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Preface

This is a collection of class notes, handouts, homeworlgassents, and exam problems
developed over the past years teaching courses in Procse&yEngineering at the Univer-
sity of South Carolina. Most of the material relates to ECHB,3Chemical Process Dynamics
and Control. This course covers the basics of dynamic mogletiolution and analysis of or-
dinary differential equations using Laplace methods, lbae# control, and some advanced
control topics. Information is also included from other rses, specifically ECHE 589 In-
termediate Process Control. The intermediate coursedasliore advanced topics, such as
numerical optimization and discrete time dynamic modeling

This offering is not provided as a text book for a course. Mangortant topics are not
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is expected to provide extra depth and additional exampletpics that may be lacking in
other text books. Additionally, practice problems are jed and tutorial materials on Mat-
lab/Simulink are included.
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Chapter 1

Mathematics Review

Obijectives

This is a review of various mathematical topics that you ply have seen in previous
mathematics courses. Complete the problems where indieeite “EXERCISE” . Some
topics are just mentioned, without specific review question

Function of One Variable

You should understand the basic concept of a mathematicetifun / algebraic function.
In this course, we examine process dynamics. Things chaitbdime, so some value like
the pressure in a tank, could be some function of timé(¢) or P(t) = f(t), or in a specific
caseP(t) = 5sin(3t + 2). In other cases, you could have a parameter that changes with
temperature, like a chemical reaction rate. This could Ipeesssed as(T) = kerr whereE,

k, andR are assumed constant.

The mathematical function provides a mappingsaalar function maps one value to an-
other value. f(z) : R! — R!. This can be considered a input-output relationship. Some
people also use the analogy of a “black-box” you put some raunmb(theindependent vari-
able) and another comes out (tdependent variable

Some examples as functions of time:

f(t) = sin(5t)

ft) =2t

f(t) = e

Additional examples including constants

ft)=cer,7>0,¢>0

Reaction rate as a function of temperatufie

r(T) = koerr

Note thatk,, R, andFE are constants.

You should know how to graph functions without the use of awaltor or computer,
specifically any function of time (time as independent Malg® For some functions, you may
want to pick a variety of values ofand evaluate the function values, then grgph vs. ¢t. For
a sum of functiong’ = f; + f> you can plotf; and f, and add them point by point. When you
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multiply two functions,f = f; f> you can graply; and f, then multiply them at each point.
In many cases, you need only graph the “interesting” poihte@response where something
significantly changes. Interesting points could be-at0, t = 1, ort = co. For trigonometric
functions, multiples ofr /2 may be “interesting”.

1. EXERCISE, graph the following functions by hand:

@ f(t) =

(b) f(t) =

(©) f(t) =e ¥

(d) f(t) = sin(t) + 2t

(e) f(t) =2 t+t2

A ft)=e" —t3+sin(t) — 1
@ f@t)=t (sm( )

Function of Two or More Variables

Sometimes, a value will be a function of multiple differeatyes. Again, the mathematical
function provides a mapping. A function can also map oneevéduanother valuef(z) :
R" — R, n > 0.

Example, in a topographic (elevation) map, elevation isetion of map position :

ELEVATION = z = f(x,y) or z = — (2% + y?).

Example, reaction rate expression as a function of conegoris and temperature:

r = f(CA, CB, T) = 3.06ﬁ sz CB

Example, distance from the poift, 2)

d= f(z,y) = /(x — 42+ (y — 2)?

2. Exercise:

(a) What is the function describing points on a circle of vaaias a function ofr and
y?

(b) What is the function describing points on a sphere ofusdias a function oft,
y, andz?

(c) What is the function that determines the distance froempiint(3, —1,2)?

(d) Assuming an ideal gas, what is the function for pressfigegas as a function of
volume, temperature, and moles of gas?

(e) Given that you have a function of only two variables withs inz x y and a
specified function of andy, you should realize that(x, y) gives values that can
be plotted in 3 dimensions. This surface (manifold) speciie function. Try to
sketchz = f(z,y) = 22 + y?in 3D.

10



Solving Equations of One Variable

If you have a function of one variable, you may be able to firmblationto the equation
f(z) = 0. This means you find a value efthatsatisfiesghe equation. The values ofthat
satisfy the equation are also called thetsof the equation.

Sometimes you can easily solve the equatioralytically. This means that you get a
closed-form expression for the solution that satisfies ¢humgon. For the functiorf(z) = 23,

x = 0 is the solution to the equation. For the quadratic equatioh+ bx + ¢, the roots are
g = =bivbi—dac V;f“*“c YOU SHOULD KNOW THIS EQUATION. Note, imaginary roots do not
mean that something is incorrect. In many process systegisesring problems, roots of a
polynomial should have imaginary components.

In many cases, you may have a simple polynomial functionréngires the roots to be
found. This means, givefi(x), what are values of to makef(z) = 0?

e Inthe general casér —ry)(x —rs)...(x —r,) = 0, roots =ry, ry, ... r, that satisfyf (x)

e In the specific second order case, quadratic equatiomfdr:- bz + ¢ = 0 with 2 roots
atr = —btVb%2—4ac
2a

e There are analytical expressions for roots of polynomiglsoufifth order, but they are
in general very, very complex.

There are a variety of numerical methods to find roots. You haag a very complex nonlinear
expressionf(z), that is not easily factored into roots or solved directlg. sblve f(z) = 0
you can graph the expression, then examine the graph telpest crossingst the values of
x that satisfy the function. Using the bisection method, yan evaluate the function at two
points,z; andxg, xg > x. Assuming thaff (z,) < 0 andf(xy) > 0, you know a root must
lie in the regionz, < = < zp. Bisect the region to find;, = z; + *25*= and evaluate the
function atz,,. Update bounds, keeping the region that must contain aigolut

3. EXERCISE: Find analytically solutions to the following equations:

@) f(z) = (v —3)(a*® -z +12)
(b) f(z) = (2> +62+8)(x —4)x
) f(z)=22*+3x+5

(z) =

d) f 22+ 2+ 10

4. EXERCISE: Find numerical solutions that satisfy the following eqaas.

(@) f(x) = e® — 23 + sin(z) — 1, multiple different solutionsy in radians

(b) f(w) =7+ tan"!(20w) — 2w, w in radians
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Solving Equations of Multiple Variables

In some cases, you have multiple unknown values. Using aedegfrfreedom analysis,
you must have as many independent equations as unknowrsvalaeder to find a solution.
For example, given the following equations:

3 = z+¢éY
2 = yx

You can say that = 1 — e¥ using equation 1, thep = % ory = lfey. Now, the second
equation isf(y) = 1_2€y — y which can be satisfied if (y) = 0, so try to findy such that
f(y) = 0, if it exists. Once you find a value forthat satisfies the function, you can determine
values forx from equation 1. Alternatively, for a 2D nonlinear case, gan plotf; (z,y) = 0

and f>(z,y) = 0 and determine the points where the two lines intercept.
5. EXERCISE: Find solutions to the following equations:

3 = 2%

1
4 = o4 —
Y

Check your solution to make sure your valuesf@andy satisfy both equations.

6. EXERCISE: Find solutions to the following equations:
4 = 2%+ y2
0 = 22—y

Slope of a Line

You must be able to find the slope (derivative) of a functiéﬁr(;t) or %(m) given the
function and know the derivative of simple functions. Ndtattthe derivative of a function of
time is also a function of time! You should also remember howge the chain rule!

7. EXERCISE, calculate the derivative of the following funans:

@ f(t)=3t3+2t+7

(b) f(t) =+t

(©) f(t)=¢

(d) f(t) = sin(at) + 3t
(

() f(t) = sin(3th)

The derivative evaluated at a poir%,(t) \t:ts is the slope of the functiorfi(t) at timet = ¢s.
This also defines the slope of the line tangenf to at timet = ts.

8. EXERCISE Graphf(t) = t* + ¢ and find the value of function and the value of the
slope forf(t) =t*+tatt =0,t =—1,t =1

12



Basic Algebra Properties

You should know how to solve basic equations using algelpeoperties, such as the
distributive propertygx + bx = (a + b) x.

In some cases, you will have to solve an equation that insladeariety of constants. To
solve forz in the equatiormx = by + cx with constants, b, c. First, get terms witlx on one
side:ax — cx = by, then use distributive propertya — ¢)x = by, finally divide to solve forr
in terms ofy and some constants:= %

9. Solve the following equation fof(z) = 0:
f(x) = (2z) + bz + 62) — 2(2 + 3x)

10. Solve the following equation far.
ar =xy+d+3

11. Evaluate the follow fractions with different denomimat just to make sure you know
what a common denominator is.

@5+

Partial Fraction Expansion

Partial Fraction Expansion of fractions with polynomiaistihe numerator and denomi-
nator allows for simplification of complex polynomials. Ugeur preferred method simplify
complex fractions involving polynomials.

12. EXERCISE Find A and B in the following expression

or + 2 A n B
2z +1)Br+2) 22+1 3x+2

Determinant of a Matrix
13. EXERCISE: find the determinant of the following matrices:

(a) .
12
3 4

(b) ;
12
2 4 |

(©)
110
112
12 4
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Multiple Linear Equations

You can find the solution of multiple linear equations by ra@duction / Gaussian elim-
ination. Linear equations are simple coefficients and g (noz? terms, noe® terms,
justax = b with a andb constant coefficients.) You have learned a variety of waysotee
systems of linear equations, but a standard method is oftbedaow reduction or Gaussian
elimination.

14. EXERCISE: Solve the following set of linear equations by hand:
lr+1y+1z = 0

lr+2y+32 =
r+3y+1z = 2

Scalar values

Numbers can be eonstant scalaf3, -0.1,e, ) or avariable scalar(z, y, z). These are
just basic real numbers.

Vector Values

1 T T
There are many examples of vectors in 3 dimensiong, |, | v | or [ x2 |. Note that
3 z T3

you are not limited to 3 dimensions, you could specify allifooncentrations in a reactor at a
given time:

Ca

Cp

Ce

Cp

Or you could specify all flow rates in a process at some time:

[Fy Fy F3 Fy Fs Fg Fy Fy|*

Partial Derivative / Gradient of a Multivariable Function

Partial derivative as slope of the tangent surface in doecif one variable.

15. EXERCISES

(@) Whatis of f(z,y) = 2% + y*?
(b) Whatis¥ of f(z,y) =22 + y? evaluated at = 1, y = 1?
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(c) What is the gradient of (z, ) = 22 + ¢*>?

H

(d) What is the equation of the plane tangenfte,y) = 2> + y? atz = 2,y = 1?

Integration of a Function
16. EXERCISE Integrate the following basic functions:

(8 f(z) = 2°

(b) f(z) = e

(©) f(x) = sin(az)

(d) f(z) = cos(bx)

(e) f(z) = In(z) (Integration by parts)
(f) f(x) = z%e* (Integration by parts)

Differential Equations

Basic differential equations such as:

dy
dr Y

This can be solved by separation of variables,
@ =dx
Yy

Integrating to getn(y) = x + ¢. Assuminge = 0, y = ¢” wherey is a function ofz. The
same differential equation can be put in the form

daf

—(t) = f(t

() = £(0)
with the solutionf(t) = ce’. Obviously, given that you knovwf(t) = ce, Z—JZ = ce, so
f(t) = ce' is the differential equation solution, where the constazdn be found from initial
conditions forf(t) or % (¢)

17. EXERCISE: Go to http://www.ncsu.edu/felder-public/ILSdir/ilswebml and take the

learning style testRecord your four results.
Go to http://www.ncsu.edu/felder-public/ILSdir/stylesn and read about your learning

style.
18. EXERCISE: Send Dr. Gatzke an emaigatzke@sc.edu Please include:
(a) Your learning style test results from the previous exercise

(b) Your preferred email address. You may include more than one.

(c) Your permanent home address and phone number for future surey informa-
tion.

15
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Chapter 2

Linear Algebra

Objective

Demonstrate solution methods for systems of linear eqousticShow that a system of
equations can be represented in matrix-vector form.

°t
100 20

X y

e

Flowrates in kmol/hr

Figure 2.1: Two distillation columns in series.

2.1 Example System

Two distillation columns in series with a additional feedeaim mixing in with the bottoms
stream of the first column. The flow rate of three streams akaawn. As indicated in the
Figure 2.1, the flow rate of streamsy, andz are unknown. No reaction is taking place. The
steadystate flow rates must be calculated.

Basic Mass Balance:

accumulation = in — out + created — destroyed

Mass Balance on first column (In this case, assume steady ataumulatiors 0):
0=100—-40—=x

17



Mass balance on mixing point:

O=z+30—y

Mass balance on second column:

0=y—-20—=2

Three linear equations:

0 = 100—40—=x
0 = 2+30—y
= y—20—=z2

Note that you could write too many equations.You could write an overall balance:
0=100—-40—-20—z

Ending up with an overspecified system of equations, 4 egustB unknowns. Stick with
the three equations from above for now.

Note that these are linear equationsThe unknown variables have constant linear coef-
ficients, nonlinear terms do not appear (ffono/z, noe?).

You can rearrange the set of three equations (without theathmalance equation) to get
all the variable terms on the left side and the constants enitjint. After some The set of
equations can be written as:

lx+0y+0z = 60
—lx+1y+0z = 30
Oz —1ly+1z = —-20 (2.1)

As we will see later, this can be more compactly written as:

Ar =10

You may already realize that the solution to this problem is 60, y = 90, andz = 70.
For more complex systems, this is not quite so easy. To sbkwdhree linear equations
simultaneously in a general manner, you can perform rowatsmluusing three possible row
operations:

RULES

1. Add (or subtract) one row to (or from) another
2. Multiply or divide a row by a scalar value (any real scaiay)

3. Swap position of rows

18



Typically you would perform these operations until you haveiangular representation (all
0’s above or below the diagonal). The triangular form allé@rsquick solution.
The set of linear equations in Equation 2.1 can be compactiyew using only the coef-

ficients as:

1
-1
0

0
1
-1

0
0
1

60
30
—20

We need to perform steps 1-3 to get the system of equatiomsingtilar form with ones
on the diagonal and zeros below the diagonal, like

1
0
0

a

1

0

b
c

1

d

(&

f

We can look at the original system of equations and realiaé we must get zeros in
position 2,1 (row 2, column 1) and position 3,2 (row 3, coluBdnYou can multiply row 2 by

—1 using Rule 2:

1
1
0

0
-1
-1

0
0
1

60
-30
—20

Next, swap position of rows 2 and 3 using Rule 3 to get:

1
0
1

0
-1
-1

0
1
0

60
—20
-30

Then, subtract row 1 from row 3 using Rule 1 to get:

1
0
0

0
-1
-1

0
1
0

60
—20
-90

Then, multiply rows 2 and 3 by-1 using Rule 2:

1
0
0

Subtract row 2 from row 3 using Rule 1 aga

1
0
0

0
1
1

0
1
0

0
-1
0

0
-1
1

60
20
90

in to get:

60
20
70

Now, all coefficients below the diagonal are 0. The solutian be found quickly. From
equation 3 (row 3); = 70. Using equation 2 (row 2) — z = 20, but you know that = 70
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soy = 90. Equation 1 (row 1) gives = 60, so the overall solution is = 60, y = 90, and
z="10.

CHECK SOLUTIONS: You can plug your solution back into thegimal three equations
and verify that the equations are satisfi@éilS WILL HELP YOU ON EXAMS.

Note that the general Gaussian elimination or row reduati@thod specifies that you
start with column 1 and perform operations until all coeéfits below the diagonal are 0, then
move to column 2 and perform operations until all coefficselm¢low the diagonal are zero,
etc.

2.2 Linear Equations - Special Cases

In general, there are three possibilities for a “squareb$éhear equations.

