your dynamic (and steady state) equations into deviation variables. In this case,
we will use the following deviation variables:u(t) = To(t) − T ∗, x(t) = T1(t) − T ∗, and
y(t) = T2(t) − T ∗.

V

γF

dx(t)

dt
= u(t) − x(t)

0 = (1 − γ) u(t) + γx(t) − y(t)

4. Take the Laplace transform of the equations:

V

γF
(sx(s) − x(t = 0)) = u(s) − x(s)

0 = (1 − γ) u(s) + γx(s) − y(s)

Because of the deviation variables,x(t = 0) = 0

V

γF
(sx(s)) = u(s) − x(s)

Rearranging the mixing tank equation:

x(s) =
1

V
γF

s + 1
u(s)

5. We need the relationship betweenu(t) andy(t). Substitute the mixing tank equation
into the mixing point equation:

0 = (1 − γ) u(s) +
γ

V
γF

s + 1
u(s) − y(s)

Rearrange to get in the formy(s) = g(s)u(s)

0 = (1 − γ) u(s) +
γ

V
γF

s + 1
u(s) − y(s)

y(s) = (1 − γ) u(s) +
γ

V
γF

s + 1
u(s)

y(s) = (1 − γ) u(s) +
γ

V
γF

s + 1
u(s)

y(s) = (1 − γ) u(s)

(

V
γF

s + 1
V
γF

s + 1

)

+
γ

V
γF

s + 1
u(s)
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y(s) =
(1 − γ) u(s)

(

V
γF

s + 1
)

+ γu(s)

V
γF

s + 1

y(s) =
u(s)

(

(1 − γ) V
γF

s + (1 − γ)
)

+ γu(s)

V
γF

s + 1

y(s) =
u(s)

(

(1 − γ) V
γF

s + (1 − γ + γ)
)

V
γF

s + 1

y(s) =
u(s)

(

(1 − γ) V
γF

s + 1
)

V
γF

s + 1

y(s)

u(s)
=

(

V (1−γ)
γF

s + 1
)

V
γF

s + 1

Forγ = 1 this reduces to (a first order system):

y(s)

u(s)
=

1
V
γF

s + 1

Forγ = 0 this reduces to a pure gain system. The original equation

y(s)

u(s)
=

(

V (1−γ)
γF

s + 1
)

V
γF

s + 1

is is in the form
y(s)

u(s)
=

K (ξ s + 1)

τ s + 1

with K = 1, τ = V
γF

, andξ = V (1−γ)
γF

.
If we want this in the form:

K (ξ s + 1)

τ s + 1
= A0 +

A1

τs + 1

K (ξ s + 1)

τ s + 1
=

Aoτs + A0

τs + 1
+

A1

τs + 1

K (ξ s + 1)

τ s + 1
=

Aoτs + A0 + A1

τs + 1

Kξ s + K

τ s + 1
=

Aoτs + (A0 + A1)

τs + 1

Kξ = A0τ

K = A0 + A1
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Kξ

τ
= A0

K =
Kξ

τ
+ A1

A1 = K − Kξ

τ

A1 = K

(

1 − ξ

τ

)

A0 = K
ξ

τ

Now, lettingρ = ξ
τ

A0 = Kρ

A1 = K(1 − ρ)

K (ξ s + 1)

τ s + 1
= Kρ +

K(1 − ρ)

τs + 1

This means the lead lag transfer function is really just two systems in parallel, a pure gain
system and a first order system. The valueρ can be seen as a weighting value.

Back to the problem, we wanted step response. This means thatu(s) = 1
s

y(s) =
K (ξ s + 1)

τ s + 1

1

s

Using partial fraction expansion, we need to break this downto

y(s) =
K (ξ s + 1)

τ s + 1

1

s
=

Z1

τs + 1
+

Z2

s

Multiply by τs + 1 and sets = − 1
τ

to getZ1.

Z1 =
K (ξ s + 1)

s
|s=− 1

τ

Z1 =
K
(

ξ − 1
τ

+ 1
)

− 1
τ

Z1 = −Kτ

(

ξ (−1

τ
) + 1

)

To getZ2, multiply by s and sets = 0

Z2 =
1

1
= 1
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Chapter 6

Frequency Analysis

6.1 Bode Plots of Simple Systems
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6.2 Derivations of Frequency Response for Simple Systems

6.2.1 First-Order System

g(s) =
K

τs + 1

g(jω) =
K

τjω + 1

g(jω) =
K

1 + τωj

g(jω) =
K

1 + τωj

1 − τωj

1 − τωj

g(jω) =
K(1 − τωj)

(1 + τωj)(1 − τωj)

g(jω) =
K − Kτωj

1 + τ 2ω2j2

g(jω) =
K − Kτωj

1 + τ 2ω2(−1)

g(jω) =
K − Kτωj

1 − τ 2ω2

g(jω) =
K

1 − τ 2ω2
− Kτω

1 − τ 2ω2
j

AR(ω) = |g(jω)| =

√

(

K

1 − τ 2ω2

)2

+

( −Kτω

1 − τ 2ω2

)2

AR(ω) = |g(jω)| =

√

K2 + (−Kτω)2

(1 − τ 2ω2)2

AR(ω) = |g(jω)| =
√

K2 + K2τ 2ω2

(1 − τ 2ω2)2

AR(ω) = |g(jω)| =
√

K2(1 + τ 2ω2)

(1 − τ 2ω2)2

AR(ω) = |g(jω)| = K

√

(1 + τ 2ω2)

(1 − τ 2ω2)2

AR(ω) = |g(jω)| = K

√

1

(1 − τ 2ω2)
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For phase angle as a function of frequencyω

φ(ω) = ∠g(jω) = arctan

(

b

a

)

= arctan

(
( −Kτω

1−τ2ω2

)

(

K
1−τ2ω2

)

)

φ(ω) = ∠g(jω) = arctan (−τω)

6.2.2 Second-Order System

g(s) =
K

τ 2s2 + 2τζs + 1

g(jω) =
K

τ 2(jω)2 + 2τζ(jω) + 1

g(jω) =
K

τ 2(−1)ω2 + 2τζjω + 1

g(jω) =
K

1 − τ 2ω2 + 2τζωj

g(jω) =
K

(1 − τ 2ω2) + 2τζωj

(1 − τ 2ω2) − 2τζωj

(1 − τ 2ω2) − 2τζωj

g(jω) =
K ((1 − τ 2ω2) − 2τζωj)

(1 − τ 2ω2)2 − (2τζωj)2

g(jω) =
K ((1 − τ 2ω2) − 2τζωj)

(1 − τ 2ω2)2 − (−1)(2τζω)2

g(jω) =
K ((1 − τ 2ω2) − 2τζωj)

(1 − τ 2ω2)2 + (2τζω)2

g(jω) =
K(1 − τ 2ω2)

(1 − τ 2ω2)2 + (2τζω)2
− K2τζω

(1 − τ 2ω2)2 + (2τζω)2
j

AR(ω) = |g(jω)| =

√

(

K(1 − τ 2ω2)

(1 − τ 2ω2)2 + (2τζω)2

)2

+

( −K2τζω

(1 − τ 2ω2)2 + (2τζω)2

)2

AR(ω) = |g(jω)| =
√

K2(1 − τ 2ω2)2 + (−K2τζω)2

((1 − τ 2ω2)2 + (2τζω)2)2

AR(ω) = |g(jω)| =
√

K2(1 − τ 2ω2)2 + K2(2τζω)2

((1 − τ 2ω2)2 + (2τζω)2)2

AR(ω) = |g(jω)| =

√

K2 ((1 − τ 2ω2)2 + (2τζω)2)

((1 − τ 2ω2)2 + (2τζω)2)2
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AR(ω) = |g(jω)| = K

√

((1 − τ 2ω2)2 + (2τζω)2)

((1 − τ 2ω2)2 + (2τζω)2)2

AR(ω) = |g(jω)| = K

√

1

((1 − τ 2ω2)2 + (2τζω)2)

For phase angle as a function of frequencyω

φ(ω) = ∠g(jω) = arctan

(

b

a

)

= arctan

(

− K2τζω
(1−τ2ω2)2+(2τζω)2

K(1−τ2ω2)
(1−τ2ω2)2+(2τζω)2

)

φ(ω) = ∠g(jω) = arctan

( −2τζω

(1 − τ 2ω2)

)

φ(ω) = ∠g(jω) = arctan (−τω)

6.2.3 Time Delay System

g(s) = e−αs

g(jω) = e−αjω

g(jω) = e−αω j

Using the Euler Identity:

ej θ = cos(θ) + j sin(θ)

g(jω) = e(−αω) j = cos(−αω) + j sin(−αω)

g(jω) = cos(−αω) + sin(−αω) j

AR(ω) = |g(jω)| =
√

(cos(−αω))2 + (sin(−αω))2

AR(ω) = |g(jω)| =
√

1 = 1

φ(ω) = ∠g(jω) = arctan

(

b

a

)

= arctan

(

sin(−αω)

cos(−αω)

)

φ(ω) = ∠g(jω) = arctan (tan(−αω))

φ(ω) = ∠g(jω) = −αω
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6.3 Frequency Response Questions

1. The Bode Plot for a first order system is given below. Identify the transfer function for the
system.
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2. Sketch the Bode plot for the following transfer function.Label any distinguishing
characteristics.

g(s) =
100e−2s

(10s + 1)

3. You are in charge of operating the sludge furnace at the local Ideal Gas company plant. You
must design a holding tank with limited level variation, given that the supply flow of sludge
varies beyond your control. The flow rate from the upstream process varies with a period of
45 min and an amplitude of±1m3

hr
. Your goal is to calculate the cross sectional area of a buffer

tank that will vary in height by±0.1 m. The flow rate from the tank is given asF = kh where
k = 1m2

hr
.

a. What is the frequency of upstream oscillation inrad
hr

?
b. What is the transfer function for the system in the formK

τs+1
relating the upstream input

flow rate to the tank liquid level?
c. For this system, what is the expression for the Amplitude Ratio as a function ofω?
d. What is the area of the tank inm2 that will limit level variation to±0.1 m?

4. Your boss at the Ideal Gas Company put you in charge of analyzing two tanks, each with
cross sectional area of2 m2. The tanks are arranged in series. The flow from tank 1 to tank
to isF1 = kh1 and the flow from tank 2 isF2 = kh2. The flow into the first tank is known to
vary with a frequency of0.5 rad

hr
. You are told thatk = 2m2

hr
.

a. What is the transfer function for the process relating theflow into tank 1 to the flow out
of tank 2?
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b. For this system, what is the expression for the Amplitude Ratio and Phase Angle as a
function ofω?

c. What is amplitude of the variation in the flow out of tank 2 asa function ofω?
d. For a frequency of oscillation of10 rad

hr
What is amplitude of the variation in the flow

out of tank 2?
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Chapter 7

Multivariable Systems

Multivariable System Modeling

Multivariable systems can be modeled as dynamic systems using transfer functions the
same way that SISO systems can be modeled using transfer functions. In multivariable sys-
tems, a vector of inputs goes into the transfer function and avector of outputs comes out:

y(s) = G(s) u(s)

Just like in multivariable steady-state modeling:

∆y = K ∆u

Where the multivariable system of equations represent steady-state relationships, in the
dynamic case the multivariable transfer function represents dynamic relationships between
the inputs and outputs. In the case of a2 × 2 system,G(s) will be a 2 × 2 matrix with
four transfer functions,g11(s), g12(s), g21(s), andg22(s). The first row is for the first set of
equations relating the first output to the rest of the inputs.

63



g11(s)

g12(s)

g21(s)

g22(s)

++

++

y1(s) = g11(s) u1(s) + g12(s) u2(s)

y2(s) = g21(s) u1(s) + g22(s) u2(s)

u1

u2

y2

y1

The multiple transfer functions can be developed in the usual manner. Open-loop step
tests for each process input could be used to determine gain,time-constant and time delay for
simplified FOTD models, or fundamental mass and energy balances could be used to develop
dynamic equations that can then be linearized and transformed into the LaPlace domain.

7.1 Relative Gain Array

The Relative Gain Array (RGA) is a tool that can be used to helpanalyze multivariable
systems. When considering control of multivariable control systems, one must consider inter-
action. In a2 × 2 MIMO system, changingu1 will usually affect bothy1 andy2. Likewise,
changingu2 will usually affect bothy1 andy2. Using our traditional SISO PID controllers, this
can lead to problematic situations where two controllers “fight” each other significantly. The
RGA can be used to help determine loop pairings for SISO controllers in a MIMO process.

For example, in the2 × 2 system there are only two options: Option 1, pairu1 ↔ y1,
u2 ↔ y2 OR Option 2,u1 ↔ y2, u2 ↔ y1.
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g11(s)

g12(s)

g21(s)

g22(s)

++

u1

u2
y2

y1

+-

gc1(s)

gc2(s)

+-

++

Option 1

y1sp

y2sp

y1 ↔ u1 y2 ↔ u2

g11(s)

g12(s)

g21(s)

g22(s)

++

u1

u2
+-

gc1(s)

gc2(s)

+-

++

Option 2

y2sp

y1sp

y1 ↔ u2 y2 ↔ u1

In a3 × 3 MIMO system, there would be six options for loop pairing, this grows asn!.
The RGA can be calculated for a2 × 2 system as follows. First, calculate the stead-state

gain matrix,K = G(s = 0). Next, determineζ where

ζ =
K12K21

K11K22

Then determine the RGA matrix,Λ

Λ =

[

1
1−ζ

−ζ
1−ζ

−ζ
1−ζ

1
1−ζ

]

For a generaln × n system, the RGA is given as follows:

65



Λ = K × (K−1)T

The× operator represents element by element multiplication of the twon × n matrices.
In Matlab, this can be done as follows:

R=K.*inv(K)’

Note that in the generaln × n case you are taking the inverse of the steady-state gain
matrix. If the square system has no inverse, you cannot calculate the inverse. This also means
that your equations are linearly dependent, implying that alinear combination of your inputs
can be equivalent. For example, increasingu1 andu2 have the same effect on the outputs. This
type of system cannot be controlled in all output directions.

7.1.1 RGA Rules

These are approximate rules for loop pairing. The RGA is a steady-state analysis tool and
may not hold true in all situations. These are guidelines forfirst considerations in multivariable
systems.

1. If theλij element is less than or equal to zero, avoid pairing outputi with input j. This
is the worst case for pairing and should be avoided.

2. If theλij element is equal to one, pair outputi with input j.

3. If possible avoid cases of0 < λij < 0.5.

4. In all other cases, there will be interaction, but the quality of the closed-loop response
depends on the controller tuning, the amount of nonlinearity, the magnitude of distur-
bances, and the process measurement noise.

7.1.2 Examples

Example 1

K =

[

−1 2
4 3

]

ζ =
K12K21

K11K22

=
2 (4)

−1 (3)
= −8

3

Then determine the RGA matrix,Λ

Λ =

[

1
1−ζ

−ζ
1−ζ

−ζ
1−ζ

1
1−ζ

]

Λ =





1
1+ 8

3

8

3

1+ 8

3
8

3

1+ 8

3

1
1+ 8

3




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Λ =

[

3
11

8
11

8
11

3
11

]

Implying that you should pairu1 ↔ y2, u2 ↔ y1 since the (1,2) element (row 1, column
2) and (2,1) elements are8

11
, close to 1.

Example 2

K =

[

−1 2
4 −3

]

ζ =
K12K21

K11K22
=

2 (4)

−1 (−3)
=

8

3

Then determine the RGA matrix,Λ

Λ =





1
1− 8

3

− 8

3

1− 8

3

− 8

3

1− 8

3

1
1− 8

3





Λ =

[

−3
5

8
5

8
5

−3
5

]

Here, the (1,1) and (2,2) elements are negative. Avoid theu1 ↔ y1, u2 ↔ y2 pairing in
this case, so you should use theu1 ↔ y2, u2 ↔ y1 pairing.

Example 3

K =





1 3 4
0 2 2

−3 1 2





Λ =





0.25 −2.25 3
0 3.5 −2.5

0.75 −0.25 0.5





In row 2, the only good option appears to be pairy2 with u2. There will be interaction
on this loop, as the value of 3.5 predicts. There are now two different ways to consider the
problem. If you consider column 1 first, you would pairy3 with u1 as a value of 0.75 is better
than 0.25 , then end up withy1 paired withu3 for a value of 3. The alternative that would also
be valid is pairy1 with u1 for a value of 0.25 andy3 with u3 for a value of 0.5. Either option
is valid.
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Example 4

K =





1 2 4
2 2 2

−3 −3 2





Λ =





−1 2 0
3.2 −2.8 0.6
−1.2 1.8 0.4





First, consider column 1. Row elements (1,1) and (3,1) are both negative, implying that
you should pairy2 with u1. Now, examine row 1.u1 is already paired withy2, soy1 should
be paired withu2 since the (1,3) element is 0. This leavey3 to be paired withu3 for a value of
0.4. Every pairing will have interaction. This could be foreseen to some extent. Examine the
“direction” of columns 1 and 2. Increasing eitheru1 or u2 will force the output measurements
in almost the same direction.
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Chapter 8

Phase Plane Analysis

8.1 Linear Phase Plane

8.2 Nonlinear Phase Plane
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Chapter 9

Numerical Optimization

Objective: Introduce basic theory and formulation of numerical optimization problems.
Optimization methods attempt to find the best solution to a problem. In some cases, the

solution may have limits on the possible values for the solution.
Optimization plays a vital role in many situations. Everyday tasks such as walking across

campus can be seen as optimization problems: minimize the distance traveled while staying
within the bounds of the sidewalks. For engineers working inindustry, each company expects
employees to help maximize the profit for the company, withinlegal and ethical constraints.
For specific engineering tasks, numerical optimization methods become very useful for finding
the best solution to a problem.

Numerical optimization methods typically assume that a scalar value that is maximized
or minimized can be calculated for the problem. This is considered thecost functionor the
objective function. The cost function is a function ofdecision variables. Let us define the cost
function as a function of the decision variablesx asΦ(x). An optimization routine must search
the allowable solution space of the decision variables to find the best value of the objective
function that satisfies the problem constraints. The general mathematical form of the problem
could be written:

min Φ(x)

subject to constraints onx

9.1 Scalar Nonlinear Function Optimization

In calculus, you have seen function minimization and maximization. To find the maximum
or minimum of a scalar function,y = f(x), the critical points of the function can be evaluated.
The cost function in this example would beΦ(x), x ∈ X ⊂ R, Φ : X → R. The first
derivative can be calculated and set to zero,dΦ

dx
(x) = 0. Assuming that in the solution of this

equation, the value forx is value is not an inflection point the solution will be a maximum or
minimum value for the function. Finding the solution to thisequation can be done analytically
in some cases (quadratic formula, etc.).
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In cases wheredΦ
dx

(x) = 0 is very difficult to solve analytically, the numerical solution
can be found. SolvingdΦ

dx
(x) = 0 can be seen as finding the zero of a function (f(x) = 0).

Newton’s method can be used to find the solution to this new problem.
Additionally, gradient “hill climbing” method can be used to find the maximum value of

Φ(x). The derivativedΦ
dx

(x) is the rate of increase for the function. An iterative procedure
could be used wherexnew = xold + K dΦ

dx
(xold). Here,K is size of the step in the direction

of increasing objective function value. In some cases, evendΦ
dx

may be difficult to evaluate

analytically. A first-order Taylor series expansion can be used to finddΦ
dx

(x) = Φ(x+∆x)−Φ(x)
∆x

.
Newton’s method or gradient search methods do not guaranteethat the result is the optimal

value in a global sense. The resulting solution/s could be considered a local maxima or local
minima. Additionally, in cases where the range ofx is limited, the optimal value may actually
be found at the constraints.

9.1.1 Example Problem 1 - Multivariable Function Optimization

Given a cost function (objective function) that is a function of many variables, attempt to
find the minimal value of the function. For this example,Φ(x) = (x1+x2−10)2+(x1∗x2−5)2.
First, create a Matlab functionf.mthat returns the objective function evaluated at a given value
of x:

function objective=f(x)
x1=x(1);
x2=x(2);
objective=(x1+x2-10)^2 + (x1*x2-5)^2 ;

This function can be used to find the minimum value of the function using the uncon-
strained optimization functionfminuncin Matlab’s Optimization toolbox. To find the mini-
mum value, an initial guess forx must be supplied. To use an initial guessx = [1 1], the
command would be:

xnew=fminunc(’f’,[1 1])

9.2 Unconcstrained Nonlinear Function Optimization

General form for an unconstrained optimization problem is:

maxΦ(x)

wherex ∈ X ⊂ R, Φ : X → R. This meansx is now a vector andΦ(x) is a scalar
valued function.Note that you can perform minimization of a function by maximization
of −Φ(x). The critical points for this function occur when the gradient of Φ(x) are equal to 0,
∂Φ
∂x

(x) = 0.
The gradient of the objective function,∂Φ

∂x
(x) = ∇Φ(x), is a vector function ofx. The

direction of this vector points in the direction of steepestincreasing value ofΦ(x) at the point
x. From a starting pointx0, one could perform iterative search looking for∇Φ(x) = 0 using
the formulaxnew = xold + K ∂Φ

∂x
(xold). For some values ofK this numerical method may be
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unstable. Remember that the result may only be a local optima. Additionally, care should be
taken to avoid saddle points.

9.3 Convexity

At this point, issues involving convexity should be addressed.
A convex setX satisfiesλx1 + (1 − λ)x2 ∈ X for all 0 ≤ λ ≤ 1, ∀x1, x2 ∈ X.
A convex set can be constructed from a convex function by evaluating the epigraph of a

convex function. Ifx ∈ X ⊂ R
n, f : X → R, epi(f) ∈ R

n+1.
As in convexity results from calculus, convexity of a function requires analysis of a second-

order condition. The Hessian matrixH can be calculated forΦ(x) as:

H(x) =













∂2Φ
∂x1∂x1

∂2Φ
∂x1∂x2

. . . ∂2Φ
∂x1∂xn

∂2Φ
∂x2∂x1

∂2Φ
∂x2∂x2

...
...

. . .
...

∂2Φ
∂xn∂x1

. . . . . . ∂2Φ
∂xn∂xn













A given functionf(x) is convex if the Hessian of the function is positive semi-definite.
This means that all the eigenvalues ofH(x) are≥ 0. Note that the Hessian matrix may be
a function ofx, making calculation of the eigenvalues quite difficult. Some methods exist to
bound the smallest eigenvalue for a general Hessian matrix using interval analysis methods.

Example:f(x) = (x1)
3 + x2,

df
dx

=

[

2x2
1

1

]

, H(x) =

[

4x1 0
0 0

]

For the Hessian, the

eigenvalues are known to be4x1 and0. Note that the minimum eigenvalue depends on the
range of values forx1. If the lower bound onx1 is ≥ 0, the minimum eigenvalue is 0 making
the Hessian positive semidefinite and the function convex over the range ofx. If the lower
bound onx1 is < 0, the Hessian is not semidefinite and the function is nonconvex over the
range ofx.

Note that nonlinear equality constraints are nonconvex. A nonlinear functionsf(x) = 0
can be written as two inequality constraints:

0 ≤ f(x) ≤ 0

This implies that iff(x) is nonlinear and convex, one of the two preceding inequalitycon-
straints would be nonconvex.

0 ≤ f(x)

f(x) ≤ 0

Is the same as

−f(x) ≤ 0

f(x) ≤ 0

Therefore one constraint must be nonconvex.
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9.4 Vector Nonlinear Function, Constrained

A general form for the constrained optimization problem is:

maxΦ(x)

subject tog(x) ≤ 0

with the constraint functionsg : X → R
m for m separate constraints. Consider the case where

g(x) is a single constraint, a scalar function of the vectorx. The problem can be written using
a Lagrangian relaxation to form an unconstrained problem. The new problem becomes:

maxΦ(x) − ug(x)

where u is a positive value. Think of this as a penalization for violating the constraintg(x) ≤ 0.
When g(x) is positive, the objective function increases, so it is desirable to haveg(x) be
negative. The unconstrained optimization problem can be solved iteratively, changing the
values foru until the minimum value foru is found to keelg(x) ≤ 0.

Now, consider the case whereg(x) is a vector function of the vectorx. The problem can
be also written using Lagrangian relaxations to form an unconstrained problem. The new
problem becomes:

maxΦ(x) − u1g1(x) − ... − umgm(x)

whereum are positive values. In the case where multiple constraintsare written on the
problem, the problem can become infeasible if no feasible solution can be found.

9.5 KKT Conditions

For a potential solution̂x, the following conditions hold. The setI specifies the binding
constraints at̂x, I = {i : gi(x̂) = 0}. Additionally,∇gi(x̂) are linearly independent. If the
following conditions hold at̂x, thenx̂ is a KKT point and a local solution.

∇f(x̂) +
∑

i∈I

ui ∇gi(x̂) = 0

ui ≥ 0

Note that this does not specify how to find a KKT point. Also note that a KKT point is not
necessary to minimize a convex problem.
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9.6 Special Types of Optimization

Linear Programming (LP) In some cases, the general optimization form has linear ob-
jective functions and linear constraints. An optimizationproblem can be found in the form:

min Cx

subject toAx ≤ b, lb ≤ x ≤ ub

This is a special linear constrained case where the objective function is a linear function
of the decision variable vectorx and the constraints are also linear. This can readily be solved
using thealp command in Matlab, even for large scale problems. Generallythe simplex
method is used, but interior point methods are gaining popularity.

Quadratic Programming (QP) For cases with a convex quadratic objective of the form:

min 1
2
xT Hx + Cx

subject toAx ≤ b, lb ≤ x ≤ ub

The problem is termed a Quadratic Program (QP). The Matlab commandqp can be used
to solve this type of problem.

Mixed Integer Programming For problems where some variables can only take binary
values, the problem is considered a Mixed Integer problem. Acommon mixed integer problem
is the Mixed Integer Linear Programming (MILP) problem of the form

min Cx

subject toAx ≤ b, lb ≤ x ≤ ub, xi ∈ {0, 1}

There exist specialized methods for solving problems wherethe decision variables are only
allowed to take values of 0 or 1 rather than values between 0 and 1 (inclusive).
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Chapter 10

Nonconvex Numerical Optimization

When an optimziation problem involves nonconvex algebraicfunctions in the objective
function or the constraints, the problem is said to be nonconvex and may suffer from local
minima. When a problem includes binary or integer variables, the decision space is also
noconvex, but the idea of local optimality is not so clear.
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Chapter 11

Tank Case Study

Fo(t) F1(t) = k1sn1(t)� n2(t) F2(t) = k2sn2(t)� c
n1(t) n2(t)

A two tank system is arranged in series as shown in the above figure. The molar gas
flow rate into tank 1 can be changed by the operator. The tanks are constant volume and
isothermal. The volumetric flow of gas across a valve is usually written F = k

√
∆P . In

this case, using ideal gas lawPV = nRT you should realize that the molar amount of gas
in each tank is proportional to the pressure in the tank,n = V

RT
P whereV , R, andT are

constant. As a result, the molar flow rate between the two tanks across a valve can be written
asF1(t) = k1

√

n1(t) − n2(t) and the flow across a valve to the atmosphere can be written
F2(t) = k2

√

n2(t) − c

1. Develop a dynamic mass balance for the two tank system.

2. Linearize any nonlinear terms.

3. Develop linear dynamic approximation for the system.

4. Take the Laplace transform of your linear ordinary differential equations.

5. Derive the transfer function relating the input flow to thenumber of moles in tank 2.

6. Determine the analytical response for the number of molesin tank 2 for a unit step
change inFo(t) at timet = 0.

7. Sketch the bode plot for this system.

8. Assuming a feedback controller of the form

gc = Kc +
Kc

τI s

derive the closed-loop transfer function.
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Chapter 12

ECHE 550 Topics

General Control Configurations
Jargon: MV, CV, DV
Feedback on PFD
Feedforward on PFD
Cascade on PFD

Linear Algebra
Steady state modeling (∆y = K ∆u)
SolvingA x = b by row reduction
SolvingA x = b by calculatingA−1

Matrix multiplication
Determinant / Eigenvalues ofA

Dynamic Modeling (Open-loop)
Dynamic mass and energy balances
State Space Representation for ODEs

Laplace Transforms
step, delayed step, impulse
ramp, sinusoid, exponential
time delay and Heavyside function
derivative, integral of function
Solving Ordinary Differential Equations (ODEs)
Step response of First-Order system

Partial Fraction Expansion
Linearity applied to complex functions

f(t) = f1(t) + f2(2) ⇒ f1(s) + f2(s) = f(s)
Compound / Composite functions

Dynamic Modeling (Open-loop)
Dynamic mass and energy balances
CSTR, Mixing Tank, Tank Level

Transfer Function Representation
y(s) = g(s)u(s) + gd(s)d(s)
Block diagrams
Poles and Zeros of transfer functions
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Low Order Systems
First Order
Pure Gain
Pure Capacity
Lead Lag

High Order systems
Two first order in series
Interacting tanks
General 2nd order
Higher order

Inverse Response (RHP zero)
Time Delay
Stability

poles and eigenvalues for stability
BIBO stab. of oscillatory systems (pole ats = 0)

Poles and Zeros of state space representation
Frequency Response

Amplitude Ratio and Phase Angle forg(s)
Basic Bode Plots giveng(s)
Complex Bode Plots forg1(s)g2(s)...gn(s)
Developing models from frequency response

Linearization of nonlinear ODEs
Model Identification
Feedback Control

Process Reaction Curve(K, τ, α)
Basic PID Controller Tuning(Kc, τI , τD)
PID Transfer Function forgc(s)
Internal Model Control
Direct Synthesis

Feedforward Control
Cascade Control
Multivariable Open-loop Modeling

Transfer function based
State space
Multivariable system poles and zeros

Multivariable Control Issues
Relative Gain Array and loop pairing
Decoupling control
Actuator constraints
Moving horizon control
Optimization
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Chapter 13

Various Problems

13.1 Tank Modeling Problem With Explanation

1. (25 pts.) A system consists of three tanks as shown below. The flow rateF0 can be
manipulated. A fraction of the flow rateF0 into the system goes into tank 1 and the rest of the
flow enters into tank 3 as shown. The fraction of flowF0 into tank 1 isγ, with 0 ≤ γ ≤ 1 and
γ remaining constant. The flow rate from tank 1 to tank 2 is givenasF1 = k1h1. The flow
rate into tank 3 from tank 2 isF2 = k2(h2 − h3). The flow rate out of tank 3 isF3 = k3h3.
The constant cross sectional tank areas areA1, A2, andA3, respectively.