2.2.1 Case A - One solution

Consider a simpler system:+ y = 1 andx — y = 1. Graphically, you can plot the two
lines and look for the intersection of two lines which occats = 1, y = 0. The system of
equations is:

1 1|1
K

This implies—2y =0 ory =0 andx + y = 1 orz = 1 as you already realized.

In 3 dimensions (3 unknowns) each row represents a planeegwations can intersect to
give a line, and a line can intersect with a third plane to giymint, the single solution (in a
single solution case).

2.2.2 Case B - No solution

Consider the system+ y = 1 andxz + y = 2. Graphically, this represents two lines that
never intersect.

1 1|1
1 112

Note that column 1 and column 2 are identical. SubtractimgXdrom row 2 gives:

1 1|1
0 01

You know thatDx + Oy = 1 cannot be true. For a “square” system, if Gaussian elinonati
results in a 0 on the diagonal, this may be the case.

20



2.2.3 Case C - Many solutions

Consider the system + y = 1 and2z + 2y = 2. Graphically, this represents two lines
that are coincident.

2 2|2
Subtracting twice the value of row 1 from row 2 gives:

11‘1

1 111
00 ‘ 0

These equations are consistetit. + Oy = 0 andx + y = 1 are consistent. There is no
single solution, as many solutions make the equatieny + 1 consistent.

2.3 Nonsquare Systems

The original example was for a “square” system with 3 unkn®and 3 equations. You
may often end up with more (or fewer) equations than unknowns
Consider the original set of equations:

lx +0y+0z = 60
—lx+1y+0z = 30
Oz —1ly+1z = =20

One additional equation can be specified using a mass babtenites entire systent), =
100 4 30 — 40 — 20 — z.

lx +0y+0z = 60
—lx+1y+0z = 30
Oz —1ly+1z = -20
Oz +0y+1z = 70 (2.2)

These four linear equations are not “linearly indepentdéfuiLi can test this by using row
operations to make two rows identical. Simultaneouslygldow 1 and row 3 to row 2 will
make row 2 the same as row 4.

lx +0y+0z = 60
Oz+0y+1z = 70
Oz —1ly+1z = -20
Oz +0y+1z = 70 (2.3)

This set of equations can still be satisfied using the orlgioltionz = 60, y = 90, and
z = 70. In other cases, having more equations than unknowns maplmate the solution
process a bit.
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2.3.1 Reconciliation and Nonsquare Systems

For curve fitting, parameters that appear linearly can baddated as a nonsquare solution
to a linear algebraic system of equations. Given that yoe lsame (scalar valued) measured
value,y, that depends on a process parametefAssume the model takes the form:

y=mx+b (2.4)

Technically, you only need two data points to fimdandb, the model parameters. Assum-
ing that you have more than two data points, we often desiet&rmine the “best-fit” for the
line. These parameters minimize the sum of the square of tdueherror. For an experiment
with four data points:

y(1) = max(l)+0b
y(2) = mxz(2)+0b
y(2) = mz(3)+0b
y(4) = mzx(4)+0b (2.5)

Here, you know values of andx but m andb are your unknown values. This can be
written as a set of equations:

y(1) (1) 1
y(2) | _ | =(2) 1 {m]
y(3) 2(3) 1 b
y(4) z(4) 1

You can get the “best-fit” solution to this overspecified degquations using the psuedo-
inverse of the matrix:
r=(ATA)ATD

2.4 \ectors

A group of unknown (or known) values can be “stacked” to formeator. In the example
problem, the unknowns, y, andz can be described by the vectar

T

L= 1Y
z

The solution to the problem has a known value and can be wii$ea vectos:

60
Lsoln = 90
70

Note that the underbar is used to distinguish betweéhe vector) and the unknown. A
vector is NOT limited to 2 or 3 unknowns (dimension of the wet

soln*

22



2.5 The Matrix

A matrix is similar to a vector, having 2 dimensions. One mapk of it as a group of
vectors augmented together. A Matrix has a sizes n representingn rows and» columns.
The values form andn are sometimes written as subscripts for the matrix. For @anthe
2x3 matrixé2X 5 with two rows and three columns may have values:

A _ 11 Q12 Aa13
=2x3 Gz1 Q22 23
Note that each of the six elements has two indices. The fidexiis the row, the second is

the column. For the applications in this class, a matrix taie constant coefficient values.
Some example matrices:

6 0 O
0 -2 1
A :[ } B..=|-2 0 -1
—2x%3 —3x3
=[5 1 02 Zsx s 1 s

Square Matrix - A matrix with indices equal, = n).

Note: A vector can be seen as a special matrix having onlyunzol

Transpose- The transpose operator swaps the indices of a matrix (dore€&or example,
for 42X3 as before:

T aii dasn
(émg) = | G2 Q22
a3 a3
Example. For the matrix
1 2
a-[5 1]
r |13
A=y

i

Finally, one can take the transpose of a vector.4~er | y
z
T
Xz
ol =[ey]=|y
z

Row Vector - The transpose of a vector is also known as a row vector.
Dot Product - The dot product of two vectors is the sum of the product ofeleenents
taken individually. Examples:

xr X
zox=|y y | =2 +y*+ 2
4 4



21 -ly | =1le+2y+3z

3 z
1 4
2115 ]| =1x4+2%x5+3x6=32
3 6

Matrix Multiplication - Two matrices can be multiplied together. For exar@!gm
can be multiplied b)@nxj. Matrix A hasm rows andn columns, whileB hasn rows and;
columns.

r1
T2

—mXn
T'm

Here, each row up tg,, is a row vector withm elements.

= & C co. Cs
=nxj L2 J

Here, each column up to columm is a vector (column vector) with elements. To
computeémmém orsimplyA x Borjustd B

T{'Cl 7’{‘02 T?‘Cj
e Ty ooorhg
A B = _
=mXxXn=nxj
T T T
rlcp rlhoey oooorle

Method - To computeémxnénxj, the result will havei columns. The first column of the
result is computed by taking the dot product®f  (first column of B) with the transpose
of all the rows ofA. The second column of the result is computed by taking thedmtuct
of ézxj (second column of3) with the transpose of all the rows gf. Repeat up to the'"
column of B which produces thg’” column of the result.

Note: In generalA B # B A.

Conformable - In order tgrﬁultiplyémménxj the “inner” dimensions must be equal. In
A B ifthe first matrix has: columns and the second matrix mustows.

_mXn—n

Matrix Multiplication Examples:
1 2 56| [5+14 6+16 ] [19 22
3 4 7 8] | 15428 18+32 | |43 50

IR e
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i

2 3 . 4-6 3 ~2 3
1 -1 {_2 1}: 242 —1|=|4 -1
5 0 10+0 0 10 0

2.6 Column Example

Consider again the equations from the original distillatolumn example:

lr4+0y+0z = 60
—lr+1y+0z = 30
Oz —1ly+1z = =20

Notice that the variables (with constant coefficients) aréhe left side and constant values
are on the right hand side. This set of linear equations carefesented in the compact
notationég = b where

0 0
A=| -1 0
0 -1 1

T

L= 1Y

z

60

b= | 30

—20

Identity Matrix - The identity matrix has values of one on the diagonal andszelse-
where. Itis defined asand for asquare matri® / = Aand/l A = A.

1
1— |0
0

O = O
= o O

2.6.1 How to solve sets of linear equations

We need a solution to the matrix equatidir = b. You cannot “divide” by a matrix:

r #b/A

There is no “division” operator for a matrix. Instead, anarse is defined for some square
matrices such that
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Also,

Now, to solved x = b for z
First, multiply on the left by(é)_1

Realizing that(é)_1 A=1 replace(é)_1 Awith [
Ir=(4)"b
Now, realizing/ z is x, the solution is
z=(4)""b

Note that multiplying on the right will not lead to a solution

Az (47 =b @A)

2.6.2 How determine a matrix inverse

To solved x = b, you need to knov(/é) . We are going to use row reduction to calculate
(A)_l. Start withA | 1. use row reduction techniques untilis 1. (A)_1 if it exists will be

on the right wherd was originally. -
Inverse Example

Solve the following forz using(A) -

1 2] 5
3 4|7 |6
For this procedure, one must first calcul@_l. SetupA | [ as:

1 2110
34101
Use row reduction to get

)

1
0
1

Then verify thatd (A)~
solution again to be safe.
START

I. Use (é)_1 to calculatex usingz = (é)_ll_). Verify
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Start by using row reduction on

1 2110

34101
Multiply row 2 by 1/3 to get :

1 2110

Ls]o 3

Then subtract row 1 from row 2 to get:

1 2 1 0
2 1
0 —5 | -1 3
Now, multiply row 2 by -3/2 to get:
1 211 0
0 1] 3 -

To get the left side looking like the identity matrix, sulmr2 times row 2 from row 1.
Note that this is a compound use of row reduction rules.

1 0] =2 1
01| 3 -
You now have(é)_1 = { _g _i }
2 2
Now verify thatA (é)_1 =1

-2 1 1 2] [-2+3 —4+4] [1 0
3 -1 34| | 2-2 3-2 | |01

2 2
-1

b.

[ 1012 [

Again, verify the solution is the solution to the originaluedjons:
1 2 |5
34 (%7 |6

sl =[] = 5]

Just as expected...

Now, compute the solutiom; = (A)
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2.6.3 Steady State Control Example

Two pumps are used to fill two tanks. The pumps usually opexai6%, keeping the
tanks at levels of 75 inches and 80 inches respectivelykhdsvn that al% increase in pump
1 increases the height of tank 1 by 5 inches and the heighh&f2aby 3 inches. For a%
change in pump 2, the height of tank 2 increases by 4 inches deésired to change the
operating levels of the tanks to 110 inches and 89 inches.

-
o | |

H2

P2 ' *

Figure 2.2: Pump / Tank example

What do you know:

5 AP (%) = AH,(inches)
3AP (%) +4AP, (%) = AHs(inches)

You know the target (reference, setpoint) féy and H, as 110 and 89. This translates into
AH; =110 —75 =35andAH, = 89 — 80 = 9. You need to increase tank 1 by 35 inches
and increase tank 2 by 9 inches. You do not know the final vaitifee pump speeds. You do
know the original steadystate valués8y% and50%, realizing that:

Pfinal = Pss + AP

You can now set up linear equations to solve foP; and AP,, then calculate the final
values for the pump speeds.

iR EA
2.7 Visualization

Each row indz = b is a single linear equation. For a 2D problemwith 2 elements /
unknowns) the equation defines a line in they) plane. Two equations define two lines, and
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the unique solution tol z = b is the pointz where the lines intersect. In some cases, there
may be many solutions td z = b and in some cases there may be no solution$:to= b.

Figure 2.3: Three 2D examples with two equations. Each emuétow) represents a line.
The first case has one solution, the second case has no sohbutit the third case has many
solutions.

For a 3D problem, each row defines the equation for a planepa&es The intersection of
2 non-parallel planes is aline in 3 space, and the intemeofia line and a plane in 3 space is
a point. Again, in some cases there may be a single solutianysolutions, or no solutions.

For higher dimensions, each equation definagerplanein an dimensional spac&”.

2.7.1 Linear Transform

A vector inR™ meanse hasn elements. Matrix multiplication of a matrix of size x n
times a vector of size x 1 “maps” the vector fronR™ to R™.

Ax

rRM R

Figure 2.4: Matrix multiplication as a mapping frait to R™.

2.7.2 Range

The range of a matrix is the space of all possible points tlezat loe mapped to in a matrix
multiplication of that matrix times an unknown vector.

Range Example 1

For example, the matrix
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[BS

1
=11
0

o O O

1
1
0
D

can only map to points on the line+ y in 3D as follows.

Az =2z +2y+ 02

The columns of the matrix define possible directions for tlarix to transform a vector. In
this example, columns 1 and 2 are the same, and column 3 iethevector. A z wherez
1
takes any real value will always be on the line defined by thection | 1
0

Range Example 2

In another example, the matrix

[

Il
O =
o~ o
o oo

can only map to a variety of points in 3D as follows.

1 0 0
Ar= |1 jz+ |1 |y+]|0]z
0 0 0
Again, the columns of the matrix define possible directiomsthe matrix to transform a
1 0
vector. In this example, only points in the directions|ofl | and | 1 | can be reached
0 0

when multiplyingA z. These two directions form a plane in 3 dimensional space.

rRM Range of A R

Figure 2.5: Range afl as space iiR™ of all possible mappings frolR™ using matrix multi-
plication.
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Range Example 3

In another example, the matrix

1 01
A=|11 2
000
can only map to a variety of points in 3D as follows.
1 0 0
Az=|1|x+ |1 |y+|0]=2
0 0 0

Here, column 3 is linearly dependent upon columns 1 and % ifieans that you can find
some combination of columns 1 and 2 that give column 3. Col8ries in the plane defined
by columns 1 and column 2.

Underlying point: For Az = bto have a solution, theb must be in the range ofA.

?
For the last examples, if= | 7 | (if b has element in the position) there will not be a
1
solution toA z = b. In such a case, the possible rangelafoes not includé.

Range Example 4

In another example, the matrix

can map to all of the points in 3D as follows.

1 0 1
Ar= |1 z+ |1 |y+]| 2|z
0 0 1

Here, column 3 is NOT linearly dependent upon columns 1 an@ii2s means that you
can find some combination of columns 1, 2, and 3 that give amyt po3 dimensions.

Rank - The rank of a matrix is the number of linearly independemdicms. For a square
matrix of sizen x n, there is a unique solution if there arendependent columns. The matrix
would have ranka.
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Chapter 3

Laplace Transforms / Deviation Variables

3.1 Simple System Example

Consider a tank draining from an initial height/af at timet = 0. With no flow into the tank
(Fi, = 0)andF,,; = ah(t) the mass balance can be written:

dh
A= () = 0= ah(t)

Moving « h(t) to the left half side and dividing by gives:

Adn

o dt

A'is the tank area (constant) ands the proportionality constant for flow out of the tank.
These parameters can be replaced by A/« to give the following differential equation:

(t) + h(t) = 0

dy

T () +y(t) =0 (3.1)

The initial tank height at time ¢ = 0 can be assumed to be(t)|;—o = y,. Take the
Laplace transform of Equation 3.1:

L {T%(w} Ly} =0
L{y(t)} is easy,L{y(t)} = y(s) so we have:
L {T %(t)} +y(s) =0

L{r %(t)} is a bit more complex. First, you can realize thas constant. Convince yourself
of this! The L operator on a constant times a function is the same as a oconistes the
Laplace of the function:

L{cf(t)} = / T () = c / T i) = e L{f(1))
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So you can take the constant value outsideltloperator:

dy B
7L {E(t)} +y(s)=0
Now, you must remember that{ % (¢)} is justs f(s) — f(t)|o.

7 (sy(s) —y(B)le=0) + y(s) =0
And we have initial conditions for the height of the tank)|,—o = v,

T (sy(s) — o) +y(s) =0
Solving fory(s):
TsY(s) =T Yo +y(s) =0

Tsy(s) +y(s) = 7o
(rs + 1) y(s) = 7o

y(s) = —2°
(ts+1)
Now rearrange a little bit
1
y(s) =7 Yo (ts+1)
1 1/7
v =TY T Ty 1
1
y(s) = Yo (ST%)

This you realize is a constang times the termsj—l. To gety(t) you must use the inverse

Laplace transformf.~! for the . +11 7 part.

L y(s)} = 17! {y #}

(s + %)
Again, y, is a constant and can be factored out

L7 {y(s)} = yo L7 { ! }

(s+7)

And we know from lecture thak {e~*} = —-, so in our casey = 1.

y(t) = o e~ (!
This is the solution to the original differential equatiodbw check your result. At time

t = 0 your solution fory(t) is y, e~ (7)0 = Yo 1 = y,. This matches the initial conditions. The
derivative of your result can also be found

dy . d SEETA S SN ey
7 ®= g {me = - e
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dy Yo (1
() = —ZL2 o= ()t
dt() 7'6

Plug that back in the original differential EQ, along withuyesolution fory(t):

And we know we have the solution!

3.2 First-Order System Modeling

The first order system model is:

Taking the Laplace transform:

Tsy(s) = Ty()]i=o +y(s) = K u(s)

If we assume thaj(t)|.—o = 0 this simplifies the equation to

Tsy(s) +y(s) = K u(s)
We can then solve foy(s)

K
(ts+1) u(s)

S Gy s+1 is the process model relatings) andy(s). This is sometimes callegs) =

oD s+1 . Givenu(t) you can findu(s), and given a model of your system you can fiy{d)
Reallzmg thaty(s) = g(s)u(s) you can then find(t).

From aprocess reaction curvéhe data fory(t) andu(t) given a step in the inpui(t))
you can find the PROCESS GAIN from the equation:

y(s) =

Here

K — Yfin — Yinit _ &
U fin — Wingt Au
The time constant is a bit trickier. First, lets assumf# is a step at time = 0 from a
value of 0 to a new value ol. The Laplace transform of the step function is:

Now, we have enough information to ggts) andy(t)
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K

y(s) = m u(s)

(s) K A
§) = ——<—
Y (1s+1) s
To solve this easily, we need the partial fraction expansion

W) = T S~ Ty

Ts+1) s (TS+1)+S

One way to get the partial fraction expansion is: first miytgach term by the denominator
of term and set that term to zero:

K A VA Z
(TS—l—l)m;:(TS—Fl)(Tsij_l)—‘—(TS—f—l)?z

K A Z Zy

(TS+1)|5:—% (TS+1) g_ (TS+1)|5:—% (TS+1) +(75+1)|5:—% ?

Some terms cancel, others don't:

KA
—|S=—1/’T = Zl +0
S
KA
L = Z1+0
—1/7 o
—KAT = Zl
Do this for the second terni, /s
K A Z1 Zo

Tsrl s ern 7S

Cancel similar terms and evaluatesat 0

K Z1
— A=s5s——"_+7
(ts+1) S(7‘s—|—1)jL 2

mA:0+ZZ

KA:ZQ

The result can be written:

Substitute inZ, and 2,




Simplify terms:

y(s) = —KAﬁ +KA§
y(s) = —KA ﬁ%—: +KA§
y(s) = —KA(S%%) +KA§
y(s) = —KA@ +KA§

, o . Cat _ - (L
We can invert each term in this expresside "'} is =, SO L 1{(;%)} is juste= (7)1,

We know for the step function from 0 to 1 at time O the Laplae@sform is%. The resulting
solutiony(t) is composed of two different functions; ()t and a step at time O.

1 1
KA+ KA-
y(s) (s+ 1) * s

L™ {y(s)} = L' {—KA(S%%)} L {K"%}

Again, using the argument about constants times a funatiertan pull out thes A terms.

L—l{y(s)}:—KAL—l{ ! }+KAL—1{1}

(s+1) s
y(t) = —KAe '+ KA
y(t) = KA(—e~ (Dt 4 1)
y(t) = KA(1— e 1)

Laplace transforms assume everything is 0 before time G fihcctiony (¢) only is defined
for t > 0. The two separate functions that comprigeé) are shown in the following graph,
e~(¥)* and a unit step at time zero:

if
0.5
0
-5 0 5 10
1 3
0.5
°
-5 0 5 10
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Graphing the actual system (the sum of the two functions):

1 3

0.5F
0 \ — u(t) = Unit step at time 0 f
-5 0 5 10

(D), First-order Step response
et 1oy

~.- Unit step at time 0

-5 0 5 10
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3.3 Deviation Variables

Lets examine a realistic First-Order system, the tank ayste

dh
dt
Assume the flow manipulated and has unitg%sf—)f The height of the tank will be measured,

and the height of the tank is given in unitsiaf The area of the tank &m?2. For the outlet
term to be consistent with the units of other terrﬁsé)( « must have units 01’;—2. Assumex

2 .
has a value of.1 o, The mass balance can be written as:

A—(t) = Fi(t) — ah(t)

dh
2 dt
Now, assume that you normally operate this tank at a flow raentering the tank of
0.5 ’”TS This means we know the steady state flow rate into the t&pk= 0.5 ’”TS This also
means we can figure out the steady state height of the tanktfrermass balance. At steady

state, () = 0

(t) = Fi(t) — 0.1 h(t)

dh
220 (1) = Fy(t) — 0.1 h(t)
dt
dh
O o= Fiss —0.1h
dt |SS 188 0 SSs

3 m2

0=05"" 01" n,,
S S

3 m2

05 — o1,
S S
5m = hyg,

So now we knowh,,, the steady state height of the tank. Now to make our lifeegasi
when taking Laplace transform, we put everythingdeaviation Variables. This means we
subtract the steady state from the normal functions of tifine. purpose of this is to make the
functions all start at a value of 0. Currently, a step respdasthe tank system looks like:

1.5F
e '
0.5

0 10 20 30 40 50 60 70

_ Fi(t) = Unit step at time 0

[ — h(t), First-order step response |

-10 0 10 20 30 40 50 60 70
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Using the variables in deviation form, assug(e) = h(t) — hss. This means that if we
start at steady state at time#)#) will equal O at the initial steady state valugf)|,—o = 0.
The other deviation variable can be writte(¥) = F;(t) — Fis. This means the input(t)
equals 0 at the initial starting point(t)|,—o = 0. Also, taking the derivative WRT time of
y(t) = h(t) — hss yields
dy dh dhss
o) = (6) = —=(1)

But h,, does not change with time.

Yty = 2

dt E(t)_o

dy dh
() = =—
dt< ) dt
The dynamic mass balance is written as:

dh
272(t) = Fi(t) = 0.1 h()

The steady state mass balance is written as:

0= Ess - hss

Subtracting the steady state mass balance from the dynaasis balance gives:

2%(15) —0 = Fi(t) = Fiog — 0.1h(t) — (=hsy)
2%@) = (F(t) = Fius) — (0.1A(t) — hs,)

And replacing what we can with deviation variables:

2%@) = u(t) — 0.1y(t)

To put this in the “traditional”TZ—?t/ + y = Ku form, divide by0.1.

2 dy 1

ﬁa(t) = 07“(” —1y(t)

20%(@ Fy(t) = 10u(t)

So we know that = 20 and K = 10 for this process.
Now, you can easily take the Laplace transform of this dyicamodel.

L {20 Z—i(t)} L L{y®) = L{10u(t)

20 L {%(t)} L {y(t)Yy =10 L {u(t)}
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20 (sy(s) = y()|i=0) + y(s) = 10u(s)

Since we put everything in deviation variablgé:)|,—o is now 0.

20 (sy(s) —0) +y(s) = 10u(s)
20 sy(s) +y(s) = 10u(s)

Solving fory(s) :

20 sy(s) +y(s) = 10u(s)
(20s+ 1) y(s) = 10u(s)

10
y(s) = m u(s)

Again, you see this in the fomﬁ‘s%- We want to get the expression fgfs) as a function
of s, not a function ofs andu(s). We know the value fou(t). In the original variablest;(t)
changed from 0.5 to 1.5 at time t=0. We do not know the Laplearestorm for a step from
0.5to 1.5 at timg = 0. In deviation variablesy(t) changes from a value of 0 to a value of
1 at timet = 0. We know the Laplace transform of a step function from O to tina¢ ¢t = 0.
This value isu(s) = 1

10 1
V) = 20551 5
Using our partial fraction expansion:

—200 10

V) = o5+ T

(5~ =200 _1/20 10
Y= 205+ 1)1/20 s
—10 10
y(s) = (ST%) + o

y(t) =10 (1 _ e—(%on)

This expression foy(¢) can be plotted. Note that{¢) andu(t) start at zero.
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\ — u(t) = Unit step at time 0
0 10 20 30 40 50 60 70

y(®)
a1

[ — y(t), First-order step response ||
0 10 20 30 40 50 60 70

What value does the response take when7? In this caser = 20.

Y(tli=20) = 10 (1 — e‘(%)%)
Y(tlma0) =10 (1 —€7')
y(t|4=20) = 10 (1 — 0.3678)
y(t]i=20) = 10(0.6321)

y(‘tZQO) = 632

So attimet = 7 the response is 6.32, or 63% of the final value of 10.
This can also be simulated in Simulink:

@ P t Simulation—=Simulation Parameters
Starttime =-10
Clck To Workspace Soptime =70

(set "Sample Time" to 0.1 and "Save Format" to "Amray"

Fit) u(t) yit) hit)

> ) » »(.) S
— - 20s+1 3
Step attime 0 Transfer Fen To Workspace
from 0.5t0 1.5 (set "Sample Time" to 0.1 and "Save Format" to "Array”
5 5
Fiss u hes
To Workspace To plot, here;rf;;rr;eﬁommands:
(set "Sample Time" to 0.1 and -l v su glot((t u’]’
" Yo " L i
Save Format" to "Array yiabell'u(t))
ToWorkspace legendi'u(t) = Unit step attime 0'4)
- f (set "Sample Time"to 0.1 and subplot(2,1,2)
lad "Save Format" to "Array" plot(t.y)
ylabel(y(t)')
To Workspace legend ('y(1), First-ord er step response’ 4)

(set "Sample Time"to 0.1 and "Save Format" to "Array"

After running the simulation, the results will be put in vt in the Matlab workspace.
These vectors are named (in this exampje), u, h, and f. Note that the step occurs at time
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t = 0, so you should start the simulation at time- —10. Also note that the “To Workspace”
blocks must have the “Save Format” set to “Array”.

The following plotting command will let you plat(t) andy(¢) on the same figure:

subplot(2,1,1)

plot(t,u)

ylabel(u(t)’)

legend(’u(t) = Unit step at time 0°,4)

subplot(2,1,2) plot(t,y)

ylabel(y(t)")

legend(’y(t), First-order step response’,4)

43



44



Chapter 4

Basic Procedures for Common Problems

4.1 Steady State Multivariable Modeling and Control

1. Determine what variables are available to manipulateuis Au) and what variables
are available to measure (outputsy)

2. Note how many input and output variables you have.

3. Start to write equations for theutput variables. This means write something in the

form:
Ay, = 777
Ay, = 777
Ay, = 777

4. Read through the problem and establish relationshipgdaet individual inputs4u;)
and individual outputs4y;). The relationships generally represent ¢faén of the in-
dividual input output relationship, for exampley; = K Au,. For example: “Changing
input 1 by 2% decreases output 1 by 5” medns= 2% andAy = —5 and

-5 =K2
Or K = —5/2 andAy; = —2.5Au;.

5. Put all of the relationships into the equations. Keepirgathrough the word expression
until you relate all specified inputs and outputs:

Ayy = 4777
Ay, = 777
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4.2

. Write out the equations with all input variable in everyation, even if they have a 0

coefficient.
Ay, = —2.5Au; + 0Aus + 3Aug
A’yg = OAul + 4AU2 + 1AU3
Ayg = 5AU1 + 10AU2 + QA’Ug

Realize that this can be put in the form:

Ay= Kdu

Dynamic Modeling

. Try to figure out what is changing with time. Try to figure auftiat are manipulated

inputs (;(t)), what are disturbancesd;(¢) ) and what are measuremenig({)).
Start to write dynamic mass and energy balances for thesiteat are changing.
Note the accumulation term

(a) Changing volumeV/(t) = Ah(t) — AZ(t)

(b) Changing amount of species in a tafkC'4(t) — V%(t)

(c) Changing temperature in a tarlkpC,,(T'(t) — T*) — VpC,<L(t)

Don't forget reaction terms for reacting systes:(¢) wherer(t) is the reaction rate,
usually in the formr(t) = kC4(t) (or more complex).

. Write your equations and check units.

State Space

Identify z as the values that are changing with time in your accumurlagam.
Identify your manipulated inputs

Identify your measurement equations. Your measurenséoigld be expressed as func-
tions of the states and inputs.

. Write your dynamic equations, including terms for evaatesand input (with O coeffi-

cient if necessary).

Reorder the terms in you dynamic equations such thatsstatae first in order, then
inputs. For example:

de’l
= 2x1 + 3x9 + 03 + 2uq1 + dus
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6.

7.

4.4

Put the dynamic equations in the form

T =

[BS

x +

Is

u

Write your measurement equations, including terms feresgtate and input (with 0
coefficient if necessary).
Put your measurement equations in the form:

y=Cxz +Du

Laplace Transform of Dynamic Equations

If your steady state values are not all = 0, take your dynamodel equations and
establish the steady state values for you inputs, statdgtputs. This is accomplished
by solving for unknowns with the accumulation terms = 0.

If your equations are nonlinedinearize your equations.

dh
A (8) = Fin(t) = V(1)

Here,\/h(t) is nonlinear. Near steady state, it can be approximated as

VI = Ve + hast () = )

such that
dh

A—
dt

()= Falt) ~ (Vi + 33 () = )

. Subtract the steady state model equations from the dynaradel equations to put

everything indeviation variables For exampley(t) = h(t) — hss andu(t) = F,(t) —
Enss-

(a) Remember to express the accumulation term with youratiewi variables. For
y(t) = h(t) — hs, taking the derivativel (t) = % (t) becausé, is constant.

. Express your dynamic problem using deviation variablg$, y(¢), d(t). These func-

tions of time should = 0 at time= 0.

. Take the Laplace transform of your system.

. Solve algebraically to get in the form

or



10.

11

. If you have disturbances and inputs, your model can Idak li

y(s) = g(s) u(s) + ga(s) d(s)

Note that to get(s) you can assumé(s) = 0 then solve forg(s). To getga(s) you
assumae(s) = 0 and solve fory,(s).

If you multiple inputs inputs, your model can look like
y(s) = gi(s) ur(s) + g2(s) ua(s)
If you have multiple inputs and multiple measurementsirynodel can look like

yi(s) = gu(s)ui(s) + g12(s) ua(s)
Y2(s) = ga(s)ui(s) + gaa(s) ua(s)

Given the input as a function of tim&t) (or input and disturbances) you can determine
u(s) (oru(s) andd(s) ).

. Plug in to get an expression fgfs) in terms of the variable

4.5 Laplace of Complex Functions

1.

You should be familiar with basic functions of time (st@ppulse, ramp, exponential
decay, sinusoid).

If the function is not O for < 0 you should put the function in deviation variables. For
example, a step i, (¢) at time 0 from2 to 3 can be expressed as a unit step(if) at
time O withu(t) = F,(t) — Finss

You should be able to express the complex function as #esingction of time. Multi-
ply by the Heaviside function if needed. For a function tlahps from 0 with a slope
of 2 until time 10 settling out at a value of 20, this can be esped as

F(t) =2t H(t) + (~2) (t — 10) H(t — 20)

Sketch the individual terms in your function as functiohme, then add them together
to check your formulation. You can plug in numbers to chedknfanction.

For each term, shift it in time such that the “event” occarime zero and determine
the Laplace transform. Use the time shift operator if nesxgst express the function
as somef(s). For the example:

Fls) = 5 + —re
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4.6 Solving fory(t)

1.

Establishy(s) as a function ok. (Develop dynamic model, take Laplace of model, and
determineu(s) andd(s) if needed)

Your response may be in the form

N N. N.
N 1<5>+ 2<S)6—as_|_ + 3(5)6-58

y(s)_pl(s) Da(5) T Dy(s)

This expression with multiple terms will be treated as npldtidifferent responses, each
shifted in time.

If you have a time delay,” ¢, ignore it for now.

. Take a term frony(s) and determine thpoles,the roots ofD;(s).