F2 = K2 ( H2 − H3) F3 = K3 H3

F0

F1 = K1 H1

A1

A2 A3

H1

H3
H2

a. Derive the differential equation model for the system.

b. Put your differential equation model into State Space form (ẋ = A x + bu, y = cT x) for the
system, given thatu = F0, y = h3, andx with x :

x=











h1

h2

h3











SOLUTION AND EXPLANATION: First of all, you must realize that you need to per-
form a dynamic mass balance for this system. Dynamic balances include a nonzero accumu-
lation term and can result in a differential equation model of your process.
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To start the mass balance, remember that you should perform balances around individual
systems. In this case, you will need three balances, one overeach tank system.

The amount of “stuff” in the first tank isρV1(t) or more simplyρA1h1(t). As the density
and cross-sectional area are not functions of time, the accumulation term (or rate of change of
“stuff” in the tank”) can be written as:

ρA1
dh1

dt
(t)

Assuming the flow rates are all in volumetric terms, the mass balance on the first system
can be written as:

ρA1
dh1

dt
(t) = ργF0(t) − ρk1h1(t)

Note that for this tank, you have a flow rate in term and a flow rate out term. Also note that
only a portion of the flow into the system goes into tank 1. There is no reaction taking place
in this system. Similarly, for the other two tanks you can write similar mass balances:

ρA2
dh2

dt
(t) = ρk1h1(t) − ρk2 (h2(t) − h3(t))

ρA3
dh3

dt
(t) = ρ(1 − γ)F0(t) + ρk2 (h2(t) − h3(t)) − ρk3h3(t)

Such that the overall model is in the form:

ρA1
dh1

dt
(t) = ργF0(t) − ρk1h1(t)

ρA2
dh2

dt
(t) = ρk1h1(t) − ρk2 (h2(t) − h3(t))

ρA3
dh3

dt
(t) = ρ(1 − γ)F0(t) + ρk2 (h2(t) − h3(t)) − ρk3h3(t)

Note the sign difference in terms. If something is assumed toflow out of one tank and into
another, the same term should appear in both mass balances, only with a different sign in each.
Also note that the flow from tank 2 to tank 3 is assumed to be positive (so long ash2 > h3).
The term appears with a negative sign in the second balance and with a positive sign in the
third balance. In some cases,h3 may exceedh2. In such a case, the sign of the term would
automatically change, taking care of the reverse flow in the model. The negative term for flow
out: −ρk2 (h2(t) − h3(t)) for the tank 2 balance would become positive value ifh3 exceeds
h2 and the flow out term would actually become a flow in term. Nothing special must be done
in these cases, except making sure the terms have different signs if they appear in different
balances.

You now have a full differential mass balance. Now we would like to get our equations in
state space form. You have three accumulation terms, so you should have three states:

x(t) =





h1(t)
h2(t)
h3(t)




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Next, simplify the equations. First, divide out the densityfrom all the terms.

A1
dh1

dt
(t) = γF0(t) − k1h1(t)

A2
dh2

dt
(t) = k1h1(t) − k2 (h2(t) − h3(t))

A3
dh3

dt
(t) = (1 − γ)F0(t) + k2 (h2(t) − h3(t)) − k3h3(t)

Next, get the accumulation terms to all have 1 as the leading coefficient. This means divide
each equation by the cross sectional area in this case:

dh1

dt
(t) =

γ

A1
F0(t) −

k1

A1
h1(t)

dh2

dt
(t) =

k1

A2
h1(t) −

k2

A2
(h2(t) − h3(t))

dh3

dt
(t) =

(1 − γ)

A3
F0(t) +

k2

A3
(h2(t) − h3(t)) −

k3

A3
h3(t)
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Now, write all the the equations in terms of all the states andthe inputs, including the
measurement equation,y(t) = h3(t)

dh1

dt
(t) = − k1

A1
h1(t) + 0h2(t) + 0h3(t) +

γ

A1
F0(t)

dh2

dt
(t) =

k1

A2
h1(t) −

k2

A2
h2(t) +

k2

A2
h3(t) + 0F0(t)

dh3

dt
(t) = 0h1(t) +

k2

A3
h2(t) −

k2

A3
h3(t) −

k3

A3
h3(t) +

(1 − γ)

A3
F0(t)

y(t) = 0h1(t) + 0h2(t) + 1h3(t) + 0F0(t)

Now, it is easier to pick out your state space matrices,A, B, C, D.

A =





− k1

A1
0 0

k1

A2
− k2

A2

k2

A2

0 k2

A3

− k2

A3

− k3

A3



 B =





γ
A1

0
(1−γ)

A3





C =
[

0 0 1
]

D = [0]

And the matrices should fit together nicely in the form:

A || B
== || =
C || D

Which meansA andC should have the same number of columns (= # states), whileA and
B should have the same number of rows (= # states).BandD should have the same number
of columns (= the number of inputs) whileC andD should have the same number of rows (=
the number of output measurements).

Now, after you finish the mass / energy balance but before you put your equations in state
space, I could have asked you to take the Laplace transform and get a transfer function for the
relationship betweenF0(t) andh3(t). When you take the Laplace transform of your differen-
tial equations and measurement equations, you will have a number of different equations in
the s domain, like:

sh1(s) =
γ

A1
F0(s) −

k1

A1
h1(s)

And a couple of other equations. You would have to use the equations to eliminate the
variables you don’t want. In this case, you only wantF0(s) andh3(s), so you would have to
eliminateh1(s)andh2(s). This would be a mess on this problem, but you could feasibly do it.
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13.2 CSTR Modeling Problem With Explanation

1. At the Ideal Gas Company, you are in charge of operating a reactant mixing system.
Your boss wants a dynamic model of the system to be used for process control and process
optimization. The constant volume mixing tank has two feed streams with constant volumetric
flowrates ofF1 andF2. Feed stream 1 contains both species A and species B, while stream
2 only contains species A. You can modify the initial concentrations of the two species com-
ing into the tank system,u1(t) = CA10(t), u2(t) = CB10(t), u3(t) = CA20(t). At the exit
stream, due to instrumentation limitations, you can only measure the total concentration of
both components,y(t) = CA(t) + CB(t).

Ca Cb

F1 F2

F3

u1(t)=Ca10(t)
u2(t)=Cb10(t)

u3(t)=Ca20(t)

a. (4 points) What is the dynamic mass balance describing the concentrations of species
A and species B at the exit of the mixing tank?

b. (4 points) Put your model in state space form. Clearly identifyx, A, B, C, andD.
Example state space form:

ẋ = Ax + Bu

y = Cx + Du

SOLUTION AND EXPLANATION: Ok, one tank, two species, three inputs, one mea-
surement. Two dynamic mass balances should work.F1, F2, F3, andV are all constant. No
reaction, this is a mixing tank. One balance will consider the amount of species A in the sys-
tem, while the other will model the amount of species B. The total amount of A in the system
is:

V CA(t)

And the accumulation term for A will be:

V
dCA

dt
(t)

So the mass balances become:
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V
dCA(t)

dt
= F1CA10(t) + F2CA20(t) − F3CA(t)

V
dCB

dt
(t) = F1CB0(t) − F3CB(t)
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The states (concentrations in the reactor) and inputs (inlet concentrations for inlet flows)
in this problem are:

x(t) =

[

CA(t)
CB(t)

]

u(t) =





CA10(t)
CB10(t)
CA10(t)





The measurement equation is a little tricky... You can measure the total concentration of
both components:

y(t) = CA(t) + CB(t)

For state space, divide both equations byV , write all equations in terms of all statesx and
all inputsu.

dCA(t)

dt
= −F3/V CA(t) + 0CB(t) + F1/V CA10(t) + 0CB10(t) + F2/V CA20(t)

dCB

dt
(t) = 0CB(t) − F3/V CB(t) + 0CA10(t) + F1/V CB0(t) + 0CA20(t)

And the matrices should fit together nicely in the form:

A || B
== || =
C || D

so that:

−F3

V
0 || F1

V
0 F2

V

0 −F3

V
|| 0 F1

V
0

== == || = = =
1 1 || 0 0 0

Note the eigenvalues of theA matrix. These are the poles of your system. Note they are
identical.CA(t) has no effect onCB(t).
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13.3 Fall 2001 Exam 1

1. (15 pts.) The Ideal Gas Company is attempting to develop a dynamic process model for a
combustion chamber which burns a stream of aqueous liquid waste. The process output and
the process input are shown for a input step change. What is the transfer function for this
system, assuming it is a first order process?
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2. (15 pts.)What is the Laplace transformu(s) of the following function?

u(t) =















0 t < 0
σt 0 ≤ t < b

−2A + σt b ≤ t < c
0 c ≤ t

σ

σ

t

A

−A

u(t)

0

0 b c
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3. (25 pts.) A system consists of three tanks as shown below. The flow rateF0 can be
manipulated. A fraction of the flow rateF0 into the system goes into tank 1 and the rest of the
flow enters into tank 3 as shown. The fraction of flowF0 into tank 1 isγ, with 0 ≤ γ ≤ 1 and
γ remaining constant. The flow rate from tank 1 to tank 2 is givenasF1 = k1h1. The flow
rate into tank 3 from tank 2 isF2 = k2(h2 − h3). The flow rate out of tank 3 isF3 = k3h3.
The constant cross sectional tank areas areA1, A2, andA3, respectively.

F2 = K2 ( H2 − H3) F3 = K3 H3

F0

F1 = K1 H1

A1

A2 A3

H1

H3
H2

a. Derive the differential equation model for the system.

b. Put your differential equation model into State Space form (ẋ = A x + bu, y = cT x) for the
system, given thatu = F0, y = h3, andx with x :

x=











h1

h2

h3











4. (20 pts.) For the following system, steam is used to heat the liquid in aconstant vol-
ume tank. The available measurements include the temperature of the liquid in the tank, the
temperature of the feed flowing into the tank, and the steam flow rate. The steam valve can
be manipulated. It is desired to regulate the temperature ofthe exit flow from the tank at a
constant value.

F

T

T0
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a. In the figure above, draw a feedback control loop for the system

F

T

T0

b. In the figure above, draw a feed forward control loop, assuming the feed temperature
acts as the disturbance.

F

T

T0

c. In the figure above, assuming the steam flow rate varies unpredictably, draw a cascade
configuration using two feedback controllers.

92



13.4 Fall 2001 Quiz 1, Practice

1. (4 pts.) A preheater furnace is used increase the temperature of crude oil fromTi to T , the
target value. The preheated hot crude oil is then sent down stream to a reactor. The crude oil
enters the furnace at the flow rateF and leaves at the same rate. Fuel and air are mixed and
burned in the furnace to heat the crude oil. See diagram below.
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Fi, Ti

Crude Oil F, T

FuelAir

Qa = Air Flow Rate Qf = Fuel Flow Rate

Construct two different feedback control configurations. Also, construct two different
feedforward control configurations. Clearly label what is measured and what is manipulated.

3. (2 pts.) What are the eigenvalues of the following matrix?

[

−1 3
2 5

]
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13.5 Fall 2001 Quiz 1

1. (4 pts.) An agricultural process requires that trays of plants be maintained at specified
temperatures. Three lamps are used to warm three plant traysas seen below.

   

Lamp A   Lamp B  Lamp C

Plant A    Plant B     Plant C

A 3x3 steady state model is desired relating the change in voltages∆Vi (for each lampi) to
the change in plant temperature∆Tj (for each plantj). It is known that increasing the
voltage for Lamp A by 1 volt increases the temperature of Plant A by 3.3 degrees and
increases the temperature of Plant B by 2.1 degrees. Increasing Lamp B voltage by 1 volt
increases both Plant B and Plant C by 2 degrees. Increasing Lamp C voltage by 1 volt
increases the temperature of Plant C by 4 degrees.

Develop a model in the formAx = b and identifyA, x, andb.

You may want to check your model by assuming arbitrary valuesfor the change in lamp
voltages, then verifying the expected change in plant temperatures.

3. (2 pts.) a. What is the determinant of the following matrix?





1 1 0
0 −6 7
−1 −2 3




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13.6 Fall 2002 Quiz 1

You must develop a model of paper machine sheet forming process. A simple schematic is
shown below. A feed stream of pulp (wood fibers and water) is sprayed onto a moving screen
(conveyor belt). As the screen moves, water drains out of thepulp, through the screen. At the
product end of the paper machine, the pulp is effectively just wet paper.

Sensors Adjustable 
   Valves

Direction 
     of sheet Feed Sheet

Product

Diagram of a sheet forming process.

Three valves are available to adjust the flowrate of pulp whenthe pulp concentrations
change. Three sensors measure the thickness of the wet paper. Increasing the valves on the
edge by 1% (v1 andv3) increases the thickness in the corresponding paper location by 2mm.
A 1% increase inv1 andv3 will also decrease the thickness in the center position by 1 mm.
A 1% increase inv2 will increase the thickness in the center by 3 mm and reduce the edge
thickness by 0.5mm.

1. (1pt) What are the controlled variables, manipulated variables,and disturbances for this
paper making process?

2. (3pts)Develop a model of this process relating∆s and∆v.

3. (2pts)Put your model in the formAx = b and clearly identifyA, x, andb.

4. (2pts)What is the determinant of the following matrix??