Perform &Partial Fraction Expansion on the term. For expressions with unique poles
p; the result looks like:

Nl(S) Z1 4 Z2 4 4 Zn
Di(s) (s—p1) (s—p2) = (s—pn)

For non-unique poles or imaginary roots, check the AppenNien-unique Poles will
resultin

Z1 ZQS Z382
+ +
(s=p1) (s=p1) (s—p)
while imaginary roots result in sin or cosine in yap¢)

Now you should be able to determine the inverse Laplacsfiwan of each expression
to yield a function of timey;, (¢).

() = Zie P+ Zoe PN L+ Zpe Pt

If you had a time delay in your term, shift the response Igytitme delay:

y(t) = (Z1e ) 4 Zoem 270 4 Z,e7 P70 [ (t — a)

Do this procedure for all your terms in the originak)

. Add up ally;(t) to gety(t)

49



50



Chapter 5

Lead-Lag

Obijective:

A constant volume, constant flowrate mixer is used in the gardition below. Determine
the unit step response for the outlet temperaiure).

5.1 Modeling Example System
1. Dynamic Model - Develop an energy balance for the miximdxta

d (pV Cy(T1(t) — T7))

= 'VFpCp (TO(t) - T*) - 'YFpCp (Tl (t) - T*)

dt

pV Gy W = 7EpCy (To(t) = T7) =y FpCy (Ta(t) = T7)
V d(T(t) -T%) ; .
F - = (T,(t) = T") — (Ty(t) — T™)
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2. Determine an energy balance on the mixing point:
0= (1—4)FpC, (T,(t) = T*) +4FpC, (T1(t) — T*) — FpC, (Ty(t) — T")

0=(1=7) (To(t) =T7) + v (Ta(t) = T7) = (T2(t) = T7)

3. Put your dynamic (and steady state) equations into demiagriables. In this case,
we will use the following deviation variablesi(t) = T,(t) — T*, z(t) = T\(t) — T*, and
y(t) =To(t) — 1™

Vodx(t)
V_F — = u(t) — z(t)

0= (1 =7)u)+yx(t) —y(t)
4. Take the Laplace transform of the equations:

V
F (sxz(s) —z(t =0)) = u(s) — z(s)
0= (1=7)uls)+~2(s) —y(s)
Because of the deviation variablegt = 0) = 0

v
~F (57(s) = uls) —x(s)

Rearranging the mixing tank equation:

1

U
-yLFS—i_l

x(s) =

(s)

5. We need the relationship betweeft) andy(t). Substitute the mixing tank equation
into the mixing point equation:

0= (1=)uls) + g gels) — ()

Rearrange to get in the forgis) = g(s)u(s)

0= (1—7)uls) + ——u(s) — y(s)

,YLFSleu
Vi) = (1= uls) + 3 quls)
Vo) = (1= uls) + 3 quls)
B %s+1 ~
) = =)o) | T |+



(1= uls) (Fs+1) +7uls)

y(s) = Py
u(s) ((1=7) % s+ (1=9)) +7u(s)
y(S) B ’Y_F s+1
us) (A= + 1= +7)
yls) = VLF s+1
u(s) ((1 —Y)ap s+ 1)
yls) = ,YLF s+1
st _ (5o )
u(s) ’Y_F s+1
For~ = 1 this reduces to (a first order system):
y(s) 1

u(s) Fs+l
For~ = 0 this reduces to a pure gain system. The original equation

we)  (B5Fs+)

u(s) V—Fs+1

is is in the form
y(s) K (£s+1)
u(s) Ts+1
with & = 1,7 = 7, and¢ = Y070
If we want this in the form:

K 1 A
(§s+ )2A0+ 1
Ts+1 Ts+1

K(s+1) A,ms+ Ag Ay
= +
Ts+1 7s+1 7s+1
K(s+1) Ags+ Ao+ Ay
Ts+1 7s+1
K{s+ K Agts + (Ag+ Ay)
Ts+1 75+ 1
Kg = A()T
K = AQ—I—Al

53



25— A
-
P
T
K
A=K -8
-
-
do E
-
Now, lettingp = £
AOZKp
A =K(1-p)

KEs+l) . Kd-p)

Ts+1 B Ts+1
This means the lead lag transfer function is really just tygiems in parallel, a pure gain
system and a first order system. The valmn be seen as a weighting value.
Back to the problem, we wanted step response. This means(i)at %

K (és+1)1
V) =5 T s
Using partial fraction expansion, we need to break this dtmwn

_K(fs—l—l)l_ Al Zy

y(s) = Ts+1 3_7'5+1+s
Multiply by 7s + 1 and sets = — to getZ;.
K 1
21=M|5:_1
S T
K -1+1
PG ta)

1
Zi=—-Krt (5 (=) + 1)
To getZ,, multiply by s and set = 0

1
ZQZI::[
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Chapter 6

Frequency Analysis

6.1 Bode Plots of Simple Systems

K /(s +1), K=100, T = 10

T T T T T T
2

10" b .

AR

10° 10° 107 107 10 10" 10°

-100 N | N | P | P | P |
10 10 10 107" 10 10 10
Freq w rad/sec
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AR

AR

K /(Tl s+ 1)(T2 s + 1), K=70, 1,=10,1,=7

2

10" F

T L e L e S L e S L e S

10"

10

10

-150

-200

4

10

10

10 10 10 10 10 10

Freq wrad/sec

Ke®3/(ts+1),K=9,1=1,0=2

10" E

T T T T T

0

10" F

4

10

10

-3

-100

-200 -

-300

-400 -

il L M| L Ll L Ll L P PR |

-500
10

-3 -2 -1 0 1 2
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6.2 Derivations of Frequency Response for Simple Systems

6.2.1 First-Order System

K
g<8)_7‘s+1
, K
g(]w)_Tjw+1
, K
g(jw) = Ty
(jw) K 1—71wj
w) =
Iy 1+7wy 1—1Wwy
L K(1—T1wj)
9U) = Ao = 7o)
(jw) K—Krwj
W)= ——--
IV 1+ 72w?j5?
(jw) K—Krwj
W)= ——-"-—
A STy
(juw) = K- Krwj
IV = e
K Krw

g(jw) = 1— 7202 11— 7'%)2‘7

K? + (—K1w)?

(1— 72u2)

] K2 + K272W2
AR(w) = |g(jw)| = Vo

K2(1 + r2w2)

(1-— T2w2)2

AR(w) = |g(jw)| = \/

AR(w) = [g(jw)| =

(1+ T2w?)

(1-— T2w2)2

AR(w) = |g(jw)| = K

AR(w) = [g(jw)| = K



For phase angle as a function of frequency

o) = Zatj) = aten () =t (EiD

1—7120w?2

¢(w) = Lg(jw) = arctan (—7w)

6.2.2 Second-Order System

B K
g(s) = 7252 + 27(s + 1
L K
9U9) = T 2 Ga) 11
L K
g(jw) = 72(—1)w? 4+ 27¢jw + 1
L K
90w =TS 27(wj
N K (1 - 720?) — 27Cwj
g(jw) = (1 —=72w2%) 4+ 27¢wj (1 — 12w?) — 27¢wj
K ((1 -7 = 27¢w))
g(]w) = (1 — 7_2w2)2 — (QTCCUj)Z
K ((1—-7*w?) — 27¢wy)
g(jw) = (1- 7'%)2) (=1)(27¢w)?
) K (1= ) — 27¢wy)
9(jw) = (1—7 w2)2 + (27¢w)?
K(1—7%?) K271C¢w

g(jw) = (1— 7222 + 27¢w)? (1 —7202)2 + (27¢w)? ’

AR(w) = lg(w)| = \/((1 = ﬁ(iz); f@gw)z) E ((1 = Tz;é()gffzfgw)j

AR(w) = [g(jw)| = \/ Kzﬁ - Zzigz i Ez_féj;é)fy

AR(w) = lg(jw)| = \/ K<2<(11__ ;2;2));: géif;})

AR(w) = |g(jw)| = \/K2 (L= )" + (27€w)’)

(1= 72022 + (27¢w)?)’
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((1 = m2w?)? + (27¢w)?)
(1 = 72w2)2 + (2r¢w)?)”

AR(w) = [g(jw)| = K\/

1
(1 — 72w?)? + (27¢w)?)

ARw) = |g(jw)| = K\/

For phase angle as a function of frequency

K271(w

. b - (1-72w?)2+(27¢w)?
¢(w) = Zg(jw) = arctan (—) — arctan < ( K(l_)7-2w(2) )

a (1-72w2)2+(27¢w)?

o) = Zatje) = anctan (057 )

¢(w) = Lg(jw) = arctan (—7w)

6.2.3 Time Delay System

g(s) =e*
g(jw) = e
g(jw) = e

Using the Euler Identity:
e?? = cos(0) + j sin()

g(jw) = 72 = cos(—aw) + j sin(—aw)

g(jw) = cos(—aw) + sin(—aw) j

AR(w) = |g(jw)| = \/ (cos(—aw))? + (sin(—aw))’

AR(w) = |g(jw)| = V1=1

é(w) = Zg(jw) = arctan (9) — arctan (

a

sin(—aw))

cos(—aw)
¢(w) = Zg(jw) = arctan (tan(—aw))
P(w) = Zg(jw) = —ow
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6.3 Frequency Response Questions

1. The Bode Plot for a first order system is given below. Idgnkie transfer function for the
system.

K /(ts+1),K=100,1 =10
T

10" 10° 107 107" 10° 10' 10°

100 . . . .
107 10° 107 10 10° 10 10°

2. Sketch the Bode plot for the following transfer functituabel any distinguishing
characteristics.

100e~2

96) = Tos 1 1)

3. You are in charge of operating the sludge furnace at tted Ideal Gas company plant. You
must design a holding tank with limited level variation, givthat the supply flow of sludge
varies beyond your control. The flow rate from the upstreaotgss varies with a period of
45 min and an amplitude af 15~ m* Your goal is to calculate the cross sectional area of a buffe
tank th?.t will vary in height by:tO 1 m. The flow rate from the tank is given &= kh where
k=15

a. What is the frequency of upstream oscnlatlorﬁﬁ’)

b. What is the transfer function for the system in the fo#ﬁli relating the upstream input
flow rate to the tank liquid level?

c. For this system, what is the expression for the AmplitudgdRas a function ob?

d. What is the area of the tankin? that will limit level variation to4-0.1 m?
4. Your boss at the Ideal Gas Company put you in charge of aimglywo tanks, each with
cross sectional area @fm?. The tanks are arranged in series. The flow from tank 1 to tank
to is I, = khy; and the flow from tank 2 i$, = kh,. The flow into the first tank is known to
vary with a frequency 0.5 %l. You are told that = Q’Z—f.

a. What is the transfer function for the process relatingltive into tank 1 to the flow out
of tank 2?

60



b. For this system, what is the expression for the Amplitudédrand Phase Angle as a
function ofw?

c. What is amplitude of the variation in the flow out of tank Zagfsinction ofw?

d. For a frequency of oscillation d % What is amplitude of the variation in the flow
out of tank 2?
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Chapter 7

Multivariable Systems

Multivariable System Modeling

Multivariable systems can be modeled as dynamic systemng wisinsfer functions the
same way that SISO systems can be modeled using transfeiofusicin multivariable sys-
tems, a vector of inputs goes into the transfer function avector of outputs comes out:

Just like in multivariable steady-state modeling:

>
1<
Il

=

>
I

Where the multivariable system of equations representigtstate relationships, in the
dynamic case the multivariable transfer function represselgnamic relationships between
the inputs and outputs. In the case of a 2 system,G(s) will be a2 x 2 matrix with
four transfer functionsg,;(s), gi2(s), g21(s), andga(s). The first row is for the first set of
equations relating the first output to the rest of the inputs.

63



y1(s) = g11(s) ui(s) + gra(s) ua(s)
y2(s) = go1(s) ui(s) + goa(s) ua(s)

U] > gu(s) Y1
> gi2(s)
>l g2u(s) Y2
u9 > g2(s)

The multiple transfer functions can be developed in the lusuner. Open-loop step
tests for each process input could be used to determinetgagrconstant and time delay for
simplified FOTD models, or fundamental mass and energy bataoould be used to develop
dynamic equations that can then be linearized and transfibimo the LaPlace domain.

7.1 Relative Gain Array

The Relative Gain Array (RGA) is a tool that can be used to laelalyze multivariable
systems. When considering control of multivariable cdraystems, one must consider inter-
action. In a2 x 2 MIMO system, changing; will usually affect bothy,; andy,. Likewise,
changingu, will usually affect bothy; andy,. Using our traditional SISO PID controllers, this
can lead to problematic situations where two controlleigtfi each other significantly. The
RGA can be used to help determine loop pairings for SISO obets in a MIMO process.

For example, in th@ x 2 system there are only two options: Option 1, pair< y;,
Uugy < Yo OR Option 2y < Yo, Uy <> Y.
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Yisp uy
gr(s) > gu(s)

.

—— Y1

g22(s)

Option 1

Y <= up Y2 o u2

Yasp ul
ger(s) : >l gu(s) ty

Q@
N
2l
) <z
5_.?
A

>l g12(s)

>l g21(s)

uz

<
—
w0
%
<
A\
N
¥

Option 2
Y1 > u2 Y2 < Uy

In a3 x 3 MIMO system, there would be six options for loop pairingstgrows as:!.
The RGA can be calculated for2ax 2 system as follows. First, calculate the stead-state
gain matrix, Kl = G(s = 0). Next, determing where

KKy

<= K11 Koo

Then determine the RGA matriX,

e

1 —
—<
¢

—
—
|
S

A=| X

-

|

For a generah x n system, the RGA is given as follows:

—_

—
|
N
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A=K x (KT

The x operator represents element by element multiplicatiomeftivon x n matrices.
In Matlab, this can be done as follows:
R=K. *i nv(K)’

Note that in the general x n case you are taking the inverse of the steady-state gain
matrix. If the square system has no inverse, you cannotleadécthe inverse. This also means
that your equations are linearly dependent, implying thatesar combination of your inputs
can be equivalent. For example, increasin@ndu, have the same effect on the outputs. This
type of system cannot be controlled in all output directions

7.1.1 RGA Rules

These are approximate rules for loop pairing. The RGA is astestate analysis tool and
may not hold true in all situations. These are guideline§ifsirconsiderations in multivariable

systems.

1. If the \;; element is less than or equal to zero, avoid pairing outptith input j. This
is the worst case for pairing and should be avoided.

2. Ifthe \;; element is equal to one, pair outputith input ;.
3. If possible avoid cases 0f< \;; < 0.5.

4. In all other cases, there will be interaction, but the yalf the closed-loop response
depends on the controller tuning, the amount of nonlingattie magnitude of distur-
bances, and the process measurement noise.

7.1.2 Examples

Example 1

1=

-1 2
| 4 3
KKy 2(4) 8

¢= KKy —1(3) B
Then determine the RGA matriX,

-
Il
1
=
||‘,_.
HTaN
—
-1
~
1

T—¢ T-¢
1 5

8 8

3 _1_

8 8

+5 143



oo
oo

Sth

Implying that you should pait; < y», us < y; since the (1,2) element (row 1, column
2) and (2,1) elements a%, close to 1.

—_
—
—_
—

Example 2

>

-2

C _ K12K21 _ 2 (4) _
K11K22 —1 (—3)

Then determine the RGA matriX,

8
3

-
Il
-
‘“‘“moo
=
‘»—- |
wlog

—
|
o
—
|
ool

SEE]
Here, the (1,1) and (2,2) elements are negative. Avoidithe> vy, us < yo pairing in
this case, so you should use the< 1y, uy < y; pairing.

| cout| o

onjeetioo

Example 3

1 3 4
K = 0 2 2
-3 1 2

025 =225 3
0 3.5 =25
0.75 —=0.25 0.5

A

In row 2, the only good option appears to be paiwith u,. There will be interaction
on this loop, as the value of 3.5 predicts. There are now tWerdnt ways to consider the
problem. If you consider column 1 first, you would pairwith «; as a value of 0.75 is better
than 0.25, then end up with paired withus for a value of 3. The alternative that would also

be valid is pairy; with u, for a value of 0.25 angs; with us for a value of 0.5. Either option
is valid.
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Example 4

1 2 4
K = 2 22
-3 =3 2
-1 2 0
A= 3.2 =28 0.6
-12 18 04

First, consider column 1. Row elements (1,1) and (3,1) atk begative, implying that
you should painy, with u;. Now, examine row 1, is already paired withy,, soy; should
be paired withu, since the (1,3) element is 0. This leayeto be paired with.; for a value of
0.4. Every pairing will have interaction. This could be feeen to some extent. Examine the

“direction” of columns 1 and 2. Increasing eitheror u, will force the output measurements
in almost the same direction.
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Chapter 8

Phase Plane Analysis

8.1 Linear Phase Plane

8.2 Nonlinear Phase Plane
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Chapter 9

Numerical Optimization

Objective: Introduce basic theory and formulation of nuiceroptimization problems.

Optimization methods attempt to find the best solution toabl@m. In some cases, the
solution may have limits on the possible values for the smtut

Optimization plays a vital role in many situations. Everydasks such as walking across
campus can be seen as optimization problems: minimize dtardie traveled while staying
within the bounds of the sidewalks. For engineers workinigéustry, each company expects
employees to help maximize the profit for the company, witbgal and ethical constraints.
For specific engineering tasks, numerical optimizatiorfroés become very useful for finding
the best solution to a problem.

Numerical optimization methods typically assume that dasoczalue that is maximized
or minimized can be calculated for the problem. This is cd&i®d thecost functionor the
objective functionThe cost function is a function alecision variablesLet us define the cost
function as a function of the decision variableas® (). An optimization routine must search
the allowable solution space of the decision variables b tive best value of the objective
function that satisfies the problem constraints. The génesithematical form of the problem
could be written:

min ®(x)

subject to constraints an

9.1 Scalar Nonlinear Function Optimization

In calculus, you have seen function minimization and mazation. To find the maximum
or minimum of a scalar function, = f(x), the critical points of the function can be evaluated.
The cost function in this example would W&z), = €¢ X C R, & : X — R. The first
derivative can be calculated and set to zéf(z) = 0. Assuming that in the solution of this
equation, the value for is value is not an inflection point the solution will be a mawim or
minimum value for the function. Finding the solution to tetpuation can be done analytically
in some cases (quadratic formula, etc.).
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In cases wheré2(z) = 0 is very difficult to solve analytically, the numerical st
can be found. Solving2(z) = 0 can be seen as finding the zero of a functigfu( = 0).
Newton’s method can be used to find the solution to this newlpro.

Additionally, gradient “hill climbing” method can be used find the maximum value of
®(z). The derivativeZ2(z) is the rate of increase for the function. An iterative praged
could be used where,,.,, = x4 + K fl—f(xold). Here, K is size of the step in the direction
of increasing objective function value. In some cases, %Zemay be difficult to evaluate

analytically. A first-order Taylor series expansion can bedito find%(x) = w.
Newton’s method or gradient search methods do not guartrdethe result is the optimal

value in a global sense. The resulting solution/s could sidered a local maxima or local

minima. Additionally, in cases where the rangera$ limited, the optimal value may actually

be found at the constraints.

9.1.1 Example Problem 1 - Multivariable Function Optimization

Given a cost function (objective function) that is a funotmf many variables, attempt to
find the minimal value of the function. For this exampléz) = (1 +25—10)%+(z;xx2—5)2.
First, create a Matlab functidimthat returns the objective function evaluated at a giveneval
of x:

function objective=f(x)

x1=x(1);

x2=x(2);

obj ective=(x1+x2-10)"2 + (x1*x2-5)"2 ;

This function can be used to find the minimum value of the fismctising the uncon-
strained optimization functiofminuncin Matlab’s Optimization toolbox. To find the mini-
mum value, an initial guess far must be supplied. To use an initial guess= [1 1], the
command would be:

xnew=fm nunc(’f’,[1 1])

9.2 Unconcstrained Nonlinear Function Optimization

General form for an unconstrained optimization problem is:
max®(x)

wherex € X C R, & : X — R. This meansr is now a vector andb(z) is a scalar
valued function.Note that you can perform minimization of a function by maximization

of —®(x). The critical points for this function occur when the gradieh®(z) are equal to 0,
22 (z) = 0.

’ The gradient of the objective functioB2 (z) = V®(z), is a vector function ofc. The
direction of this vector points in the direction of steegasteasing value ob(x) at the point
x. From a starting point,, one could perform iterative search looking @ (z) = 0 using

the formulaz,.,, = Toq + K g—f(xold). For some values oK this numerical method may be

72



unstable. Remember that the result may only be a local optidditionally, care should be
taken to avoid saddle points.

9.3 Convexity

At this point, issues involving convexity should be addegss

A convex setX satisfies\z; + (1 — A\)zy € X forall0 < X < 1, Vzy, 25 € X.

A convex set can be constructed from a convex function byuewislg the epigraph of a
convex function. Ifr € X C R", f: X — R, epi(f) € R*HL,

As in convexity results from calculus, convexity of a fulctrequires analysis of a second-
order condition. The Hessian mattik can be calculated fop(x) as:

[ _0%® 0% 020 7]
0x10x1 0x10x2 " Ox10xn
9% 0% :
H(JZ‘) — Ox2011 0x2012
5% 9%
| Oxp0x1 T Ct Oxplx,

A given function f(z) is convex if the Hessian of the function is positive semi-uiedi
This means that all the eigenvaluesifz) are> 0. Note that the Hessian matrix may be
a function ofz, making calculation of the eigenvalues quite difficult. Somethods exist to
bound the smallest eigenvalue for a general Hessian madirg interval analysis methods.

2
2? , H(z) = { 431 8 } For the Hessian, the
eigenvalues are known to le;; and0. Note that the minimum eigenvalue depends on the
range of values fot,. If the lower bound o, is > 0, the minimum eigenvalue is 0 making
the Hessian positive semidefinite and the function convex tive range of. If the lower
bound onz; is < 0, the Hessian is not semidefinite and the function is nonconver the
range ofr.

Note that nonlinear equality constraints are nonconvex.oAlinear functionsf(z) = 0
can be written as two inequality constraints:

0< f(z)<0

This implies that iff(x) is nonlinear and convex, one of the two preceding inequabty-
straints would be nonconvex.

Example: f(z) = (21)? + a2, L =

0 < fla)
flz) <0
Is the same as
—f(z) < 0
flz) <0

Therefore one constraint must be nonconvex.
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9.4 \ector Nonlinear Function, Constrained

A general form for the constrained optimization problem is:
max®(x)
subject tog(z) < 0

with the constraint functiong : X — R™ for m separate constraints. Consider the case where
g(z) is a single constraint, a scalar function of the veatorhe problem can be written using
a Lagrangian relaxation to form an unconstrained problene. few problem becomes:

max®(z) — ug(x)

where u is a positive value. Think of this as a penalizatiowiolating the constraing(z) < 0.
When g(x) is positive, the objective function increases, so it is iddse to havey(z) be
negative. The unconstrained optimization problem can Ibeeddteratively, changing the
values foru until the minimum value for is found to keely(z) < 0.

Now, consider the case whegér) is a vector function of the vectar. The problem can
be also written using Lagrangian relaxations to form an nstrained problem. The new
problem becomes:

max®(z) — u1g1 () — ... — UpGm ()

whereu,, are positive values. In the case where multiple constrargswritten on the
problem, the problem can become infeasible if no feasibigtism can be found.

9.5 KKT Conditions

For a potential solutior, the following conditions hold. The sétspecifies the binding
constraints at, I = {i : g;(2) = 0}. Additionally, Vg;(z) are linearly independent. If the
following conditions hold at:;, thenz is a KKT point and a local solution.

V(&) + Z u; Vgi(2) =0
icl

Note that this does not specify how to find a KKT point. Alsoenttat a KKT point is not
necessary to minimize a convex problem.
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9.6 Special Types of Optimization

Linear Programming (LP) In some cases, the general optimization form has linear ob-
jective functions and linear constraints. An optimizatpoblem can be found in the form:

min C'x
subjecttodxr < b, b <z < ub

This is a special linear constrained case where the obgefttivction is a linear function
of the decision variable vectarand the constraints are also linear. This can readily beedolv
using thealp command in Matlab, even for large scale problems. Geneth#ysimplex
method is used, but interior point methods are gaining oyl

Quadratic Programming (QP) For cases with a convex quadratic objective of the form:

min %xTHx + Cx
subject todz < b, b <z < ub

The problem is termed a Quadratic Program (QP). The Matlaimtandgp can be used
to solve this type of problem.

Mixed Integer Programming For problems where some variables can only take binary
values, the problem is considered a Mixed Integer problemorAmon mixed integer problem
is the Mixed Integer Linear Programming (MILP) problem oé fiorm

min Cx
subject toAxr < b, Ib < x < ub, z; € {0,1}

There exist specialized methods for solving problems whiggedecision variables are only
allowed to take values of 0 or 1 rather than values betweerl @ gimclusive).
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Chapter 10

Nonconvex Numerical Optimization

When an optimziation problem involves nonconvex algebfainctions in the objective
function or the constraints, the problem is said to be nomewmand may suffer from local
minima. When a problem includes binary or integer varigbthe decision space is also
noconvex, but the idea of local optimality is not so clear.
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Chapter 11
Tank Case Study

t) = kyjny(t) — no(t)
= kona(t) — ¢

Fo(t)
4[

A two tank system is arranged in series as shown in the aboueefigThe molar gas
flow rate into tank 1 can be changed by the operator. The tamksanstant volume and
isothermal. The volumetric flow of gas across a valve is ugwalitten ' = kvAP. In
this case, using ideal gas lalt/" = nR1T you should realize that the molar amount of gas
in each tank is proportional to the pressure in the tank; }XT P whereV, R, andT are
constant. As a result, the molar flow rate between the twostackoss a valve can be written
asFi(t) = kiy/ni(t) — no(t) and the flow across a valve to the atmosphere can be written

Fg(t) = ]{72 ng(t) —C
. Develop a dynamic mass balance for the two tank system.

. Linearize any nonlinear terms.

. Develop linear dynamic approximation for the system.

1

2

3

4. Take the Laplace transform of your linear ordinary déferal equations.

5. Derive the transfer function relating the input flow to thenber of moles in tank 2.
6

. Determine the analytical response for the number of mioldank 2 for a unit step
change inF,(t) at timet = 0.

™~

Sketch the bode plot for this system.

8. Assuming a feedback controller of the form
K.

T S

derive the closed-loop transfer function.
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Chapter 12
ECHE 550 Topics

General Control Configurations
Jargon: MV, CV, DV
Feedback on PFD
Feedforward on PFD
Cascade on PFD
Linear Algebra
Steady state modeling\y = K Au)
Solving A z = b by row reduction
Solving A z = b by calculatingd ™
Matrix multiplication a
Determinant / Eigenvalues of
Dynamic Modeling (Open-loop)
Dynamic mass and energy balances
State Space Representation for ODEs
Laplace Transforms
step, delayed step, impulse
ramp, sinusoid, exponential
time delay and Heavyside function
derivative, integral of function
Solving Ordinary Differential Equations (ODES)
Step response of First-Order system
Partial Fraction Expansion
Linearity applied to complex functions
f(#) = f1(t) + f2(2) = fi(s) + fa(s) = f(s)
Compound / Composite functions
Dynamic Modeling (Open-loop)
Dynamic mass and energy balances
CSTR, Mixing Tank, Tank Level
Transfer Function Representation
y(s) = g(s)u(s) + ga(s)d(s)
Block diagrams
Poles and Zeros of transfer functions
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Low Order Systems
First Order
Pure Gain
Pure Capacity
Lead Lag
High Order systems
Two first order in series
Interacting tanks
General 2nd order
Higher order
Inverse Response (RHP zero)
Time Delay
Stability
poles and eigenvalues for stability
BIBO stab. of oscillatory systems (poleat 0)
Poles and Zeros of state space representation
Frequency Response
Amplitude Ratio and Phase Angle fofs)
Basic Bode Plots given(s)
Complex Bode Plots fog; (s)ga($)...gn(s)
Developing models from frequency response
Linearization of nonlinear ODEs
Model Identification
Feedback Control
Process Reaction Curvé(, 7, «)
Basic PID Controller TuningK., 77, 7p)
PID Transfer Function fog.(s)
Internal Model Control
Direct Synthesis
Feedforward Control
Cascade Control
Multivariable Open-loop Modeling
Transfer function based
State space
Multivariable system poles and zeros
Multivariable Control Issues
Relative Gain Array and loop pairing
Decoupling control
Actuator constraints
Moving horizon control
Optimization
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Chapter 13

Various Problems

13.1 Tank Modeling Problem With Explanation

1. (25 pts.) A system consists of three tanks as shown below. The flow Fgtean be
manipulated. A fraction of the flow rat#, into the system goes into tank 1 and the rest of the
flow enters into tank 3 as shown. The fraction of fléwinto tank 1 isy, with 0 <~ <1 and

~ remaining constant. The flow rate from tank 1 to tank 2 is gi&sh’, = k1h;. The flow
rate into tank 3 from tank 2 i, = ky(hy — h3). The flow rate out of tank 3 i$s = k3hs.
The constant cross sectional tank areas4red,, and As, respectively.

FO *
m N

F1=K1H1

F2 = K2 (H2 - H3) F3 =K3H:

a. Derive the differential equation model for the system.

b. Put your differential equation model into State Spacenf@r = Ax + bu, y = c’'z) for the
system, given that = Fy, y = hs, andz with z :
hy
ha
hs

=

SOLUTION AND EXPLANATION: First of all, you must realize that you need to per-
form a dynamic mass balance for this system. Dynamic ba&inctude a nonzero accumu-
lation term and can result in a differential equation modslaur process.
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To start the mass balance, remember that you should perfalandes around individual
systems. In this case, you will need three balances, onesawbrtank system.

The amount of “stuff” in the first tank isV; (¢) or more simplypA;h,(t). As the density
and cross-sectional area are not functions of time, thenaglation term (or rate of change of
“stuff” in the tank”) can be written as:

dhy

pA—=(t)

Assuming the flow rates are all in volumetric terms, the madarize on the first system
can be written as:

dh
PAld—tl(t) = pyFo(t) — pkiha(t)

Note that for this tank, you have a flow rate in term and a floe cait term. Also note that
only a portion of the flow into the system goes into tank 1. €ismo reaction taking place
in this system. Similarly, for the other two tanks you cantevgimilar mass balances:

PA2dd—};2(t) = pkihi(t) — pka (ha(t) — h3(t))
PAs%(t) = p(1=7)Fo(t) + pka (ha(t) — hs(t)) — pkshs(?)

Such that the overall model is in the form:

P/‘h%(ﬂ = pyFo(t) — pkiha(t)
P/‘b%(ﬂ = pkihi(t) — pka (ha(t) — h3(t))
PAs%(t) = p(1=7)Fo(t) + pka (ha(t) — hs(t)) — pkshs(?)

Note the sign difference in terms. If something is assumdidtoout of one tank and into
another, the same term should appear in both mass balantewith a different sign in each.
Also note that the flow from tank 2 to tank 3 is assumed to betipeiso long as; > hs).
The term appears with a negative sign in the second balart®iéim a positive sign in the
third balance. In some casés, may exceed,. In such a case, the sign of the term would
automatically change, taking care of the reverse flow in tbdeh The negative term for flow
out: —pks (hs(t) — hs(t)) for the tank 2 balance would become positive valuksiexceeds
hs and the flow out term would actually become a flow in term. Naglgpecial must be done
in these cases, except making sure the terms have diffaged i§ they appear in different
balances.