0 2 −1
1 1 4
1 3 1





5. (2pts)What are the eigenvalues of the following matrix?
[

−5 −2
3 −10

]
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13.7 Fall 2002 Quiz2

1. At the Ideal Gas Company, you are in charge of operating a reactant mixing system. Your
boss wants a dynamic model of the system to be used for processcontrol and process opti-
mization. The constant volume mixing tank has two feed streams with constant volumetric
flowrates ofF1 andF2. Feed stream 1 contains both species A and species B, while stream
2 only contains species A. You can modify the initial concentrations of the two species com-
ing into the tank system,u1(t) = CA10(t), u2(t) = CB10(t), u3(t) = CA20(t). At the exit
stream, due to instrumentation limitations, you can only measure the total concentration of
both components,y(t) = CA(t) + CB(t).

Ca Cb

F1 F2

F3

u1(t)=Ca10(t)
u2(t)=Cb10(t)

u3(t)=Ca20(t)

a. (4 points) What is the dynamic mass balance describing the concentrations of species
A and species B at the exit of the mixing tank?

b. (4 points) Put your model in state space form. Clearly identifyx, A, B, C, andD.
Example state space form:

ẋ = Ax + Bu

y = Cx + Du

2. (2 points) After running some step tests for your system varyingu1(t) and measuring
the outputy(t) you have the following process data. Identify the approximate process gain for
this Single-Input-Single-Output system.
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3. Bonus - Dr. Gatzke has a flower bed with three sprinkler heads. In one minute, sprinkler
1 delivers2 mm of water to its coverage area, sprinkler 2 delivers0.5 mm of water to its
coverage area, and sprinkler 3 delivers4 mm of water to its coverage area. Plant A is covered
by sprinkler 1 and 3, plant B is covered by all sprinkler, and plant C is covered by sprinkler 2
and 3. The system is currently set to operate at normal operating program times. Develop a
steady state model relating possible changes in sprinkler operating times to changes in amount
of water delivered to each plant. Put you model in the form:

A x = b

3b. Assume that plant A needs an additional2 mm of water, plant B needs1 mm less, and
Plant C is fine the way it is. How does the problem change? What changes to the sprinkler
operating times would make this change? Solve using Row Reduction Methods.

A
B

C

Sprinkler 1
Sprinkler 2

Sprinkler 3
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13.8 Fall 2002 Exam 1 Practice Problems

1. A series of tanks are shown below. You can manipulateF0(t) and you can measure the
flow rate out of tank 3,F3(t).

F0(t) = u(t)

F1(t)=k1 h1(t)

F2(t)=k2 h2(t)

F3(t)=k3 h3(t) = y(t)

A1

A2

A3

a. Assuming constant density, develop a mass balance for thesystem.
b. Put your model in state space form. Clearly identifyx, A, B, C, andD. Example state

space form:

ẋ = Ax + Bu

y = Cx + Du

c. What are the eigenvalues of yourA matrix from your system?
d. From part (a.) take the Laplace transform of your dynamic model assuming the tanks

are empty initially. Sove the three equations for the relationship betweeny(s) andu(s).

2a.Express the following function as a simple function of time (You may need to use the
heaviside function multiplied by other functions.)

t=0 5 15

-2

0

u(t)
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b. Establish the Laplace transform of the function,u(s).

3a.Express the following function as a simple function of time.

t=0 5 15

-2

0

u(t)

2

b. Establish the Laplace transform of the function,u(s).
c. Assuming this functionu(t) is the input to a first-order system,g(s) = 5

10s+1
, y(s) =

g(s)u(s). Establishy(s) andy(t).

4. Assuming a constant volume mixing tank for two species, A and B. Assuming you can
change the inlet concentrations of A and B and measure the outlet concentrations of A and B,
develop a dynamic mass balance and put your equations in state space form.

u1(t)=Ca0(t)

Ca(t)
Cb(t)

F

F

V

y1(t)=Ca(t)

u2(t)=Cb0(t)

y2(t)=Cb(t)
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13.9 Fall 2002 Exam 1

Chemical Process Dynamics and Control

Exam #1

September 25, 2002

1. (15 pts.) The Ideal Gas Company is attempting to develop a dynamic process model for a
chemical reactor. The process output and the process input are shown below for a input step
change.

a. Determine the process gain (K), the process time constant (τ ) and the process dead time
(α) for the system.

b. What is the transfer function for this system,g(s), assuming it is a first order process?
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50

100

150

u(
t)

1400 1500 1600 1700 1800 1900 2000 2100 2200
25

30

35

y(
t)

time (min)

2. (15 pts.)What is the the time domain expression for the following function expressed
using the Heaviside function? What is the Laplace transformu(s) of the following function?

u(t) =







0 t < 0
20 + 3t 0 ≤ t < 20

50 20 < t ≤ ∞
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3. (25 pts. total) A system consists of two mixing tanks in series, as pictured below. Two
manipulated inputs are available: the initial concentration of species A entering tank 1 and
the initial temperature of the liquid entering tank 1. You can measure the temperature at the
exit of tank 1 and the concentration ofA at the exit of tank 2. You may assume well-mixed
tanks, constant volumetric flow rates, constant volume tanks, constant density, and constant
heat capacity. You may use the reference temperatureT ∗.

CA2(t)

F2

F3 = F2 = F1

F1

CA1(t)

T1(t)

V2

V1, ρ, Cp

y2(t) = CA2(t) − CA2ss

y1(t) = T1(t) − T1ss

u1(t) = CA0 − CA0ss(t), u2(t) = T0(t) − T0ss

Figure 13.1: Two mixing tanks in series.

a. (12 pts.)Derive the differential equation model for the system.

b. (6 pts.) Put your differential equation model into deviation variables by subtracting the
steady state equations. Use the following variables:

u1(t) = CA0(t)−CA0ss, u2(t) = To(t)−Toss, x1(t) = CA1(t)−CA1ss x2(t) = T1(t)−T1ss,
andx3(t) = CA2(t) − CA2ss.

c. (7 pts.) Put your deviation differential equation model into State Space form (̇x = A x +
B u, y = C x+D u,) for the system, giveny1(t) = T1(t)−T1ss, andy2(t) = CA2(t)−CA2ss.
x :

x=











CA1(t) − CA1ss

T1(t) − T1ss

CA2(t) − CA2ss











102



4. (15 pts.)For the following system, a stream containing radioactive solids is passed through
a crossflow filter. The clean filtrate is separated from the radioactive slurry. The available
online measurements include the concentration of the slurry entering the filter, the flow rate of
the slurry entering the filter, and the flow rate of the filtrateexiting the filter. The inlet valve
can be manipulated. It is desired to regulate the filtrate flow, keeping it at a constant value.

Filter
Ca

Fin

Fout

P

Filtrate

a. In the figure above, draw a feedback control loop for the system

Filter
Ca

Fin

Fout

P

Filtrate

b. In the figure above, draw a feed forward control loop, assuming the feed concentration
changes unpredictably.

Filter
Ca

Fin

Fout

P

Filtrate

c. In the figure above, assuming the feed stream pressure changes and will affect the flow
through the valve, draw a cascade configuration using two feedback controllers.
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5. (30 pts. total)A constant volume salt mixing tank system can be modeled by a first order
transfer function relating the measurementCA(t) to the manipulated inputCAo(t):

V

F

dCA

dt
(t) + CA(t) − CAo(t) = 0

a. (4 pts.) From this differential equation, what are the values for theprocess time constant,
τ , and process gain,K in terms of tank volumeV and flow rateF (Fin = Fout = F ) ?

b. (5 pts.) Justify using physical arguments the value of the steady state process gain.

c. (5 pts.) AssumingCA(t = 0) = 0, V = 2m3 andF = 0.05m3

sec
, expressCA(s) in terms ofs

andCAo(s) by taking the Laplace transform of the differential equation.

d. (6 pts.) When salt is not being added to the system, the inlet flow to thetank gets clogged
with dried salt. When the salt is first added to the system, thesalt plug flows into the tank and
the inlet concentration spikes to a value of 110 for 1 second,then returns to the desired value
of 10. Assume that the short time, high level rectangular pulse inCAo(t) can be expressed
as an impulse. For this start up procedure, sketchCAo(t), determineCAo(t) in terms ofH(t)
andδ(t), and determine the Laplace transform of this function,CAo(s). Assume the impulse
occurs at timet = 0.

e. (4 pts.) What is the exit concentration response,y(s), realizingy(s) = g(s)u(s)?

f. (6 pts.) This response can be broken into two portions,y1(t) andy2(t). Determiney1(t)
andy2(t) then sketchy1(t), y2(t), and the overall responsey(t).
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13.10 Fall 2003 Exam 1

Chemical Process Dynamics and Control

Exam #1

September 28, 2002

1. (15 pts. total)The Ideal Gas Company is attempting to develop a dynamic process model
for a chemical reactor. The process output and the process input are shown below for a input
step change.

a. (12 pts.) Determine the process gain (K), the process time constant (τ ) and the process
dead time (α) for the system. Time units on the graph are in minutes.

b. (3 pts.) What is the transfer function for this system,g(s), assuming it is a first order
process with time delay?
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2. (15 pts.)What is the Laplace transformu(s) of the following function, given thatu(t) = 0
for t < 0?

u(t) =







3e−2t 0 ≤ t < 5
3e−2t − 4e−2(t−5) 5 ≤ t < 10

3e−2t − 4e−2(t−5) + 1
2
(t − 10) 10 ≤ t < ∞

−5 0 5 10 15
−4

−3

−2

−1

0

1

2

3

4
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3. (30 pts. total)A reactor is to be used to produce a new product. The reactor isa constant
volume system, with constant volumeV and constant flow rate in / outF . Three species are
present. SpeciesA can react to form speciesB at a rate ofrAB = k1CA. SpeciesA can ALSO
react to form speciesC at a rate ofrAC = k2CA. SpeciesB will react to form speciesC at a
rate ofrBC = k3CB. Reaction rates are volumetric,( mol

L min
). Only speciesA is entering the

system. You can adjust the concentration of speciesA entering the system,CAo(t). You can
measure the concentration ofC leaving the system. You do not need to carry unit throughout
the problem, just make sure you have the correct terms in eachbalance.

• A → B with reaction raterAB = k1CA

• A → C with reaction raterAC = k2CA

• B → C with reaction raterBC = k3CB

• Constant volumeV and flowsF

• Single input,u(t) = CAo(t)

• Single measurement,y(t) = CC(t)

u(t) = CAo(t)

y(t) = CC(t)

A → B

A → C

B → C

CA(t)

CB(t)

CC(t)V

F

F

A B C

a. (3 pts.) What are some additional assumptions you will use to model this system?

b. (15 pts.)Derive a differential equation model for the system.

c. (12 pts.) Put your deviation differential equation model into State Space form (̇x = Ax +
B u, y = C x+D u,) for the system, given that concentrations are all = 0 initially (no deviation
variables needed in this case).
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4. (40 pts. total)At the Ideal Gas Company, a model of a simple chemical reactorsystem was
developed by a previous employee. You are expected to verifythe model and determine the
time domain response of the model for changes in the input value.

a. (10 pts.)For the following differential equation:

d2y

dy2
(t) + 7

dy

dy
(t) + 12y(t) =

du

dt
(t) + u(t)

show that for the initial conditionsy(t = 0) = 0, dy
dt

(t = 0) = 0 u(t = 0) = 0, and
du
dt

(t = 0) = 0, the following transfer function relationship holds:

y(s) =
s + 1

s2 + 7s + 12
u(s)

b. (5 pts.) Given that the input to the system model is a unit impulse at time t = 1 (NOT at
t=0) show thaty(t = 0) = 0 using the Initial Value Theorem.

c. (5 pts.) Given that the input to the system model is a unit impulse at time t = 1 (NOT at
t=0) show thaty(t = ∞) = 0 using the Final Value Theorem.

d. (20 pts.)Given that the input to the system is a unit impulse at timet = 1 (NOT at t=0) find
the analytical responsey(t) of the system to the unit impulse as an explicit function of time.

BONUS, sketchu(t) andy(t).
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13.11 Fall 2003 Quiz 1

Chemical Process Dynamics and Control

Quiz #1

September 5, 2001

1. (4 pts.) A continuous polymerization reactor has two feed streams. Four species are
measured at the exit of the reactor. The temperature of the reactor can be modified using a
cooling jacket. Additionally, the mixing speed can be modified.

M(t)F1(t)

F2(t)

T (t)

xA(t), xB(t), xC(t), xD(t)

Cooling
 Water

Product

A 4x4 steady state model is desired relating the manipulatedvariables changes to the change
in the output product concentrations,∆xA, ∆xB , ∆xC , ∆xD. Input flows (∆F1 and∆F2),
the change in the reactor jacket temperature (∆T ), and the change in mixing speed (∆M)
affect product quality in the following manner:

• A +10 GPH change inF1 increasesxC by 2 %

• A +10 GPH change inF1 increasesxD by 4 %

• A +10 GPH change inF1 decreasesxB by 3 %

• A +10 GPH change inF2 increasesxA by 1 %

• A +10 GPH change inF2 increasesxC by 1 %

• A +1 change inT increases all concentrations by 0.2%

• A +2 RPM increase inM increasesxB by 5%

Develop a model in the formK ∆u = ∆y and identifyK, ∆u, and∆y.

You may want to check your model by assuming arbitrary valuesfor the change in inputs,
then verify the expected change in concentrations.
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2. (2 pts.) Given the following system, draw a simple feedback control scheme to control the
product qualityxC by manipulating the cooling water flow.

M(t)F1(t)

F2(t)

xC(t)

Cooling
 Water

Product

Tj(t)

To(t)

Tr(t)

Fc(t)

3. (2 pts.) Given the following system, draw a simple feedforward control scheme to control
the product qualityxC by manipulating the cooling water flow given variations in the inlet
cooling water temperature.

M(t)F1(t)

F2(t)

xC(t)

Cooling
 Water

Product

Tj(t)

To(t)

Tr(t)

Fc(t)

4. (2 pts.) Given the following system, draw a cascade control scheme tocontrol the product
qualityxC .
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M(t)F1(t)

F2(t)

xC(t)

Cooling
 Water

Product

Tj(t)

To(t)

Tr(t)

Fc(t)

13.12 Fall 2004 Quiz1

Chemical Process Dynamics and Control

Quiz #1

September 3, 2004

1. (3 pts.) Given the following process system, draw two separate simple feedback control
loops to control tank levels in tanks 1 and 2. Be sure to use control valves in your loops.

H2(t)

Tank 1 Tank 2

Tank 3

F2(t)F1(t)

H3(t)

H1(t)
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2. (2 pts.) Given the following system, draw a simple feedforward control schemes to help
minimize variation in tank levels given changes inF2(t). Be sure to use control valves in
your loops.

H2(t)

Tank 1 Tank 2

Tank 3

F2(t)F1(t)

H3(t)

H1(t)

3. (2 pts.) Given the following system, draw a cascade control scheme tocontrol the level in
tank 3, noting that the level in tanks 1 or 2 would have some effect on the level of tank 3.

H2(t)

Tank 1 Tank 2

Tank 3

F2(t)F1(t)

H3(t)

H1(t)
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4. (2 pts.) What are the eigenvalues of the following matrix? Please show your work.