You now have a full differential mass balance. Now we woute lio get our equations in
state space form. You have three accumulation terms, sohaudhave three states:

hy(t)
z(t) = | ha(?)
hs(t)
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Next, simplify the equations. First, divide out the den&igm all the terms.

AT = AR - k()
AT = Baha(t) — ks (halt) — hs(t)
As%(t) = (L=7)Eo(t) + k2 (ha(t) — hs(t)) — kshs(t)

Next, get the accumulation terms to all have 1 as the leadiafjicient. This means divide
each equation by the cross sectional area in this case:

dhl Y kl

a = 3 PO g

dhg k‘l k2

E@ — A_ghl(t> -4 (ha(t) — hs(t))

dhs (1—-9) ks ks
d—t(t) = 4 Fo(t) + 1 (ha(t) — hs(t)) — A_3h3(t)

85



Now, write all the the equations in terms of all the states #redinputs, including the
measurement equationt) = hs(t)

dhy ok Y

E(t) = 4 hi(t) + Oho(t) + Ohs(t) + T Fy(t)

dhg . /{31 k2 k2

ﬁ(t) - A_th(t) A—th(t) + A_th(t) + 0F(t)

dhg o ]{32 ]{72 ]{?3 (1 — ’}/)
B = Oha(t)+ Fhalt) = Zoha(t) = Z2ha(t) + = Fo(t)

y(t) = Ohy(t) + Oho(t) 4+ 1hs(t) + 0Fp(t)

Now, it is easier to pick out your state space matricgs, C', D.

_ kL ol
Ay 0 0 A
a-| s m |
= 2 2 2 =
0k kT k (1-)
As As As As

c=[00 1] D=

And the matrices should fit together nicely in the form:

| B
== || =
I D

Which meansA andC should have the same number of columns (= # states), wihaled
B should have the same number of rows (= # statBsnd D should have the same number
of columns (= the number of inputs) whié and D should have the same number of rows (=
the number of output measurements).

Now, after you finish the mass / energy balance but before ywbyaqur equations in state
space, | could have asked you to take the Laplace transfodrgetra transfer function for the
relationship betweenj(t) andhs(t). When you take the Laplace transform of your differen-
tial equations and measurement equations, you will havengbeu of different equations in
the s domain, like:

k
smg:%%@—ﬁm@

And a couple of other equations. You would have to use thetemsato eliminate the
variables you don’t want. In this case, you only wa®pts) andhs(s), so you would have to
eliminateh, (s)andhs(s). This would be a mess on this problem, but you could feasiblit.d
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13.2 CSTR Modeling Problem With Explanation

1. At the Ideal Gas Company, you are in charge of operatingetaat mixing system.
Your boss wants a dynamic model of the system to be used faepsocontrol and process
optimization. The constant volume mixing tank has two feteglsns with constant volumetric
flowrates of F; and F;>. Feed stream 1 contains both species A and species B, wiahkanst
2 only contains species A. You can modify the initial concatbns of the two species com-
ing into the tank systemy;(t) = Caio(t), ua(t) = Cpio(t), us(t) = Can(t). At the exit
stream, due to instrumentation limitations, you can onlyasuee the total concentration of
both componentsy(t) = Ca(t) + Cp(t).

F1 F2

u3(t)=Ca20(t)

D GED R

a. (4 points) What is the dynamic mass balance describing the concemtsatif Species
A and species B at the exit of the mixing tank?

b. (4 points) Put your model in state space form. Clearly identifyA, B, C, and D.
Example state space form: - B

+
_'_

|
I‘Q |‘D>
1S &

SOLUTION AND EXPLANATION: Ok, one tank, two species, three inputs, one mea-
surement. Two dynamic mass balances should weyk.F,, F3, andV are all constant. No
reaction, this is a mixing tank. One balance will considerd@mount of species A in the sys-
tem, while the other will model the amount of species B. Thaltamount of A in the system
is:

VCOy(t)

And the accumulation term for A will be:

dCx
V—r-(t)

So the mass balances become:
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= F1C10(t) + F5Ca00(t) — F5C4(1)

= FCpo(t) — F5Cp(t)
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The states (concentrations in the reactor) and inputst @lecentrations for inlet flows)
in this problem are:

Ca10(t)
[ Calt) u(t) =
z(t) = { Ch(t) } u(t) gigg; ]

The measurement equation is a little tricky... You can mesathe total concentration of
both components:

y(t) = Ca(t) + Cp(t)
For state space, divide both equationshywrite all equations in terms of all statesand
all inputsu.

dCa(t)

dt

T2 = 0Cs(t) — Fy/VO3(t) + 0Can(t) + Fy/VConlt) + 0Caz)

= —Fg/VCA(t) + OCB(t) + Fl/VCAlo(t) + OCBlo(t) + FQ/VCAQO(t)

And the matrices should fit together nicely in the form:

A || B
R
So that:
A I A
1 1 || 0o 0 o0

Note the eigenvalues of thé matrix. These are the poles of your system. Note they are
identical.C'4(t) has no effect ol's(t).
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13.3 Fall 2001 Exam 1

1. (15 pts.) The Ideal Gas Company is attempting to develop a dynamicegsomodel for a
combustion chamber which burns a stream of aqueous liqustiewd he process output and
the process input are shown for a input step change. Whaeisgrdnsfer function for this
system, assuming it is a first order process?

277.1

Temperature

I I I I I I I I I
500 505 510 515 520 525 530 535 540 545 550

Time (seconds)

L L L L L L L L L
500 505 510 515 520 525 530 535 540 545 550

Time (seconds)

2. (15 pts.) What is the Laplace transforays) of the following function?

0 t< 0
(1) = ot 0< t <b
YW= 24410t b< t <ec
0 c< t
u(t)
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3. (25 pts.) A system consists of three tanks as shown below. The flow Iratean be
manipulated. A fraction of the flow rat&, into the system goes into tank 1 and the rest of the
flow enters into tank 3 as shown. The fraction of fléwinto tank 1 isy, with 0 <~ <1 and

~ remaining constant. The flow rate from tank 1 to tank 2 is gias#; = kh;. The flow
rate into tank 3 from tank 2 i, = ko(hy — h3). The flow rate out of tank 3 i$s = k3hs.
The constant cross sectional tank areasAgred,, and Az, respectively.

FO *
m N

F1=K1H1

F2=K2(H2-H3)y F3=K3H:

a. Derive the differential equation model for the system.

b. Put your differential equation model into State Spacenf@r = Ax + bu, y = c’'z) for the
system, given that = Fy, y = hsz, andz with x :

ha
= hg
hs

4. (20 pts.) For the following system, steam is used to heat the liquid ocoastant vol-
ume tank. The available measurements include the tempermaitthe liquid in the tank, the
temperature of the feed flowing into the tank, and the steamfde. The steam valve can
be manipulated. It is desired to regulate the temperatutbeoéxit flow from the tank at a
constant value.

10
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a. In the figure above, draw a feedback control loop for théesys

TO
—

(B —»

—0

b. In the figure above, draw a feed forward control loop, assgrthe feed temperature
acts as the disturbance.

TO
—

(B —»

—0

c. In the figure above, assuming the steam flow rate variesedigtably, draw a cascade
configuration using two feedback controllers.
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13.4 Fall 2001 Quiz 1, Practice

1. (4 pts.) A preheater furnace is used increase the temperature o oilfiiom 7;; to T, the
target value. The preheated hot crude oil is then sent dawarstto a reactor. The crude oll
enters the furnace at the flow rateand leaves at the same rate. Fuel and air are mixed and
burned in the furnace to heat the crude oil. See diagram below

Crude Oill F,T

i

Oa = Air Flow Rate Of = Fuel Flow Ra

Construct two different feedback control configurationtsoi construct two different
feedforward control configurations. Clearly label what isasured and what is manipulated.

3. (2 pts.) What are the eigenvalues of the following matrix?

o
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13.5 Fall 2001 Quiz 1

1. (4 pts.) An agricultural process requires that trays of plants bentaaied at specified
temperatures. Three lamps are used to warm three plantasaseen below.

Lamp A Lamp B Lamp (
LN LN\

\
’ Y Y !

~
~
g

’

Plant A PlantB PlantC

A 3x3 steady state model is desired relating the change tagesAV; (for each lamp) to
the change in plant temperatuted; (for each plany). Itis known that increasing the
voltage for Lamp A by 1 volt increases the temperature of tPAdoy 3.3 degrees and
increases the temperature of Plant B by 2.1 degrees. Imegelaamp B voltage by 1 volt
increases both Plant B and Plant C by 2 degrees. Increasmg Cavoltage by 1 volt
increases the temperature of Plant C by 4 degrees.

Develop a model in the forz = b and identify4, z, andb.

You may want to check your model by assuming arbitrary valaethe change in lamp
voltages, then verifying the expected change in plant teatpees.

3. (2 pts.) a. What is the determinant of the following matrix?

1 1 0
0 -6 7
-1 -2 3
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13.6 Fall 2002 Quiz 1

You must develop a model of paper machine sheet forming psodesimple schematic is
shown below. A feed stream of pulp (wood fibers and water)rigysga onto a moving screen
(conveyor belt). As the screen moves, water drains out gptiye, through the screen. At the
product end of the paper machine, the pulp is effectiveli\wet paper.

Sensors Adjustable
\ Valves

\

Sheet Dlrectlon
Product <>\|j}| of sheet Feed

@)

Diagram of a sheet forming process.

Three valves are available to adjust the flowrate of pulp wienpulp concentrations
change. Three sensors measure the thickness of the wet pagreasing the valves on the
edge by 1%1; andwvs) increases the thickness in the corresponding paper ¢ochti 2mm.
A 1% increase inv; andwvs will also decrease the thickness in the center position byl m
A 1% increase in, will increase the thickness in the center by 3 mm and redueetiye
thickness by 0.5mm.

1. (1pt) What are the controlled variables, manipulated varialaled,disturbances for this
paper making process?

2. (3pts) Develop a model of this process relating and Awv.
3. (2pts) Put your model in the formlz = b and clearly identify4, z, andb.

4. (2pts) What is the determinant of the following matrix??

0 2 -1
11 4
1 3 1

5. (2pts) What are the eigenvalues of the following matrix?
-5 =2
3 —10
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13.7 Fall 2002 Quiz2

1. At the Ideal Gas Company, you are in charge of operatingetaat mixing system. Your
boss wants a dynamic model of the system to be used for prooes®l and process opti-
mization. The constant volume mixing tank has two feed stgewith constant volumetric
flowrates of F; and F». Feed stream 1 contains both species A and species B, wiahkanst
2 only contains species A. You can modify the initial concatbns of the two species com-
ing into the tank systemy,(t) = Caio(t), ua(t) = Cpio(t), us(t) = Can(t). At the exit
stream, due to instrumentation limitations, you can onlyasuee the total concentration of
both componentsy(t) = Ca(t) + Cp(t).

F1 F2
ul(t)=Cal0(t) u3(t)=Ca20(t)
u2(t)=Ch10(t) ]
Ca b L
GIED GIED N I

a. (4 points) What is the dynamic mass balance describing the concemtsatif Species
A and species B at the exit of the mixing tank?

b. (4 points) Put your model in state space form. Clearly identifyA, B, C, and
Example state space form:

IS

|
(58
=12

2. (2 points) After running some step tests for your system varying) and measuring
the outputy(¢) you have the following process data. Identify the approtépeocess gain for
this Single-Input-Single-Output system.
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u(t)
N~ 2] ©

200 220 240 260 280 300
time (min)

3. Bonus - Dr. Gatzke has a flower bed with three sprinkler fielldone minute, sprinkler
1 delivers2 mm of water to its coverage area, sprinkler 2 deliversmm of water to its
coverage area, and sprinkler 3 delivéram of water to its coverage area. Plant A is covered
by sprinkler 1 and 3, plant B is covered by all sprinkler, arahpC is covered by sprinkler 2
and 3. The system is currently set to operate at normal apgratogram times. Develop a
steady state model relating possible changes in springlenading times to changes in amount
of water delivered to each plant. Put you model in the form:

Ar =10

3b. Assume that plant A needs an additiohalm of water, plant B needsmm less, and
Plant C is fine the way it is. How does the problem change? Whanges to the sprinkler
operating times would make this change? Solve using Row RieduMethods.

Sprinkler 3
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13.8 Fall 2002 Exam 1 Practice Problems

1. A series of tanks are shown below. You can maniputgfé) and you can measure the
flow rate out of tank 3/3(¢).

—|>UK]—1 FO(t) = u(t)

T~ Fi(t)=k1 hi(t)

v F2(t)=k2 h2(t)

A3

O—  E3(t)=k3 h3(t) = y(t)

a. Assuming constant density, develop a mass balance fey#tem.
b. Put your model in state space form. Clearly identifyl, B, C, andD. Example state
space form:

© = Az + Bu
= Ca+ Du
c. What are the eigenvalues of yadimatrix from your system?
d. From part (a.) take the Laplace transform of your dynanocdeh assuming the tanks
are empty initially. Sove the three equations for the refehip betweep(s) andu(s).

2a.Express the following function as a simple function ofdi(You may need to use the
heaviside function multiplied by other functions.)

t=0 5 15
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b. Establish the Laplace transform of the functiof).

3a.Express the following function as a simple function ofeti

2
u(t) tz0 15
0oL !
2

b. Establish the Laplace transform of the functio(x).
c. Assuming this function(t) is the input to a first-order system(s) = 2, y(s) =
g(s)u(s). Establishy(s) andy(t).

4. Assuming a constant volume mixing tank for two speciesnd R. Assuming you can
change the inlet concentrations of A and B and measure thet goncentrations of A and B,
develop a dynamic mass balance and put your equations ensgtate form.

ul(t)=Cao(t)
luZ(t):CbO(t)

1

QO

Ca(t)
v Cb(t)
F ——o
vV oyl(t)=Ca(t)
y2(t)=Ch(t)
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13.9 Fall 2002 Exam 1

Chemical Process Dynamics and Control
Exam #1

September 25, 2002

1. (15 pts.) The Ideal Gas Company is attempting to develop a dynamicegsomodel for a
chemical reactor. The process output and the process inpghawn below for a input step
change.

a. Determine the process gaiR’), the process time constant)(@and the process dead time
() for the system.

b. What is the transfer function for this systeqis), assuming it is a first order process?

150-“‘u‘uuu‘““@““u‘@uu““ 

E100f

50

1400 1500 1600 1700 1800 1900 2000 2100 2200

25 N o
1400 1500 1600 1700 1800 1900 2000 2100 2200
time (min)

2. (15 pts.) What is the the time domain expression for the following tiorcexpressed
using the Heaviside function? What is the Laplace transfofs of the following function?