[

3 1
−4 1

]

5. (1 pts.) What is the determinant of the following matrix? Please showyour work.





0 −2 −1
0 2 3

−1 0 2




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13.13 Fall 2004 Quiz 2

Chemical Process Dynamics and Control

Quiz #2

September 14, 2004

1. At the Ideal Gas Company, you are expected to develop a steady state model of the follow-
ing process:

H2(t)

Tank 1 Tank 2

Tank 3

V2(t)

H3(t)

H1(t)

V1(t)

V3(t)

Given the following information:

• A 1% change inV1 increases the level in Tank 1 by 3 inches

• A 1% change inV1 increases the level in Tank 3 by 1 inch

• A 3% change inV2 increases the level in Tank 1 by 4 inches

• A 3% change inV2 increases the level in Tank 2 by 5 inches

• A 3% change inV2 increases the level in Tank 3 by 6 inches

• A 1% change inV3 decreases the level in Tank 3 by 2 inches

a. (1 point) What are∆u and∆y?
b. (4 points)Develop a steady state multivariable model relating the inputs to the outputs.
c. (1 point) Put your model in the form∆y = K ∆u and clearly identify theK matrix.
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2. (4 points)What is the Laplace transform of the following input sequence,u(t).

u(t)

6

t = 0 t = 10

u(t) =



















0 t < 0
6 + 6

10t 0 ≤ t < 10
0 10 ≤ t

12

3. BONUS In five words or less, why can we analyze dynamic systems with complex com-
posite forcing functions by treating each part separately?
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13.14 Fall 2004 Exam 1

ECHE 550, Fall 2004

Chemical Process Dynamics and Control

Exam #1

September 27, 2004

1. (20 pts. total)The Ideal Gas Company is attempting to develop a dynamic process model
for a continuous processing nylon production system. Data from the process output and the
process input are shown below for a step change and a simulated impulse.

a. (15 pts.)Determine the

• process gain (K)

• process time constant (τ )

• process dead time (time delay) (α)

for the system. Time units on the graph are in minutes.

b. (5 pts.) Given a unit step change increase in the process input at timet = 0, what is the
expected response of your model as a function of time?
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2. (20 pts. total)Determine the eigenvalues of the following matrix. Note, you probably
shouldnot use row reduction methods in the solution of this problem.

a. (10 pts.)Set up the problem to be solved.

b. (10 pts.)Find simplified numerical values for the eigenvalues.





0 −4 1
0 −3 5
0 −4 1




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3. (25 pts. total) You must develop a dynamic model based on fundamental principles for a
pressure tank system as pictured below. You may assume that the total number of moles of
gas in tanki, ni(t), may also be expressed asVi

RT
Pi(t) using the ideal gas law. All flow rates

are molar flow rates. You can change the valve position on the inlet stream,u(t). You do not
need to carry units throughout the problem, just try to make sure you have the correct terms in
each balance.

P1(t)

P2(t)

P3(t)

k0u(t) γk0u(t)

(1 − γ)k0u(t) F2(t) = k2 (P2(t) − P3(t))

F1(t) = k1 (P1(t) − P3(t))

F3(t) = k3 (P3(t))

• The total molar flow rate into the system isk0u(t)

• The molar flow rate into tank 1 isγk0u(t), 0 ≤ γ ≤ 1

• The molar flow rate into tank 2 is(1 − γ)k0u(t)

• The molar flow from tank 1 into tank 3 isk1(P1(t) − P3(t))

• The molar flow from tank 2 into tank 3 isk2(P2(t) − P3(t))

• The molar flow from tank 3 into the atmosphere isk3P3(t)

• The tanks are constant volume,V1, V2, V3.

• The gas in the tanks is at a constant temperature.

• You can measure the pressure in tanks 2 and 3.

a. (15 pts.)Derive a differential equation model for the system.

b. (10 pts.) Put your deviation differential equation model into State Space form (̇x = A x +
B u, y = C x + D u,) for the system, given that all pressures are = 0 initially (no deviation
variables needed in this case).

119



4. (35 pts. total)At the Ideal Gas Company, a model of a simple chemical reactorsystem was
developed by a previous employee. You are expected to verifythe model and determine the
time domain response of the model for changes in the input value.

a. (7 pts.) For the following differential equation:

6
dy

dt
(t) + 2y(t) = 4

du

dt
(t) + u(t)

show that for the initial conditionsy(t = 0) = 0 andu(t = 0) = 0, the following transfer
function relationship holds:

y(s) =
4s + 1

6s + 2
u(s)

b. (6 pts.) What are the poles of your transfer function? What are the zeros?

c. (4 pts.) What is the gain of this model?

d. (5 pts.) Given that you implement a negative step change of magnitude3 at time zero in
the inputu(t), what is the ultimate response? Use the Final Value Theorem to findy(t = ∞).

d. (13 pts.) Given that you implement a negative step change of magnitude3 at time zero in
the inputu(t), find the analytical responsey(t) of the system.

BONUS, sketchu(t) andy(t).
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13.15 Fall 2005 Quiz 1

Chemical Process Dynamics and Control

Quiz #1

September 2, 2005

1. (4 pts.) Your first assignment for GameCockCo is in the silicon wafer production facility.
Each wafer must be maintained at a high temperature during the etching process. Since very
high temperatures are required, radiative heat transfer using high temperature lamps will be
used to heat the chamber. The triangular chemical vapor decomposition chamber has three
variable intensity lamps, one in each corner of the chamber,with intensitiesI1, I2, andI3. The
chamber also has three temperature sensors, denoted byS1, S2, andS3. These sensors are also
located in the corners of the chamber. You are told by a seniorengineer in your department
that a 5% increase in the intensity of any one of the three lamps results in a 8 degree increase
in the corresponding temperature sensor location and a 3 degree increase in the temperature in
the sensors in both of the opposite corners of the chamber.

I1

Wafer Production 
        Surface

I3
I2

S1

S2 S3

Develop a model in the formK ∆u = ∆y and clearly identifyK, ∆u, and∆y.

2. (2 pts.) During a production run, temperature sensor 1 is 6 degrees below optimal, sensor 2
is 1 degree above optimal, and sensor 3 is 9 degrees below optimal. What problem would you
solve to get the chamber back to the nominal operating temperature (what is your∆y value?).
How would you solve this problem? (What formula or method would you use?)
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3. (2 pts.) What are the eigenvalues of the following matrix? Please show your work.

[

1 2
−1 3

]

4. (2 pts.) What is the determinant of the following matrix? Please showyour work.





1 −4 0
0 3 0

−1 3 2





BONUS, why are eigenvalues and determinants useful?
BONUS, solve problem 2 above for a real answer.
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13.16 Fall 2005 Quiz 3

ECHE 550, Fall 2005
Chemical Process Dynamics and Control
Quiz #3, October 7, 2005

1. (4 pts.) A continuous bio-reactor for yeast fermentation has a single glucose feed stream.
The growth reaction takes place in a jacketed CSTR. It is assumed that low-level control
systems are in place such that the inlet glucose concentration and temperature can be
specified (the mixing of pure cold water, pure hot water, and high concentration glucoseis
not to be considered here). Additionally, the temperature of water entering the jacket can be
specified. Given these three manipulated input values, you are expected to develop a
state-space model of the system.

CAin(t), Tin(t) F

Tjin(t)

Tj(t)
T (t)

CA(t), T (t)

A → B, r = kCA(t)

hA(T (t) − Tj(t))

Tj(t)

Fj

The following is known about the system:

• The reactor is well-mixed with volumeV

• The liquid in the jacket is well-mixed with volumeVJ

• The reaction is a first-order reaction with volumetric reaction ratekCA(t)

• The heat of reaction is−∆H

• The reactor volumetric flow rate in (and out) isF

• The jacket volumetric flow rate in (and out) isFj

• The heat transfer from the reactor to the jacket ishA(T (t) − Tj(t))

• The liquids all have constant physical properties,Cp, ρ, µ
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• The steady state input values foru1, u2, andu3 areCAinSS, TinSS, andTjinSS respec-
tively

• The steady state state values areCASS, TSS, andTjSS

• The jacket temperature deviation valueTj(t) − TjSS and the reactor temperature devia-
tion valueT (t) − TSS are measured

a. Develop a dynamic mass and energy balance for the system.

b. Put your system in deviation variable form using the steady state values.

c. Identify your states and put your system in state-space form and identifyA, B, C, andD.

13.17 Fall 2005 Exam 1

ECHE 550, Fall 2005

Chemical Process Dynamics and Control

Exam #1

September 28, 2005

1. (30 pts. total) The Ideal Gas Company has a simple mixing system for preparation of a
reactor feed. You must develop a dynamic model of this system.

• No reaction is taking place in either tank, both well-mixed

• The mixing tanks are constant volume,V1 andV2

• The volumetric flow rateF is fixed

• The inlet flow is equally split between the first tank and the side stream

• Initially all concentrations are 0

a. (15 pts.) Develop a dynamic model of the system. Note that instantaneous mixing occurs
at the mixing point shown in the dotted box (no accumulation at the mixing point). State any
additional assumptions you make for your system.
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F, C0(t)

V1, C1(t)

C1(t)
F, C2(t)

C0(t)

C3(t)

V2, C3(t)

1

2
F, C0(t)

1

2
F, C0(t)

b. (15 pts.)Assuming thatF = 2 m3

min
, V1 = 20m3, V2 = 10m3, C0(t) = u(t) and

C3(t) = y(t) take the Laplace transform of your model equations and show that the following
transfer function holds:

y(s)

u(s)
= g(s) =

(10s + 1)

(5s + 1)(20s + 1)
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2. (30 pts. total)Assume that the inlet concentration momentarily changes, allowing some of
the reactant to flow into the system. You can assume thatu(t) = δ(t), with the system
modeled as:

y(s) =
(10s + 1)

(5s + 1)(20s + 1)
u(s)

a. (2 pts.) What isu(s)?

b. (6 pts.) Given this input, what is the initial value fory, y(t = 0)?

c. (6 pts.) Given this input, what is the final value fory, y(t = ∞)?

d. (10 pts.)What is the actual response of the outlet concentration as ananalytical expression,
y(t)? Note that:

L−1

{

1

τs + 1

}

=
1

τ
e−

t
τ

e. (6 pts.) Sketchy(t).
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3. (20 pts. total) The inlet concentration for your system can be manipulated,but there are
limits to the response of the inlet concentration value. What is the Laplace transform of the
following function of time,C0(s)?

C0(t)

t = 0 t = 1 min t = 3 min

0.0

0.5

1.0

C0(t) =















0
0.5 + 0.5t

1.0
0

t ≤ 0
0 ≤ t ≤ 1
1 ≤ t ≤ 3

3 ≤ t
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4. (20 pts. total)From the following dynamic response data, determine the values for the gain,
time constant and time delay for the real experimental system ( K, τ, α). The inlet concen-
tration is manipulated using a ratio valve and the exit concentration measurement is reported
as a signal voltage. The valve is limited in the ability to open, resulting in the abnormalu(t)
value.
b. (5 points)What is the transfer function,g(s), for this system?
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BONUS, Derive a state space model for your dynamic system from problem 2.
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13.18 Fall 2006 Quiz 1

ECHE 550, Fall 2006

Chemical Process Dynamics and Control

Quiz #1

September 8, 2005

1. (5 pts.) As an intern at GameCockCo, you get stuck in the warehouse. The warehouse has
had problems with product loss due to poor heating in the winter. The complex HVAC system
is not maintaining a uniform temperature in the warehouse due to poor mixing (channeling
in the warehouse ventilation flow). Rather than buy fans to force improved convection in the
warehouse, you suggest an improved control system, since the current system runs all furnaces
at the same rate. Four temperature sensors are available,T1, T2, T3, andT4. Three furnaces are
available,F1, F2, andF3. The furnaces run on a 0-100 scale and are controlled by a centralized
computer system.

• Increasing Furnace 1 by 10 units increasesT1 by 3 degrees,T2by 2 degrees, andT3 by
1 degree

• Increasing Furnace 2 by 10 units increasesT1 by 1.5 degrees andT2 by 5 degrees

• Increasing Furnace 2 by 10 units increasesT3 by 4 degrees, andT4 by 2.5 degrees

• Increasing Furnace 3 by 10 units increasesT2 by 1.5 degrees,T3 by 2.1 degrees, andT4

by 3.2 degrees

T1 T2 T3 T4

F1 F2 F3

Warehouse

Temperature Sensors

Develop a model in the formK ∆u = ∆y and clearly identifyK, ∆u, and∆y.
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2. (1 pt) During a production run, temperature sensor 1 is 2 degrees below optimal, sensor 2 is
1 degree above optimal, sensor 3 is 5 degrees below optimal, and sensor 4 is 2 degrees above
optimal. What problem would you solve to get the chamber backto the nominal operating
temperature (what is your∆y value?).
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3. (2 pts.) For the furnace system, it is desired to regulate the outlet temperatureTo. Both air
and oil are fed to the furnace, and both flow rates strongly influence the outlet temperature.
Draw a simple feedback control system for the furnace below.

T Fa

To

Tf

Fo

4. (2 pts.) For the furnace system, the inlet air temperature has some influence on the outlet
temperature. Draw a feedforward control system to mitigatethe effects of the incoming air
temperature on the furnace outlet temperature.

T Fa

To

Tf

Fo
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13.19 Fall 2006 Quiz 2

ECHE 550, Fall 2006

Chemical Process Dynamics and Control

Quiz #2

September 20, 2006

1. (5 pts.) For the following funciton of time:

u(t)

t = 0

t = 4

5

−5

t = 9

a). Expressu(t) as a sum of simple functions of time.
b). Findu(s), the Laplace transform ofu(t).

2. (4 pts) For the following process data, determine the gain, time constant, and time delay.
b).(1 pt) What is the first-order-plus-time-delay transfer functionfor this sytem?
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13.20 Fall 2006 Exam 1

ECHE 550, Fall 2006

ECHE 550, Fall 2006

Chemical Process Dynamics and Control

Exam #1 - October 4, 20056

1. (15 pts. total) Your nice window office at GameCock Co. is on the west side of the
building. Due to mistakes when installing the HVAC system, the temperature in your office is
poorly regulated, since the cooling takes place only in the office next door and the windows
are not insulated. Given the following steady state data:

To

Office 1 Office 2

T1 T2

Windows Windows

Insulated walls and doors

Q

• A 3 degree increase in the external temperatureTo results in a 2 degree increase inT1

• A 3 degree increase in the external temperatureTo results in a 1 degree increase inT2

• A increase of 5 units in the chillerQ results in a 4 degree decrease inT1

• A increase of 5 units in the chillerQ results in a 2.5 degree decrease inT2

a. (8 pts.) Develop a model in the formK ∆u = ∆y and clearly identifyK, ∆u, and∆y.

b. (7 pts.) Given that you wantT1 to remain constant and you wantT2 to decrease by 1
degree, what would have to happen to Q andTo?
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2. (30 pts. total)Develop a dynamic model of your office. Assume the following:

To(t)

Office 1 Office 2

T1(t)

T2(t) = y(t) + T2ss

Windows Windows

Insulated walls and doors

Q(t)

Qin(t) = c1 (To(t))
4

Qa(t) = hA (T1(t) − T2(t))

• The offices have no air moving in or out, but the air in the offices is well-mixed (fans)

• The volume of air in each office isV1 andV2 respectively

• The heat capacity and density of the air in each office isCp andρ

• The rate of energy entering the each office from the outside isequal:Qin(t) = c1(To(t))
4

• The rate of energy transferred across the thin wall is:Qa(t) = hA(T1(t) − T2(t))

• Physical properties and parameters do not change with time

• Deviation values are:

x1(t) = T1(t) − T1ss

x2(t) = T2(t) − T2ss = y(t)

u1(t) = To(t) − Toss

u2(t) = Q(t) − Qss

a. (10pts.)Develop a dynamic model for this system.

b. (10pts.)Develop a linear dynamic model for this system in deviation form.

c. (10pts.)Put your linear model in state space form and clearly identify A, B, C, andD.
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3. (15 pts. total) The external temperature follows the following trajectoryduring the day.
What is the Laplace transform of the following function of time,u1(s)?
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0 0 ≤ t ≤ 9
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4. (15 pts. total)From the following dynamic response data, determine an empirical transfer
function for the system.
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5. (25 pts. total) The previous employee that sat inf your office developed the following
model for office temperature as a function of external temperature.

a. (5 pts.) For the following differential equation:

2
d2y

dt2
(t) + 3

dy

dt
(t) + 5y(t) = 5

du

dt
(t) + 10u(t)

show that for the initial conditionsy(t = 0) = dy
dt

(t = 0) = 0 andu(t = 0) = 0, the following
transfer function relationship holds:

y(s) =
5s + 10

2s2 + 3s + 5
u(s)

b. (5 pts.) What are the poles of your transfer function? What are the zeros?

c. (5 pts.) What is the gain of this model?

d. (5 pts.) Given that you implement a negative step change of magnitude5 at time zero in
the inputu(t), what is the initial value fory? Use the Initial Value Theorem to findy(t = 0).

e. (5 pts.) Given that you implement a negative step change of magnitude5 at time zero in the
inputu(t), what is the ultimate response? Use the Final Value Theorem to findy(t = ∞).
Bonus: Does this model make sense for the system?
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Chapter 14

Procedureal Programming Tutorial

14.1 INTRODUCTION

Engineers often use computers to solve problems. Sometimesengineers use a high level
programs (like Aspen, pSPICE, or AutoCAD) but sometimes these tools don’t do exactly what
needs to be done. Various languages and environments allow you to use very general concepts
to come up with solutions to problems. These concepts are quite portable, in that the same
concepts for procedural problem solving exist in almost every language or environment. The
following is a list of the basic concepts.

• Variables

• Input and Output

• Assignment Statements

• Data Structures

• IF statements

• FOR statements

• WHILE statements

• Scripts

• Functions

• Debugging

• Pseudo Code

• Compiling vs. Interpreting
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14.2 Variables

Computers store information in memory. At a very low level, the operating system (Win-
dows, Mac OS, Linux, Unix) keeps track of memory and what application is using memory.
When an application needs more memory, it asks for a certain amount of memory. If the
memory is available, a memory address is provided to the program to use. Luckily, we don’t
usually need to keep track of memory addresses. Generally, we usevariables to reference
values in the memory.

Variables usually have names that are mostly characters. Some environments have limi-
tations for variables names. Some environments are case sensitive (counter and COUNTER
represent different values). Some environment limit the length of variable names or limit the
characters in a variable name.

It really is a personal decision for you to use whatever variable name you want to that is
legal for the environment you are working in. The name shouldbe descriptive enough so you
have some idea what it is, but if it is too long you will have trouble typing it over and over and
might make more mistakes.

The following are valid variable names in MATLAB

• counter

• Counter

• new_counter

• NewCounter

• New_Counter

• Counter1

• counter_1

Most environments require that variable names start with a character, so “1counter” would not
be valid. Also, spaces in variable names are not usually allowed, like “counter 1”.

Matlab does not require you to specify the type or size of variables before you use them.
Some languages force you to specify exactly what type and size each variable is.

14.3 Assignment Statements

You can assign a variable a new value using an assignment statement. The value on the
right hand side of the equality is evaluated and assigned to the variable named on the left hand
side. Sometimes this is simple, like

a=1
b=2

Sometimes this is more complicated, like
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c=a*b+3

Sometimes you use simple math functions provided by the environment

a=sin(2)
b=log(3)

Note that you don’t have to use just numbers in the function call, you can use variables in
the functions:

c=sin(a)+log(b)

You can call a function using a variable in the function call and reassign the variable value:

a=log(a)

Sometimes you write your own function to do something special:

c=MyFunction(3)

Sometimes a function takes multiple input arguments:

c=conv(a,b)
a=rand(3,2)

In Matlab, you can have multiple output arguments in a function, so two variables are
assigned values after the function is evaluated:

[a,b]=find(c)

14.4 Input and Output

There are various ways to get information into and out of the computer. For input, some-
times you type in values at the keyboard when prompted, sometimes you load a data file.
There are more interesting ways to get input values as well. Audio input can be read using a
mic. Video input can be read using a camera. Various environmental sensors (for temperature,
pressure, or others) can be read using specialized data acquisition devices (DAQ).

The following Matlab command would prompt the user for information and assign the
value to the specified variable:

age=input(’What is your age in years?’)

The variable age would contain the user input value. Note that the user could type in a
number or something not a number. For advanced programming,you may want to check to
see that the user input actually is what you expect (a positive number between 0 and 120 in
this case).

In many cases, you may have a data file that must be read. For simple numeric files with
m columns andn rows of numeric data, Matlab can use the load command.

data=load(’Filename’)
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This would read the specified file and put then × m data values into the variable data.
For more complex file reading, you can use fopen, fread, fwrite. For dealing with character
strings, type “help strfun” to see what functions are available in Matlab.

As for output, there are various ways to present results. Oneeasy way is to write text to
the computer screen:

disp(’Something is wrong!’)

This would just print the message on the Matlab screen. Or fornumerical warnings:

disp([’The reactor temp is ’ num2str(temp) ])

This would acutally use the current number in the variable temp to make the output warn-
ing message.

You can save data to a file:

save filename a b c

This would save the values of the variables a b and c into the specified file. You could load
those variables again using:

load filename

and you would have a, b, and c back in the memory of Matlab. Notethat this file format is
not human readable. To make a nice looking text file that you could open and look at in a text
editor, use:

save filename a b c --ascii

Another type of output is visual. The plot command is very powerful in Matlab.

plot([1 2 3],[4 5 6],’x’)

There are even ways to play audio data, producing output in the speakers

sound(rand(1000,1))

Using a DAQ system, you can send output to an actuator, like a valve or a motor.

14.5 Data Structures

There are some basic data types available to use for solving problems. The basic types are
integers, real numbers, characters, and boolean values.

Integers are integral values, like 0, 1, -2, etc. Languages usually limit the maximum and
minimum integer values. Matlab on some platforms is limitedto approximately±1e300.

Real numbers are numbers that are not integral, like 5.5 and -3.333. These are usually
referred to as doubles, short for double precision. On 32 bitmachines, a double precision
value uses 64 0/1 bits to represent the value. One bit is for the sign, some of the bits are for
the exponent value, and the rest represent the binary value of the mantissa.

Characters are basically anything on the keyboard.
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Boolean values are either TRUE or FALSE. In Matlab, a positive numeric value means
TRUE and 0 or anything negative is false. Logical operators return 0 or 1, but 5 or 0.5 would
be seen as true, just like -2 would be seen as false.

Data structures are really more complicated data types. Themain ones engineers use are
arrays. Arrays are just indexed data values. A one dimensional array is a vector, while a two
dimensional array is a matrix. Vectors are all matrices in Matlab, so they could be nx1 or 1xn
(column or row vectors).

a=[5 6 7]
b=[5 ; 6 ; 7]

The previous would create a row vector and a column vector in matlab. You can access
individual elements of an array, so a(2) would ask for the second element of a.

c=a(2)

Matlab also allows you to access multiple elements of an array,

c=a(2:3)

This would assign c as a vector with only the second and third elements of a.
Matrices are two dimensional arrays. Each element in a matrix has a row and a column

index.

a=[ 4 5 6 ; 7 8 9]

This makes a matrix with two rows and three columns. You can access the row and column
elements as a(row,col) so

a(2,3)

would access the second row, third column element. In this case, a value of 9.
You can use variables as the index when accessing elements:

a=[ 4 5 6 ; 7 8 9]
b=2
c=a(b,b)

Which would return the 2,2 element of a, in this case 8.
Note that Matlab will complain if you try to access an elementof an array that has not

been assigned yet, like a(5,5) in this example.
Characters can be used in an array. An array of characters is usually called a string:

a=’This is a string.’
b=a(1:4)

This would put the first four elements of a into the variable b,in this case ’This’
Complex Data Structures
Matlab also allows you to have more complex data structures,so that multiple pieces of

data are associated with a single variable.

person.age=30
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person.name=’Tom’
person.phone=5551234

This means you could pass the data structure to a function with a single variable name.

14.6 IF statements

IF statements allow you to check a logical condition. If the logical condition is met, you
do something. If not, you may do something else.

IF (1<0)
disp(’Amazingly, 1 is less than 0’)
c=1

END

Notice the indentation for the IF statement. Indentation helps read your code. As you see,
you can put one statement to execute, or as many as you want.

IF (a<b)
disp(’Apparently, a is LESS than b’)

ELSE
disp(’Apparently, a is NOT LESS than b’)

END

You can put extra logical conditions in an IF statement as well.

IF (a<b)
disp(’Apparently, a is LESS than b’)

ELSEIF (a>b)
disp(’Apparently, a is GREATER than b’)

ELSE
disp(’Apparently, a must be EQUAL to b’)

END

If you have multiple IF and ELSEIF statements. If one condition is met, the conditions
after and the ELSE code will never execute.

IF (a<5)
disp(’Apparently, a is LESS than 5’)

ELSEIF (a>2)
disp(’Apparently, a is GREATER than 2’)

ELSEIF (a<7)
disp(’This will never execute, since one of the first two

conditions must be true’)
ELSE

disp(’Apparently, a must be EQUAL to b’)
disp(’This will never execute, since one of the first two

conditions must be true’)
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END

You can have an IF statement inside an IF statement.

IF (a<b)
IF (a>0)

disp(’Apparently, a is LESS than b and positive’)
ELSE

disp(’Apparently, a is LESS than b and not positive’)
END

ELSE
disp(’Apparently, a is NOT LESS than b’)

END

You can also have more complicated logical statements usingAND and OR operators

IF ((a<b) & (a>0))
disp(’Apparently, a is LESS than b and positive’)

END

14.7 FOR statements

If you want to do something a few times, and you know how many times you want to do
it, use a FOR statement.

FOR i=1:3
a(i)=i*i;

END

This will make a into a vector [1 4 9].
You can use variables for the index as well.

l=length(a)
FOR i=1:length(a)

b(i)=a(i)^2;
END

So, no matter how long the vector a is, this will put the elements of a, squared into b, and
b will be the same length as the vector a.

You can also have nested FOR loops as well.

[rows,cols]=size(a)
FOR rowcounter=1:rows

FOR colcounter=1:cols
b(rowcounter,colcounter)=a(rowcounter,colcounter)+5

END
END
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14.8 WHILE statements

WHILE statements execute until some condition is met. This means they could execute
forever, if the condition is not ever met. These statements are useful if you don’t know how
many times you want something to execute.

sum=0
data=1
WHILE (data>0)

data=input(’Enter a positive number, or 0 to quit’)
sum=sum+data

END
disp([’The resulting sum is ’ num2str(data)])

This would keep prompting the user for another number, and add that number to sum.
When the user enters 0 (or any negative number) the loop breaks out and continues on, dis-
playing the result.

14.9 Scripts

In Matlab, you can start up the Matlab environment and start entering commands at the
prompt, > >. This is great for simple things, but for anythingslightly complex you may want
to save your commands. Type “edit” at the prompt to open the text editor. You can type a
bunch of commands in that text editor and save it on the computer. Usually the file name ends
with a .m extension. To run your commands from the text file, you have multiple options.

Assuming the file name has no spaces and starts with a character, you can just type the
file name at the prompt and all the commands in the file would execute (until it hits some sort
of error or finishes). This also assumes Matlab is currently specified the directory where you
saved your file. The “current directory” at the top right tells you where Matlab thinks it is right
now. Hit the ’...’ button to change the directory.

For a few lines of text, you can highlight the selected commands from the text editor and
copy-paste the text into the Matlab window. CTRL-C is copy and CTRL-V is paste. You can
also highlight the selection, then right click on the text and select ’evaluate selection’.

14.10 Functions

Script files end with a .m extension and do something specifiedby the text in the file.
In some cases, you may want to generalize a procedure to do something, like compute the
mean of a vector. You can specify a function in a file with a .m extension similar to a script.
The function must be saved in a file named procedurename.m. The first line of the file has a
specific format. For example, the following would need to be saved in a file myfunction.m in
the current directory of Matlab. (Typingedit myfunction at the command prompt will
open the Matlab editor and create a new file myfunction.m)

function mean = myfunction(x)
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n=length(x)

mean=0

for i=1:n

mean=mean+x(i)

end

mean=mean/n

This function takes what ever inputx, figures out the length ofx, figures out the sum of the
elements in the input, then calculates the mean of the vector. This assumesx is a vector (or a
scalar value). You can call this function from another function or call it from a script or call it
from the Matlab prompt.

The variablex is whatever you call the function with, so the following would work:

myfunction( [ 1 2 3 4 ] )

a = [ 3 4 5 6]

myfunction(a)

Note that the variablesn andi are used inside the function. These are called local variables.
If you had a variable namedn or i outside of the function, calling the function would not
change the value of the variables outside the function.

n=5

myfunction( [ 1 2 3 ] )

Here,n would still be 5, although insidemyfunction n will have a value of 3.