0 t< 0
ut)y=4 2043t 0< t <20
50 20< t < oo
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3. (25 pts. total) A system consists of two mixing tanks in series, as picturgldi. Two
manipulated inputs are available: the initial concentraf species A entering tank 1 and
the initial temperature of the liquid entering tank 1. Youncaeasure the temperature at the
exit of tank 1 and the concentration dfat the exit of tank 2. You may assume well-mixed
tanks, constant volumetric flow rates, constant volumedano&nstant density, and constant
heat capacity. You may use the reference temperdture

ui(t) = Cao — Caoss(t), ua(t) = To(t) — Toss

S

Cai(?)
i)
‘/17 P Op
F | O yl(t> = T1<t) — T
Cas(t)
Vs
H Ya(t) = Can(t) — Cazgs
FB=FK="

Figure 13.1: Two mixing tanks in series.

a. (12 pts.) Derive the differential equation model for the system.

b. (6 pts.) Put your differential equation model into deviation vatesbby subtracting the
steady state equations. Use the following variables:

u1(t) = Cao(t) = Capss, u2(t) = Ty(t) =Thss, x1(t) = Car(t) —Canss x2(t) = T1(t) —Tiss,
andl’g(t) = CAQ(t) — CAgss.

c. (7 pts.) Put your deviation differential equation model into Stap@a& form { = Az +
Bu,y=Cz+ Du,) forthe system, givep, (1) = T1(t) — Tiss, andya(t) = Caz(t) — Cazs-

1=

CAI (t) - CAlss
r= T1 (t) — Tlss

CAZ (t) - CA288
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4. (15 pts.) For the following system, a stream containing radioactol&ls is passed through
a crossflow filter. The clean filtrate is separated from théoedive slurry. The available
online measurements include the concentration of theystuntering the filter, the flow rate of
the slurry entering the filter, and the flow rate of the filtrakgting the filter. The inlet valve
can be manipulated. It is desired to regulate the filtrate, fk@eping it at a constant value.

Fin

- Ca
—] Filter
P
Filtrate } Fout

a. In the figure above, draw a feedback control loop for théesys

Fin

- Ca
—] Filter
P
Filtrate } Fout

b. In the figure above, draw a feed forward control loop, assgrthe feed concentration
changes unpredictably.

Fin

- Ca
—] Filter
P
Filtrate } Fout

c. In the figure above, assuming the feed stream pressurgehamd will affect the flow
through the valve, draw a cascade configuration using twabfgek controllers.
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5. (30 pts. total) A constant volume salt mixing tank system can be modeled bgteofider
transfer function relating the measurement(t) to the manipulated input'4,(¢):

VdCy
——(t Ca(t) —Cuo(t) =0

=2 (1) + Calt) = Ciaolt)
a. (4 pts.) From this differential equation, what are the values forghscess time constant,
7, and process gairk in terms of tank volumé” and flow rateF’ (F;,, = F,,; = F) ?

b. (5 pts.) Justify using physical arguments the value of the steadg ptacess gain.

c. (5 pts.) AssumingC,(t = 0) =0,V = 2m3 andF = 0.05?—;, express’4(s) in terms ofs
andC,(s) by taking the Laplace transform of the differential equatio

d. (6 pts.) When salt is not being added to the system, the inlet flow taeahle gets clogged
with dried salt. When the salt is first added to the systemsétteplug flows into the tank and
the inlet concentration spikes to a value of 110 for 1 sectre returns to the desired value
of 10. Assume that the short time, high level rectangulasein C 4, () can be expressed
as an impulse. For this start up procedure, skétgh(t), determineC'4,(t) in terms of H (¢)
andd(t), and determine the Laplace transform of this function,(s). Assume the impulse
occurs at time = 0.

e. (4 pts.) What is the exit concentration responggs), realizingy(s) = g(s)u(s)?

f. (6 pts.) This response can be broken into two portionst) andy.(t). Determiney;(t)
andy(t) then sketchy, (¢), y»(t), and the overall respongt).
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13.10 Fall 2003 Exam 1
Chemical Process Dynamics and Control
Exam #1

September 28, 2002

1. (15 pts. total) The Ideal Gas Company is attempting to develop a dynamiegssomodel
for a chemical reactor. The process output and the procpss @me shown below for a input
step change.

a. (12 pts.) Determine the process gaii’}, the process time constant)(and the process
dead time ¢) for the system. Time units on the graph are in minutes.

b. (3 pts.) What is the transfer function for this systenq;s), assuming it is a first order
process with time delay?

100 T T T T T T T T

60| : : -

40~

20 . . . . -

-20 L L L L L
1000 1050 1100 1150 1200 1250 1300 1350 1400 1450

1006 T T T T T T T T
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1002

1000

| | | |
1000 1050 1100 1150 1200 1250 1300 1350 1400 1450

998 ‘
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2. (15 pts.)What is the Laplace transforats) of the following function, given that(t) = 0
fort < 07?

32t 0< t <5
u(t) = 372 — 4= 2(=5) 5< t <10
32t _ fe2(t-5) 4 %(t —10) 100< &t <0
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3. (30 pts. total) A reactor is to be used to produce a new product. The reactocomstant
volume system, with constant volunieand constant flow rate in / ol. Three species are
present. Specied can react to form specid$ at a rate of 45 = k1C 4. SpeciesA can ALSO
react to form specie§' at a rate of-yo = koC4. SpeciesB will react to form specieg¢’ at a
rate ofrgpc = k3Cp. Reaction rates are vqumetri(cL’”“T"ﬁn). Only speciesA is entering the
system. You can adjust the concentration of spedientering the systent,'4,(¢). You can
measure the concentration@fleaving the system. You do not need to carry unit throughout
the problem, just make sure you have the correct terms inlealeince.

e A — B withreactionrate s,z = k&,C4
o A — C withreactionrate 4o = k:Cy

e B — (C with reaction rate g = k3Cp

Constant volumé&” and flowsF'

Single inputu(t) = Ca,(t)

Single measuremenj(t) = C¢(t)

U(t):CAo(t)
F \ 4 | A—>B
A—C
B — C

Cal) | 4y — p — ¢
Cp(t)
|4 C?(t) \_/
P O
y(t) = Colt)

a. (3 pts.) What are some additional assumptions you will use to modebtfstem?
b. (15 pts.) Derive a differential equation model for the system.

C. (12 pts.) Put your deviation differential equation model into Staga& form ¢ = Az +
Bu,y=Cx+Du,)forthe system, given that concentrations are all = 0 iliyt(@o deviation
variables needed in this case).
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4. (40 pts. total) At the Ideal Gas Company, a model of a simple chemical reagtiem was
developed by a previous employee. You are expected to vitxefynodel and determine the
time domain response of the model for changes in the inpueval

a. (10 pts.) For the following differential equation:

d2y dy du
d—y?(t) + 7d—y(t) +12y(t) = —(t) +ult)

show that for the initial conditiong(t = 0) = 0, (¢t = 0) = 0 u(t = 0) = 0, and

du(¢ = 0) = 0, the following transfer function relationship holds:

s+1

y(s):s2+7s+12u

(s)

b. (5 pts.) Given that the input to the system model is a unit impulsena¢ti= 1 (NOT at
t=0) show thaty(¢t = 0) = 0 using the Initial Value Theorem.

c. (5 pts.) Given that the input to the system model is a unit impulsenagti= 1 (NOT at
t=0) show that(t = co) = 0 using the Final Value Theorem.

d. (20 pts.) Given that the input to the system is a unit impulse at timel (NOT at t=0) find
the analytical responggt) of the system to the unit impulse as an explicit function ofdi

BONUS, sketchu(t) andy(t).
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13.11 Fall 2003 Quiz 1

Chemical Process Dynamics and Control
Quiz #1
September 5, 2001

1. (4 pts.) A continuous polymerization reactor has two feed strearoar Bpecies are
measured at the exit of the reactor. The temperature of #waecan be modified using a
cooling jacket. Additionally, the mixing speed can be mauiifi

M(t)

B(t) E;j
F(t) >

Cooling
Water

Z _.lj, -- O Product

zA(t), zp(t), To(t), zp(t)

A 4x4 steady state model is desired relating the manipulagedbles changes to the change
in the output product concentrationsy 4, Az, Azc, Azp. Input flows AF; andAF),

the change in the reactor jacket temperatds@’), and the change in mixing speefN{/)

affect product quality in the following manner:

A +10 GPH change i} increases:c by 2 %

A +10 GPH change it} increases:p by 4 %

A +10 GPH change i} decreases:z by 3 %

A +10 GPH change i, increases: 4 by 1 %

A +10 GPH change i}, increases:¢ by 1 %

A +1 change irl" increases all concentrations by 0.2%

e A+2 RPM increase inV/ increases: sz by 5%
Develop a model in the forlk’ Au = Ay and identify K, Au, andAy.

You may want to check your model by assuming arbitrary valaethe change in inputs,
then verify the expected change in concentrations.
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2. (2 pts.) Given the following system, draw a simple feedback contcbksne to control the
product qualityz- by manipulating the cooling water flow.

Fi(t) —K—— | M0

Fy(t)
Cooling
Water
To(t)l Fc(t)l \ Product
l T;(t) — O 2l

3. (2 pts.) Given the following system, draw a simple feedforward colndcheme to control
the product qualityc- by manipulating the cooling water flow given variations ie thlet
cooling water temperature.

By(t)
Cooling
Water
To(f)l Fc(t)l { Product
l T;(t) —O ()

4. (2 pts.) Given the following system, draw a cascade control schersentrol the product
quality z¢.
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Fit)
Cooling
Water
To(t)l E Fc(t)l \ Product
lTj(t) —O (1)

13.12 Fall 2004 Quizl
Chemical Process Dynamics and Control
Quiz #1
September 3, 2004

1. (3 pts.) Given the following process system, draw two separate grfgadback control
loops to control tank levels in tanks 1 and 2. Be sure to us&@ovalves in your loops.

Tank 1 Tank 2

B(t)
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2. (2 pts.) Given the following system, draw a simple feedforward coldgchemes to help
minimize variation in tank levels given changeshs(t). Be sure to use control valves in
your loops.

X
—K—

Hy(t) Hy(t)
Tank 1 Tank 2

Fi(t)

3. (2 pts.) Given the following system, draw a cascade control schemsentrol the level in
tank 3, noting that the level in tanks 1 or 2 would have somecefhn the level of tank 3.

X
— K

Hy(t) Ho(t)
Tank 1 Tank 2

B(t)
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4. (2 pts.) What are the eigenvalues of the following matrix? Pleasevsiour work.

B

5. (1 pts.) What is the determinant of the following matrix? Please skiour work.

0 -2 -1
2 3
-1 0 2
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13.13 Fall 2004 Quiz 2
Chemical Process Dynamics and Control
Quiz #2
September 14, 2004

1. At the Ideal Gas Company, you are expected to develop dyssgtate model of the follow-
ing process:

Va(t)
Vi) Y

Given the following information:

A 1% change in/; increases the level in Tank 1 by 3 inches

A 1% change in/; increases the level in Tank 3 by 1 inch

A 3% change in/; increases the level in Tank 1 by 4 inches

A 3% change in/; increases the level in Tank 2 by 5 inches

A 3% change in/; increases the level in Tank 3 by 6 inches

A 1% change in/; decreases the level in Tank 3 by 2 inches

a. (1 point) What areAu and Ay?
b. (4 points) Develop a steady state multivariable model relating thetsfo the outputs.
C. (1 point) Put your model in the forrdy = K Aw and clearly identify thek” matrix.
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2. (4 points)What is the Laplace transform of the following input sequenct).

12
6
u(t)
0 t<0
u(t) =5 6+ 5t 0<t<10
0 10 <t

3. BONUS In five words or lesswhy can we analyze dynamic systems with complex com-
posite forcing functions by treating each part separately?
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13.14 Fall 2004 Exam 1

ECHE 550, Fall 2004
Chemical Process Dynamics and Control
Exam #1
September 27, 2004

1. (20 pts. total) The Ideal Gas Company is attempting to develop a dynamiegssomodel
for a continuous processing nylon production system. Data the process output and the
process input are shown below for a step change and a sim uapeilse.

a. (15 pts.) Determine the
e process gaink)
e process time constant)
e process dead time (time delay)(

for the system. Time units on the graph are in minutes.

b. (5 pts.) Given a unit step change increase in the process input at:tin®, what is the
expected response of your model as a function of time?

100 T T T T T T T

40 .

20 1

0 I I I I I I
4900 5000 5100 5200 5300 5400 5500 5600 5700

| | | | | |
4900 5000 5100 5200 5300 5400 5500 5600 5700
Time (min)
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2. (20 pts. total) Determine the eigenvalues of the following matrix. Notey ywobably
shouldnot use row reduction methods in the solution of this problem.

a. (10 pts.) Set up the problem to be solved.

b. (10 pts.) Find simplified numerical values for the eigenvalues.

0 -4 1
0 -3 5
0 -4 1
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3. (25 pts. total) You must develop a dynamic model based on fundamental ptescfor a
pressure tank system as pictured below. You may assumehthé&dtal number of moles of
gas in tanki, n;(¢), may also be expressed %Pi(t) using the ideal gas law. All flow rates
are molar flow rates. You can change the valve position onle¢ $treamy.(¢). You do not
need to carry units throughout the problem, just try to make gou have the correct terms in
each balance.

kou(t) Yhou(t)

Fi(t) = ki (Pi(t) — Ps(t))

\ 4

no =D
» Py(t) —»N—»

Ps(t)

(1 —v)kou(t) Fy(t) = ko (P2(t) — P3(1))

The total molar flow rate into the systemfigu(t)

The molar flow rate into tank 1 igkou(t), 0 < vy <1

The molar flow rate into tank 2 id — ~)kou(t)

The molar flow from tank 1 into tank 3 ¥s (P (t) — Ps(t))
The molar flow from tank 2 into tank 3 s, (P (t) — P3(t))
The molar flow from tank 3 into the atmosphere:is®; (¢)
The tanks are constant volunig, V5, V.

The gas in the tanks is at a constant temperature.

You can measure the pressure in tanks 2 and 3.

a. (15 pts.) Derive a differential equation model for the system.

F3(t) = k3 (Ps(t))

b. (10 pts.) Put your deviation differential equation model into Stapa&e form ¢ = Ax +
Bu,y = Cx + Du,) for the system, given that all pressures are = 0 initially geviation
variables needed in this case).
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4. (35 pts. total) At the Ideal Gas Company, a model of a simple chemical reagtiem was
developed by a previous employee. You are expected to vitxefynodel and determine the
time domain response of the model for changes in the inpueval

a. (7 pts.) For the following differential equation:

dy du
i 9 — 4
6 (8) +2y(t) = 4—

show that for the initial conditiong(t = 0) = 0 andu(t = 0) = 0, the following transfer
function relationship holds:

(t) + u(?)

_4s+1

y(s)—6s+2u

(s)

b. (6 pts.) What are the poles of your transfer function? What are thes?er
C. (4 pts.) What is the gain of this model?

d. (5 pts.) Given that you implement a negative step change of magnBuateime zero in
the inputu(t), what is the ultimate response? Use the Final Value Theasdmd y(t = o).

d. (13 pts.) Given that you implement a negative step change of magnButdime zero in
the inputu(t), find the analytical responggt) of the system.

BONUS, sketchu(t) andy(t).
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13.15 Fall 2005 Quiz 1

Chemical Process Dynamics and Control
Quiz #1
September 2, 2005

1. (4 pts.) Your first assignment for GameCockCo is in the silicon wafedpction facility.
Each wafer must be maintained at a high temperature duragttthing process. Since very
high temperatures are required, radiative heat transfagusgh temperature lamps will be
used to heat the chamber. The triangular chemical vapomaeasition chamber has three
variable intensity lamps, one in each corner of the chambadr,intensitiesl/;, I, and/;. The
chamber also has three temperature sensors, denotgd 8y, andS;. These sensors are also
located in the corners of the chamber. You are told by a s@mgineer in your department
that a 5% increase in the intensity of any one of the three $amgults in a 8 degree increase
in the corresponding temperature sensor location and ar@el@gcrease in the temperature in
the sensors in both of the opposite corners of the chamber.

o

Wafer Production
Surface

©::

Develop a model in the forlk’. Au = Ay and clearly identifyi, Au, andAy.