You can specify multiple outputs for your functions as well.

function [minval, maxval]=minmaxfunction(x)

minval=x(1)

maxval=x(1)

n=length(x)

for i=2:n

if (x(i)<minval)

minval=x(i)

end

if (x(i)>maxval)

maxval=x(i)

end

end

Think about what happens in this function. Ifx is length 1, the resulting minval and maxval
are justx. Otherwise, it goes through the indices ofx from 2 to the end looking for a bigger
and bigger or smaller and smaller values.
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14.11 Debugging

Debugging just means fixing your code. For example, you may write code that goes past
the end of a vector or does not produce the desired output. Youmust think about the variable
values at each step in your code and think about what is happening at each step. This is called
a variable trace. Sometimes it helps to print out variable values at many points in your code
and see where things go wrong. Matlab will print out variablevalues if you type a variable
name by itself.

>> a=2
a =

2
>> a
a =

2

You can suppress this normal output by using a semicolon at the end of a line.

function out=myfunction(x)
count=0
out=0
while (count<length(x))

out=x(count)
count=count+1

end

This function will not work. The count variable starts at 0, so Matlab will complain when
you try to access the 0th element of the valuex.

Pseudo Code

Pseudo Code is just a way of sketching out a solution methodology. Using pseudo code,
you don’t have to use accurate code syntax. You can summarizesteps into a single idea, like
“find the minimum and maximum values of the data” or “save the data in the specified format.”

Compiling vs. Interpreting

On a PC, you have executable programs. These are special fileswith the commands needed
to run something on the computer. Executable files on a PC end in .exe. These are created by
compilers. You take source code written in C or C++ or Fortranor some other language and
run it through a compiler to make an executable file. For example, MS Word is a .exe file and
so is Matlab.

Matlab, MathCAD, and Java are all interpreted environments. Interpreted files rely on
some executable to be running. Matlab figures out what to do for a given .m file. Interpreted
environments are usually slower than compiled code.
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14.12 Exercises

Start Matlab and try out the following examples. Type the bold lines that do not start with
a % symbol in the Matlab prompt or in the editor, then run them.In some cases, make the
specified function or script file and try running it in the Matlab prompt. Type ’edit’ at the
prompt to get the Matlab editor. You can type complex commands in the editor, then run them
as a single .m file at the command prompt.

% Comments vary from language to language.
% Use comments to explain what your code is doing.
% In Matlab, anything to the right of a % is treated as a comment!

% DATA STRUCTURES

% We use variables to represent data of different types

% Traditional data structures include:

% integers

i=1
j=5

% real numbers (double precision)

pi=3.141
epsilon=0.001

% strings

name=’bubba’
city=’columbia’

% and boolean TRUE FALSE expressions.
% Note that in MATLAB, boolean is expressed as 0=false, 1= true.

flag1 = ( 1 < 0 )
flag2 = ( 1 > 0 )

% Also note that there are various Boolean operators you can
use.

% These include <. >, <=, >=, ==, ~=.
% In Matlab & means logical AND, | means logical OR,
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% ~ means complement, and xor is XOR
% See: help relop

% Special data structures

% Arrays - Arrays contain multiple pieces of data indexed
% along one or more dimensions for example, a vector can be
% seen as a 1D array of real numbers and a matrix can be
% described as a 2D array of real numbers.

b=[1 2 3 4]
b(1)
b(1:2)

A=[1 2 3;4 5 6]
A(1,1)
A(:,1)
A(:,1:2)

% Note that you can use N dimensional arrays,
% but matrix multiplication won’t work:

C(2,2,2,2)=5

% Note that strings are really just a 1D array of single characters

name=’bubba’
name
name(2:4)

% You can use arrays of strings

names={’Bob’,’Sue’,’Tom’}
names(2)

% Structures - Structures provide convieninet representation

% for storage of data associated with a single name.

ssc.a=[1 0 ; 0 1]
ssc.b=[1 ; 0]
ssc.c=[1 0]
ssc.d=[0]

150



ssc.name=’Test Model 1’
ssc.date=’2/25/03’

% Most languages handle strings and structures differently,
% so watch out.

% MATLAB includes many nice functions for matrix manipulation

% and matrix operation that are not available in other languages.

% Matlab also includes data structures for complex numbers
% (also not available in most other languages.

% Assignment statements

% Most of you code is assignment statements.
% When you write a line of code, the name left of the = takes

% on the values of whatever is right of the =.

c=2+3
c=c+2+c*c

% Some functions are built in.

d=sqrt(5)
e=sin(2)
f=exp(3)

% Multiple expressions can be evaluated at once, be careful
% of brackets.

g=sin(exp(sqrt(6)))

% Order of operations - when making an assignment for a
% complex expression, you follow the standard order of
% operations:

% Please Excuse My Dear Aunt Sally

% Parens, inner first
% Exponents, Powers or root
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% Multiply or
% Divide (left to right)
% Add or
% Subtract (left to right)

c= 100 - 10*(2 + 3) + 4
d= 36 / 4*(5 - 2) + 6

% If you have doubts, use more parens to specify the desired
order.

% FLOW CONTROL

% If statements
% If statements allow for sections of code to be executed only

% if a condition is met. The condition must evaluate to a TRUE

% or FALSE value.

x=3

if (x>0)
x=x^2

end

x=-3
y=-2

if ( (x<0)&(y<0) )
x=x^2;
y=y^2;

end

x,y

% Note the indentation of code inside the IF statement.
% This really helps code be legible.
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% If / Else
% Usually, IF syntax includes an else condition. Whenever the

% condition is not met, the second section of code executes.

x=0

if (x>0)
disp(’x is strictly positive’)

else
disp(’x is 0 or negative’)

end

% Usually, IF syntax includes elseif conditions. The boolean

% values are checked in order. Whenever a condition is met,

% the corressponding section of code is executed. Note that

% even though a second conditional statement may evaluate to

% true, it never gets a chance to execute.

x=1

if (x==0)
disp(’x is 0’)

elseif (x==1)
disp(’x is 1’)

elseif (x==2)
disp(’x is 2’)

elseif (x==3)
disp(’x is 3’)

elseif (x==1)
disp(’x is 1, second time, will not run’)

else
displ(’x is not 0, 1, 2, or 3’)

end

% LOOPS
% Loops let you do repetitive stuff easily.

% FOR
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% FOR loops are useful when you know how many times you may
% want to run the loop before you enter the loop. This is
% especially good for manipulating data in an array.

x=[2 4 3 6 5 7 2 1]
s=length(x)

for i=1:1:s
i
x(i)=x(i)^2;

end
x

% In MATLAB, you can start the loop at any number and
% increment by any value.

x=[]
for i=2:5:30

x=[x i]
end

% Note that array indices in MATLAB start at 1. For an array

% (vector) of length s you will get an error if you try to
% access elements 0 or s+1.

x
s=length(x)
x(0)
x(s+1)

% WHILE
% WHILE loops continue to evaluate until the a boolean value

% is not longer positive These are usually used when the
% number of iterations in the loop are not know before
% entering the loop.

value=input(’Input a number or Q to quit: ’,’s’);
value=str2num(value);
while (value)

newvalue=value*value;
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disp([’New value is ’ num2str(newvalue) ]);
disp(’ ’);
value=input(’Input a number or Q to quit: ’,’s’);
value=str2num(value);

end

% NESTED STATEMENTS

% You can have an if statement inside an if statement:

x=1
y=3
if (x<0)

if (y<0)
disp(’ x and y are negative’);

else
disp(’ x negative, y positive or 0’);

end
else

if (y<0)
disp(’ x positive or 0 and y negative’);

else
disp(’ x and y positive or 0’);

end
end

% Note the indentation increases as more statements are nested.

% Nested FOR / WHILE

A=[]

for i=1:3
for j=1:3

[i j]
A(i,j)=i+j;

end % end for columns loop
end % end for rows loop

A

% Variable trace / debugging
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% When you have an error, the error may be apparent or hidden.
% An apparent error may cause the program to stop and report

% the offending line. The error may be a syntax error or a
% coding logic error (array index problem, divide by zero, etc)
% Hidden errors cause the code to run in unintended ways.
% Wither way, you may need to "trace" variable values to make
% sure the program is performing as expected. In MATLAB, you

% can print variable values just by using the name of the
% variable without a semicolon.

A

% or use whos to get information on a variables

whos

whos A

whos n*

% SUBROUTINES

% User defined scripts
% In MATLAB, you can save a string of commands in a textfile

% with a .m extension. Typing the name of the command at the

% prompt will cause the commands to be executed as if you
% were typing commands at the prompt.

t=[-1:.01:5];
u=t>=0;
y=exp(-t).*u;
subplot(2,1,1)
plot(t,u)
title(’My name is’)
subplot(2,1,2)
plot(t,y)

Print out the plot to turn in.

% User defined function
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% If you continually are doing the same procedure, you can
% generalize the procedure to make your own function. Some
% functions are built in (sin, exp, length, etc).
% The function takes input arguments, performs some
% operations, and returns output values. In MATLAB, you put

% your function in a text file with a .m extension.

function mean = stat(x)
%STAT Interesting statistics.
n = length(x);
mean = sum(x) / n;

% You can have more interesting functions that return
% multiple outputs:

function [mean,stdev] = stat(x)
%STAT Interesting statistics.
n = length(x);
mean = sum(x) / n;
stdev = sqrt(sum((x - mean).^2)/n);

% Scope of variables
% Variable scope is important!
% Inside functions, you may use new variables. These are
% often called local variables. In the previous example, n is

% a local variable. n takes a value when the function is
% called. If variable n had a value outside of the function,

% it would not be changed.

n=5
stat([1 2 3 4 5 5 6 7 8])
n

% Variables can be defined as global. This means that they
% can be changed inside a subroutine, assuming the subroutine

% knows it is a global variable.

clear n
global n
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n=5
stat([1 2 3 4 5 5 6 7 8])
n

% Recursive functions

function out=fact(x)

if (isreal(x))

if (x==1)
out=1

else
out=x*fact(x-1)

end
end

% Everything to this point has been with respect to procedural

% programming. CS often discuss object-oriented programming.

% This is a methodology that considers all data as objects.
% These objects all have a class. One object may be a
% subclass of another object. For example, you may have a
% class student. There may be a subclass undergraduate and a

% subclass graduate. All students should have a name, but
% undergraduates would have class standing and graduate
% students would have advisors. Procedures can be written for

% each class. MATLAB is not easy to use for object oriented

% programming, I suggest Java.

158



Chapter 15

TLAs of PSE

Three Letter Acronyms of Process Systems Engineering

There are many acronyms used in engineering and technical fields. This may serve as an
initial foray into

Note that many of the terms are not actually acronyms, but rather initialisms. To my
understanding, an acronym is usually pronounced as a word rather than individual letters.

From http://www.randomhouse.com/wotd/index.pperl?date=19980825

In technical use among linguists and lexicographers, thereare two main terms. An
acronym is used for a word formed from the initial letters of the words (or main
words) in a series of words, when the resulting word is pronounced as a word.
Thus, OPEC, from Organization of Petroleum Exporting Countries, is considered
an acronym, because it is pronounced "OH-peck," not as "Oh-pee-ee-see."

Additionally, some terms listed here were not borrowed fromother sources. The appropriate
acronym of initialism was included for completeness of sometopics. Terms that were not
borrowed from other sources will denoted by an asterict. Example: MUT∗Made Up Terms.

15.1 VMM Various Modeling Methods

FPM∗ Fundamental Process Model
A FPM is based on fundamental principles derived from physics. These fundamental

principles may be partially erroneous due to assumptions made during the model derivation.
Some examples of simplifying assumptions include assumption of a well mixed reactor or the
assumption of no axial dispersion in a plug flow reactor. As long as the assumptions hold and
the fundamental principle is true, the model should be accurate. One may extrapolate using a
FPM with some limited degree of confidence. Data may be required to fit the unknown model
parameters.

EPM∗ Empirical Process Model
An EPM is based on process data and limited physical insight.The coeficients of the

model are derived from the data once the model form is established. For example, given data
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for draining of water from a tank, an EPM may be assumed to be exponenental decay, and the
height as a function of time could be established to follow the functionh(t) = 3e−2t. A FPM
could be derived from the solution to a dynamic mass balance equation for the tank, assuming
flow out of the tank is proportional to the square root of the height of water in the tank

V
dh

dt
(t) = 0 − k

√

h(t)

In the FPM, the relationship should hold for any tank system given known values forV
andk. Empirically derived models typically have difficulty extrapolating to new operating
conditions different from those where the model was established.

MEB∗ Mass and Energy Balance
This is really the basis for a large amount of chemical engineering. Given a system with

a fixed boundary and mass or energy entering or leaving the system, the general form of the
MEB appears as:

accumulation = in − out + created − destroyed

PME∗ Process Modeling Environment
Many PME’s are available for computational modeling of chemical systems
LPS∗ Lumped Parameter System
IDS Infinite Dimensional System
SSS Steady State Simulation
ODE Ordinary Differential Equation
PDE Partial Differential Equation
FEM Finite Element Modeling
FVM Finite Volume Modeling
NSE Navier Stokes Equations
MDS Molecular Dynamics Simulation
MMS Molecular Modeling Simulation
CCS∗ Computational Chemistry Simulation
DFT Density Functional Theory
MCS Monte Carlo Simulation
KMC Kinetic Monte Carlo
DEM Discrete Element Modeling
DAE Differential Algebraic Equation
CIC ∗Consistent Initial Conditions
HDS Hybrid Dynamic System
MLD Mixed Logical Dynamic
ASS∗ Autonomous Switched System
PBE Population Balance Equations
PSD Particle Size Distribution
MWD Molecular Weight Distribution
PVM Process Video Microscopy
MDP∗ Multi Dimensional PBE
MSS Multi Scale System
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MSM Multi Scale Modeling
ANN Artificial Neural Network
PNS Peri Net Simulation
HMM Hidden Markov Model
SBS∗ Stochastic Batch Simulation

15.2 ODEs

ODE Ordinary Differential Equation
NSS∗ Nonlinear State Space
LSS∗ Linear State Space
MIMO Multiple Input Multiple Output
SISO Single Input Single Output
LTI Linear Time Invariant
ONF∗ Observability Normal Form
CNF∗ Controllability Normal Form
LTV Linear Time Varying
TSE Taylor Series Expansion
LDS∗ Linearization of Dynamic System
AGI∗ Adams Gear Integration
RKI∗ Runge Kutta Integration
DTS Discrete Time Systems
SDS Sampled Data System
DTM Discrete Time Modeling

15.3 BLA Basic Linear Algebra

MRR∗ Matrix Row Reduction
MEP∗ Matrix Eigenvalue Problem
CEP Characteristic Equation Polynomial
LEV∗ Left Eigen Vector
REV∗ Right Eigen Vector
MPP Moore-Penrose Psuedo-Inverse
LPI∗ Left Pseudo Inverse
RPI∗ Right Pseudo Inverse
JNF∗ Jordan Normal Form
MES∗ Matrix Exponential Solution
STM State Transition Matrix
LUD∗ Lower Upper Decomposition
DMD Dumage Mendolson Decomposition
SVD Singular Value Decomposition
COA∗ Controllability and Observability Analysis
COG∗ Controllability and Observability Grammians
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15.4 CNM Computational and Numerical Methods

FPA Floating Point Arithmetic
SMA Sparse Matrix Algebra
FDA Finite Difference Approximation
SNS Simple Newton Step
IVP Initial Value Problem
FVP Final Value Problem
NMS Newton’s Method Solution
BMS Bisection Method Solution
GSC Grahm Schmitt Colocation
MIM Model Identification Methods
SSG Steady State Gain
OTC Open loop Time Constant
PLS Partial Least Squares
PCA Principal Component Analysis
PRBS Pseudo Random Binary Sequence
CLI Closed Loop Identification
LSE Least Squares Estimate
PFI Plant Friendly Input
MSA Multivariate Statistical Analysis
MOM Method Of Moments

15.5 LTM Laplace Transform Modeling

LOT Linear Operator Theory
OTF Open loop Transfer Function
DDF Dirac Delta Function
EDF Exponential Decay Function
HSF H Step Function
RPF Rectangular Pulse Function
SWF S Wave Function
IRF Ideal Ramp Function
FOS First Order System
TDS Time Delay System
FOTD First Order + Time Delay
SOS Second Order System
HOS High Order System
IRS Inverse Response System
LLS Lead Lag System
DFS Direct Feed System
OUS Open loop Unstable System
PZE Pole Zero Excess
SPS Strictly Proper System
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BIBO Bounded Input Bounded Output
FVT Final Value Theorem
ITT Initial Value Theorem
LCF Linear Composite Function
PFE Partial Fraction Expansion
ILT Inverse Laplace Transform
FRA Frequency Response Analysis
RHP Right Half Plane
LHP Left Half Plane
HPF High Pass Filter
LPF Low Pass Filter
BPF Band Pass Filter
CTF Open loop Transfer Function

15.6 DTM Discrete Time Modeling

FIR Finite Impulse Response
FMM Fading Memory Model
ZOH Zero Order Hold
ARM Auto Regressive Model
MAM Moving Model
ARMA Auto Regressive Moving Average
DVM Discrete Volterra Model
VLP Volterra Laguere Polynomial

15.7 NSA Nonlinear System Analysis

SSL Steady State Locus
SSM Steady State Manifold
ASR Asymmetric Step Response
HNO Hard Nonlinear Operators
AS Actuator Saturation
AH Actuator Hysterisis
VS Valve Stiction
SLC Stable Limit Cycle
PFB Pitch Fork Bifurcation
SHB Sub (Super) Critical Hopf Bifucation
PPA Phase Plane Analysis
SF Stable Focus
UF Unstable Focus
SN Stable Node
UN Unstable Node
SP Saddle Point
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PNM Process Nonlinearity Measures

15.8 BFC Basic Feedback Control

FCS Feedback Control System
STA Setpoint Tracking Analysis
DRA Disturbance Rejection Analysis
MMA Model Mismatch Analysis
DCS Distributed Control System
DAQ Data Acquisition
MNF Measurement Noise Filter
SSC Steady State Control
ECL Explicit Control Law
ICL Implicit Control Law
OLC Open Loop Control
NSC Nyquist Stability Criterion
CLS Closed-Loop Stability
FFC Feed Forward Control
PID Proportional Integral Derivative
ZNT Ziegler Nichols Tuning
CCT Cohen Coon Tuning
SAE Sum Absolute Error
SSE Sum Square Error
QDR Quarter Decay Ration
NST Ninety-five percent Settling Time
SSO Steady State Offset
SRC Step Response Curve

15.9 MNC Multivariable and Nonlinear Control

MTF Multivariable Transfer Function
STF State space Transfer Function
GSC Gain Scheduling Control
FLC Fuzzy Logic Control
NNC Neural Network Control
MMC Multi Model Control
IMC Internal Model Control
RGA Relative Gain Array
RLD Root Locus Diagram
MCM Multivariable Control Methods
MDC Multivariable Decoupling Control
MPC Model Predictive Control
DMC Dynamic Matrix Control
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FSF Full State Feedback
MRC Multi Rate Control
LQR Linear Quadratic Regulator
LQG Linear Quadratic Gaussian
EKF Extended Kalman Filter
DGC Differential Geometric Control
IOL Input Output Linearization
SEL State space Exact Linerization
TDF Two Degree of Freedom
SSI SubSpace Identification
FFT Fast Fourier Transform
DSC Direct Synthesis Control
HIC H Infinity Control
MSC Mu Synthesis Control
ICM Inferential Control Methods
ACM Adaptive Control Methods
CCC CasCade Control
BBC Bang Bang Control
OOC Open loop Optimal Control
OCT Optimal Control Theory
LSC Lyapunov Stability Criterion
SGT Small Gain Theorem
LSC Loop Shaping Control
PMT Phase Margin Tuning
GMT Main Margin Tuning
NSC Nominal Stability Criterion
NPC Nominal Performance Criterion
RSC Robust Stability Criterion
RPC Robust Performance Criterion
MDD M Delta Diagram
MLS Measurement Location Selection
RTO Real Time Optimization

15.10 SPC Statistical Process Control

PDF Probability Density Function
GDF Gaussian Distribution Function
NDF Normal Distribution Function
WDF Weibel Distribution Function
BDF Binomial Distribution Function
STT Student T Test
ARE Algebraic Riccatti Equation
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15.11 FDE Fault Diagnosis and Estimation

FDI Fault Detection and Isolation
QTA Qualitative Trend Analysis
ANN Artificial Neural Networks
RBF Radial Basis Function
BNN Butterfly Neural Network
HPL Hidden Perceptron Layer
SEM State Estimation Methods
PEM Parameter Estimation Methods
LOE Luenberger Observer Estimation
KFE Kalman Filter Estimation
WSS Wide Sense Stationary
ACF Auto Correlation Function
GDW Gaussian Distributed White noise
MHE Moving Horizon Estimation
RDA Residual Direction Analysis
FGM Fault Gain Matrix
EIV Error In Variables
MLM Maximum Likelihood Methods
ERS Expert Rule System
FTA Fault Tree Analysis
SDG Sign Directed Graph
DEA Disturbance Estimation and Analysis
OOP Object Oriented Programming
BBN Bayesian Belief Network
HMI Human Machine Interface
AAM Alarm Analysis Methods
AFH Alarm Flooding Handling

15.12 NOM Numerical Optimization Methods

NLP NonLinear Programming
KKT Karush Kuhn Tucker
LP Linear Programming
QP Quadratic Programming
IPM Interior Point Methods
GA Genetic Algorithm
SA Simulated Annealing
MINLP Mixed Integer Nonlinear Programming
GBD Generalized Benders Decomposition
OA Outer Approximation
DO Dynamic Optimization
MIDO Mixed Integer Dynamic Optimization
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NCV NonConVex
CVF ConVex Function
CVS ConVex Set
UBD Upper BounD
LBD Lower BounD
CA Convexity Analysis
PSD Positive Semi Definite
IA Interval Analysis
DR Directed Rounding
CR Convex Relaxation
CH Convex Hull
PF Perturbation Function
NP Non-deterministic Polynomial
ABB Alpha Brach-and-Bound
B&B Branch and Bound
B&R Branch and Reduce
POS Pareto Optimal Surface
OUU Optimization Under Uncertainty
MLO Multi Level Optimization
BMC Big M Constraint
CP Constraint Programming
MAO Multi Agent Optimization
DPT Disjunctive Programming Techniques
GDP Generalized Disjunctive Programming
DP Dynamic Programming
PL Propositional Logic
TE Total Enumeration
RS Random Search
IP Integer Programming
MIP Mixed Integer Programming
BDM Business Decision Maker
ROI Return On Investment
OFC Objective Function Cut
LM Lagrange Multiplier
ACS Active Constraint Set
DGO Deterministic Global Optimization
SO Stochastic Optimization
DS Degenerate Solution
BFGS
BF Barrier Function
SQP Sequential Quadratic Programming
RGM Reduced Gradient Methods
CCA Computational Complexity Analysis
GC Gantt Chart
OR Operations Research
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NO Network Optimization
BNA Bottle Neck Analysis
LSS Large Scale Scheduling
DSS Decision Support Systems
LMI Linear Matrix Inequality
BMI Bilinear Matrix Inequality
PTC Polynomial Time Complexity
ROI Return On Investment
TSP Traveling Salesman Problem
SMP Set Matching Problem
SCP Set Covering Problem
KSP KnapSack Problem
RAP Resource Allocation Problems
CPD Chemical Process Design

15.13 VAI Various Applications and Industries

MPA Metabolic Pathway Analysis
MCA Metabolic Control Analysis
DDS Drug Delivery Systems
HGP Human Genome Project
DCC Distillation Column Control
CRC Chemical Reactor Control
PWC Plant Wide Control
HCS Hierarchical Control System
BRC Bio Reactor Control
IDC Interaction of Design and Control
HS Hybrid Systems
MEM Micro Electro Mechanical
PS Particulate Systems
PPS Portable Power Systems
PEM Polymer Electrolyte Membrane
WGS Water Gas Shif
ATR AutoThermal Reforming
PROX PReferential OXidation
CPO Catalytic Partial Oxidation
PEM Proton Exchange Membrane
GDL Gas Diffusion Layer
CSA Cell Stack Assembly
FPS Fuel Processing System
TMS Thermal Management System
PCS Power Conditioning System
PCI PetroChemical Industries
SCI Specialty Chemical Industries

168



WWT Waste Water Treatment
ECM Environmentally Conscious Manufacturing
PPI Pulp and Paper Industries
CCI Commodity Chemicals Industries
PI Pharmaceutical Industries
BMI Bio Medical Industries
AI Automotive Industries
FAI Food and Agricultural Industries
PGS Power Generation Systems
PPS Portable Power Systems
PEM Polymer Electrolyte Membrane
AES Alternative Energy Systems
TI Textile Industries
MD Materials Development
CC Combinatorial Chemistry
DIA Defense Industry Applications
BS Batch Systems
MCS Micro Chemical Systems
IT Information Technology
MPI Mineral Processing Industries
CPI Consumer Products Industries
SI Steel Industries
AAI Airline and Aircraft Industries
EI Entertainment Industries
BFI Banking and Financial Industries
TTI Transportation and Trade Industries
PHC pH Control

15.14 GFA Governmental Funding Agencies

NSF National Science Foundation
NIH National Institute of Health
DOE Department of Energy
NASA National Space Administration
DOD Department of Defense
ARL Army Research Laboratory
ONR Office of Naval Research
NSA National Security Agency
NRO Naval Reconnassance Office
DEA Drug Enforcement Agancy
FBI Federal Buruea of Invesitation
CIA Central Intelligence Agency
NEA National Endowment for the Arts
USDA US Department of Agriculture
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FDA Food and Drug Administration
DHS Department of Homeland Security
TSA Travel Security Agency

15.15 CPD Chemical Process Details

PFID Process Flow and Instrumentation Diagram
PV Process Variable
MV Manipulated Variable
CV Control Variable
DV Disturbance Variable
MCV Manual Control Valve
ACV Automatic Control Valve
RPS Remote Pressure Sensor
TTS Thermowell Temperature Sensor
OCM Online Concentration Measurement
MFM Magnetic Flow Meter
SFM Steam Flow Meter
LLI Liquid Level Indicator
LSM Laboratory Sample Measurement
BUO Basic Unit Operations
PFD Process Flow Diagram
PFR Plug Flow Reactor
CSTR Continuous Stirred Tank Reactor
FBR Fluidized Bed Reactor
HXN Heat eXchanger Network
BDC Binary Distillation Column
SSS Side Stream Splitter
SGP Steam Generation Plant
CWU Cold Water Utilities
HWU Hot Water Utilities
SSC Steam Stripping Column
ESP Electro Static Precipitator
EHP Environmental Holding Ponds
DEE Double Effect Evaporators
STH Shell and Tube Heat Exchanger
DIW De Ionized Water

15.16 MID Measurement and Instrumentation Devices

GC Gas Chromatograph
MS Mass Spectroscop
GCMS Gas Chromatograph / Mass Spectroscope
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IR
FTIR
ATR
RS
SEM
TEM
AFM
XFM
XPS
XRD
TGA
BOD
COD

15.17 BCP Basic Computer Programming

DTM Deterministic Turing Machine
PPL Procedural Programming Language
OOP Object Oriented Programming
BEA Binary Executable Application
IPL Interpreted Programming Language
OOO Order Of Operations
PEMDAS Please Excuse My Dear Aunt Sally
BDS Basic Data Structures
CDS Complex Data Structures
DMA Dynamic Memory Allocation
IVV Initial Variable Value
VAS Variable Assignment Statement
VNC Variable Name Collision
FCS Flow Control Syntax
IWL Infinite While Loop
FCC Finite Convergence Criteria
BLC Boolean Logic Condition
PCE Psuedo Code Example
PBD Procedural Block Diagram
DIO Data Input / Output
REH Robust Error Handling
UVT Unknown Variable Trace
NIS Nested If Statement
RFC Recursive Function Call
LVS Local Variable Scope
GVS Global Variable Scope
SNAFU Situation Normal, All Fouled Up
TANSTAFEL There is No Such Thing As A FreE Lunch
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GIGO Garbage In, Garbage Out
VSI Various Software Issues
OS Operating System
OSS Open Source Software
GNU GNU is Not Unix
GCC GNU C Compiler
GPL GNU Public License
YACC Yet Another Compiler Compiler
MPI Message Passing Interface
SMP Shared Memory Processing
G77 GNU Fortran 77
JVM Java Virtual Machine
C++ C Plus Plus
NFS Network File System
AFS Andrew File System
SMB SaMBa Network File System
SSH Secure Shell
SCP Secure CoPy
SFTP Secure File Transfer Protocol
FTP File Transfer Protocol
SMTP Simple Mail Transfer Protocol
POP
IMAP
HTML Hyper Text Markup Language
SGML Standard Generalized Markup Language
IT Information Technology
WWW World Wide Web
TCP / IP Transmission Control Protocol / Internet Protocol
RTS Real Time System
RTOS Real Time Operating System
VCP Various Computer Parts
CPU Central Processing Unit
FPU Floating Point Unit
GPU Game Processing Unit
MMU Memory Management Unit
L1C Level 1 Cache
L2C Level 2 Cache
RISC Reduced Instruction Set Commands
LCD Liquid Crystal Display
CRT Cathode Ray Tube
FDD Flash (or Floppy) Disk Drive
HDD Hard Disk Drive
USB Universal Serial Bus
SIMM Single Inline Memory Module
UPS Uninterruptible Power Supply
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PNP Plug aNd Play
PCI Personal Computer Interface
VGA Video Graphics Adapter
SVGA Super Video Graphics Adapter
XGA
WAN Wireless Area Network
SAN Storage Area Network
LAN Local Area Network
NIC Network Interface Card
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