2. (2 pts.) During a production run, temperature sensor 1 is 6 degrdew loptimal, sensor 2
is 1 degree above optimal, and sensor 3 is 9 degrees belawalpthat problem would you
solve to get the chamber back to the nominal operating testyoer (what is youl\y value?).
How would you solve this problem? (What formula or method ldowu use?)
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3. (2 pts.) What are the eigenvalues of the following matrix? Pleasevstour work.

B

4. (2 pts.) What is the determinant of the following matrix? Please skowr work.

1 -4 0
0 3 0
-1 3 2

BONUS, why are eigenvalues and determinants useful?
BONUS, solve problem 2 above for a real answer.
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13.16 Fall 2005 Quiz 3

ECHE 550, Fall 2005
Chemical Process Dynamics and Control
Quiz #3, October 7, 2005

1. (4 pts.) A continuous bio-reactor for yeast fermentation has a siggicose feed stream.
The growth reaction takes place in a jacketed CSTR. It ismasduthat low-level control
systems are in place such that the inlet glucose concenmtratid temperature can be
specified (the mixing of pure cold water, pure hot water, agtl koncentration glucose

not to be considered here). Additionally, the temperature dewantering the jacket can be
specified. Given these three manipulated input values, y@axpected to develop a
state-space model of the system.

Cain(t), Tin(t) F
— K —
— X
—{X '
Ca(t), T(t) F;
hA(T(t) — Ty(t))

[ g ] Tyt A= B, r = KCalt)
L T,(1)
<L G

Tj(t)

The following is known about the system:

e The reactor is well-mixed with volumg

e The liquid in the jacket is well-mixed with volumié;

e The reaction is a first-order reaction with volumetric réacrateiC,(¢)
e The heat of reaction is AH

e The reactor volumetric flow rate in (and out)#s

e The jacket volumetric flow rate in (and out) #$

e The heat transfer from the reactor to the jackétdS7'(t) — 1;(t))

e The liquids all have constant physical properti€s, p, 1
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e The steady state input values fof, us, andus are Cainss, Tinss, andT};,ss respec-
tively

e The steady state state values @fg;s, Tss, andTjsg

e The jacket temperature deviation valligt) — 7);ss and the reactor temperature devia-
tion valueT'(t) — Tss are measured

a. Develop a dynamic mass and energy balance for the system.
b. Put your system in deviation variable form using the stesidte values.

c. Identify your states and put your system in state-spawce émd identifyA, B, C, andD.

13.17 Fall 2005 Exam 1

ECHE 550, Fall 2005
Chemical Process Dynamics and Control
Exam #1

September 28, 2005

1. (30 pts. total) The Ideal Gas Company has a simple mixing system for preparaf a
reactor feed. You must develop a dynamic model of this system

e No reaction is taking place in either tank, both well-mixed

e The mixing tanks are constant volumg,andV;

e The volumetric flow rate is fixed

e The inlet flow is equally split between the first tank and tlieestream

¢ Initially all concentrations are O

a. (15 pts.) Develop a dynamic model of the system. Note that instantameoxing occurs
at the mixing point shown in the dotted box (no accumulatibtih@ mixing point). State any
additional assumptions you make for your system.
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Lp oy F, Colt)

S, Coft)
O
Vlv Cl<t)
~—— C(]<7L>
) tefl
F, Cy(t)
Va, Cs(t)
Cs(t)
b. (15 pts.) Assuming that” = 22" V; = 20m?, V, = 10m?, Cy(t) = u(t) and

C3(t) = y(t) take the Laplace transform of your model equations and shatitle following

transfer function holds:
(10s + 1)

we) Y T Ger@es 1)

125



2. (30 pts. total) Assume that the inlet concentration momentarily chandksyiaag some of
the reactant to flow into the system. You can assumeittat= 6(¢), with the system

modeled as:
(10s + 1)

(55 + 1)(20s + 1)

y(s) = u(s)

a. (2 pts.) What isu(s)?

b. (6 pts.) Given this input, what is the initial value far, y(t = 0)?
c. (6 pts.) Given this input, what is the final value fgr y(t = 00)?

d. (10 pts.) What is the actual response of the outlet concentration asalytical expression,

y(t)? Note that:
1 1
Lt = _e 7
{7’3 +1 } 7

e. (6 pts.) Sketchy(t).
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3. (20 pts. total) The inlet concentration for your system can be manipuldiatithere are
limits to the response of the inlet concentration value. W&ghe Laplace transform of the
following function of time,Cy(s)?

1.0

Co(t)

t=0 t =1min t = 3min

0 £<0
05+05 0<t<1
Colt) 1.0 1<t<3
0 3<1¢
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4. (20 pts. total) From the following dynamic response data, determine theegdlor the gain,
time constant and time delay for the real experimental syt&’, 7, o). The inlet concen-
tration is manipulated using a ratio valve and the exit catre¢éion measurement is reported
as a signal voltage. The valve is limited in the ability to opeesulting in the abnormad(¢)
value.

b. (5 points) What is the transfer functioms), for this system?

120 T T T T T T T

100
80
60
40
20

Ratio Valve Position, %

0

_20 | | | | | | |
400 500 600 700 800 900 1000 1100 1200

28 I I I I I I I
400 500 600 700 800 900 1000 1100 1200

Time (s)

BONUS, Derive a state space model for your dynamic system fromlenol2.
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13.18 Fall 2006 Quiz 1
ECHE 550, Fall 2006
Chemical Process Dynamics and Control
Quiz #1
September 8, 2005

1. (5 pts.) As an intern at GameCockCo, you get stuck in the warehousewainehouse has
had problems with product loss due to poor heating in theexifthe complex HVAC system
is not maintaining a uniform temperature in the warehousetdypoor mixing (channeling
in the warehouse ventilation flow). Rather than buy fans todamproved convection in the
warehouse, you suggest an improved control system, sia@thent system runs all furnaces
at the same rate. Four temperature sensors are availaple, 75, andT;. Three furnaces are
available,Fy, Iy, andF3. The furnaces run on a 0-100 scale and are controlled by eatieatl

computer system.

e Increasing Furnace 1 by 10 units increasedy 3 degrees],by 2 degrees, and; by
1 degree

e Increasing Furnace 2 by 10 units increagedy 1.5 degrees anfl, by 5 degrees
e Increasing Furnace 2 by 10 units increaggby 4 degrees, and, by 2.5 degrees

e Increasing Furnace 3 by 10 units increa®eby 1.5 degreesl; by 2.1 degrees, anf,
by 3.2 degrees

@ ©

Temperature Sensors

Warehouse

-

i

Develop a model in the forkk’ Au = Ay and clearly identifyi, Au, andAy.
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2. (1 pt) During a production run, temperature sensor 1 is 2 degrdewloptimal, sensor 2 is

1 degree above optimal, sensor 3 is 5 degrees below optinthkensor 4 is 2 degrees above
optimal. What problem would you solve to get the chamber lhadke nominal operating
temperature (what is youky value?).
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3. (2 pts.) For the furnace system, it is desired to regulate the owteperaturd,. Both air
and oil are fed to the furnace, and both flow rates stronglyémite the outlet temperature.
Draw a simple feedback control system for the furnace below.

j &

4. (2 pts.) For the furnace system, the inlet air temperature has scineimte on the outlet
temperature. Draw a feedforward control system to mititfaeeffects of the incoming air
temperature on the furnace outlet temperature.
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13.19 Fall 2006 Quiz 2

ECHE 550, Fall 2006
Chemical Process Dynamics and Control
Quiz #2

September 20, 2006

1. (5 pts.) For the following funciton of time:

a). Express.(t) as a sum of simple functions of time.
b). Findu(s), the Laplace transform of(¢).

2. (4 pts) For the following process data, determine the gain, timestzont, and time delay.
b).(1 pt) What is the first-order-plus-time-delay transfer functionthis sytem?
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13.20 Fall 2006 Exam 1
ECHE 550, Fall 2006
ECHE 550, Fall 2006
Chemical Process Dynamics and Control

Exam #1 - October 4, 20056

1. (15 pts. total) Your nice window office at GameCock Co. is on the west side ef th
building. Due to mistakes when installing the HVAC systeng temperature in your office is
poorly regulated, since the cooling takes place only in tifieeonext door and the windows
are not insulated. Given the following steady state data:

T,

Windows Windows

T T,

B m Office 1 Office 2

Insulated walls and doors

Q

e A 3 degree increase in the external temperaiynesults in a 2 degree increas€lin
e A 3 degree increase in the external temperaifyreesults in a 1 degree increaselin
e Alincrease of 5 units in the chill&p results in a 4 degree decreasdin

e Alincrease of 5 units in the chill&p results in a 2.5 degree decreasé’in
a. (8 pts.) Develop a model in the forkk’. Au = Ay and clearly identifyi’, Au, andAy.

b. (7 pts.) Given that you wanf/; to remain constant and you wahi to decrease by 1
degree, what would have to happen to Q d@pd

134



2. (30 pts. total) Develop a dynamic model of your office. Assume the following:

T,(t)
Qun(t) = (T(t))*
|| ||
e )
) Qu(t) = hA(Ti(t) - ()|
: = no=vn+n |
] m Office 1 *—1—> Office 2

Windows Windows

Insulated walls and doors

Q(t)

e The offices have no air moving in or out, but the air in the offisewell-mixed (fans)
e The volume of air in each office I8, andV; respectively

e The heat capacity and density of the air in each officg,iandp

e The rate of energy entering the each office from the outsideusl:Q;, (t) = c¢1(T,(t))*
e The rate of energy transferred across the thin wallisit) = hA(T:(t) — Tx(t))

e Physical properties and parameters do not change with time

e Deviation values are:
x1(t) = T1(t) — Thss

Ig(t) = TQ(t) —Ths = y(t)
ur(t) = To(t) — Toss
uz(t) = Q(t) — Qss

a. (10pts.) Develop a dynamic model for this system.
b. (10pts.) Develop a linear dynamic model for this system in deviatimrf.

C. (10pts.) Put your linear model in state space form and clearly idgntif B, C', andD.
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3. (15 pts. total) The external temperature follows the following trajectdryring the day.
What is the Laplace transform of the following function aoh#,u, (s)?

T
[

External Temperature,

I I
0 5 10 15 20 25 30

0 0<t<9
(t—9) 9<t<12

uy (t) = 3 12<t<14
6 14<t<2l
0 21 <t
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4. (15 pts. total) From the following dynamic response data, determine an meaptransfer
function for the system.

98

T
o

96 - B

94 - -
90

88 I I I I I
0 5 10 15 20 25 30

External Temperature,

83
82

81l
80
79
78
77
76
75 1 1 1

0 5 10 15 20 25 30

Time of day (h)

Office Temperature, T1
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5. (25 pts. total) The previous employee that sat inf your office developed ttieviing
model for office temperature as a function of external teroee.

a. (5 pts.) For the following differential equation:

d*y dy du
2—5 (1) +3—2(8) + 5y(t) = 5—-(t) + 10u(?)

show that for the initial conditiong(t = 0) = %(t =0) = 0 andu(t = 0) = 0, the following
transfer function relationship holds:

55+ 10
=
2524+ 3s+5

y(s) ()
b. (5 pts.) What are the poles of your transfer function? What are thes?er
c. (5 pts.) What is the gain of this model?

d. (5 pts.) Given that you implement a negative step change of magnbuateime zero in
the inputu (), what is the initial value fogy? Use the Initial Value Theorem to find¢ = 0).

e. (5 pts.) Given that you implement a negative step change of magniwdéime zero in the
inputwu(t), what is the ultimate response? Use the Final Value Theoodind y(t = o).
Bonus: Does this model make sense for the system?
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Chapter 14

Procedureal Programming Tutorial

14.1 INTRODUCTION

Engineers often use computers to solve problems. Somegnggeeers use a high level
programs (like Aspen, pSPICE, or AutoCAD) but sometimeséteols don’t do exactly what
needs to be done. Various languages and environments aliowoyise very general concepts
to come up with solutions to problems. These concepts ate gortable, in that the same
concepts for procedural problem solving exist in almostyl@nguage or environment. The
following is a list of the basic concepts.

e Variables

e Input and Output

e Assignment Statements
e Data Structures

e |F statements

e FOR statements

e WHILE statements
e Scripts

e Functions

e Debugging

e Pseudo Code

e Compiling vs. Interpreting
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14.2 Variables

Computers store information in memory. At a very low levek bperating system (Win-
dows, Mac OS, Linux, Unix) keeps track of memory and what i@pgibn is using memory.
When an application needs more memory, it asks for a certamuat of memory. If the
memory is available, a memory address is provided to theranogo use. Luckily, we don't
usually need to keep track of memory addresses. Generadlyssvariables to reference
values in the memory.

Variables usually have names that are mostly charactensie @mvironments have limi-
tations for variables names. Some environments are caséigericounter and COUNTER
represent different values). Some environment limit tiigike of variable names or limit the
characters in a variable name.

It really is a personal decision for you to use whatever \@eizname you want to that is
legal for the environment you are working in. The name shbeldescriptive enough so you
have some idea what it is, but if it is too long you will haveutinte typing it over and over and
might make more mistakes.

The following are valid variable names in MATLAB

counter

Counter

new_counter

NewCounter

New_Counter

Counterl

e counter_1

Most environments require that variable names start witheasiacter, so “1counter” would not
be valid. Also, spaces in variable names are not usuallyveliip like “counter 1”.

Matlab does not require you to specify the type or size ofaldes before you use them.
Some languages force you to specify exactly what type amdesizh variable is.

14.3 Assignment Statements

You can assign a variable a new value using an assignmeetrsat. The value on the
right hand side of the equality is evaluated and assignduktodriable named on the left hand
side. Sometimes this is simple, like

a=1
b=2

Sometimes this is more complicated, like
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c=a*b+3
Sometimes you use simple math functions provided by the@mvient

a=si n(2)
b=l og( 3)

Note that you don’t have to use just numbers in the functidin yau can use variables in
the functions:

c=si n(a)+l og(b)

You can call a function using a variable in the function call aeassign the variable value:
a=l og(a)

Sometimes you write your own function to do something specia
c=MyFuncti on(3)

Sometimes a function takes multiple input arguments:

c=conv(a, b)
a=rand( 3, 2)

In Matlab, you can have multiple output arguments in a funGtiso two variables are
assigned values after the function is evaluated:

[ a, b] =fi nd(c)

14.4 Input and Output

There are various ways to get information into and out of thhaguter. For input, some-
times you type in values at the keyboard when prompted, sorastyou load a data file.
There are more interesting ways to get input values as weitlid\input can be read using a
mic. Video input can be read using a camera. Various enviemmah sensors (for temperature
pressure, or others) can be read using specialized datesgicqudevices (DAQ).

The following Matlab command would prompt the user for imh@tion and assign the
value to the specified variable:

age=i nput (" What is your age in years?’)

The variable age would contain the user input value. Notettieuser could type in a
number or something not a number. For advanced programmangmay want to check to
see that the user input actually is what you expect (a pesitiumber between 0 and 120 in
this case).

In many cases, you may have a data file that must be read. Fplesimameric files with
m columns andh rows of numeric data, Matlab can use the load command.

dat a=l oad(’ Fi | enane’)
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This would read the specified file and put thex m data values into the variable data.
For more complex file reading, you can use fopen, fread, éwifor dealing with character
strings, type “help strfun” to see what functions are a\déan Matlab.

As for output, there are various ways to present results. €sg way is to write text to
the computer screen:

di sp(’ Sonething is wong!’)
This would just print the message on the Matlab screen. Ondarerical warnings:
di sp([’ The reactor tenp is ' nunstr(tenp) ])

This would acutally use the current number in the variabieptéo make the output warn-
ing message.
You can save data to a file:

save filenane a b c

This would save the values of the variables a b and c into theifsgd file. You could load
those variables again using:

| oad fil enane

and you would have a, b, and c back in the memory of Matlab. Matethis file format is
not human readable. To make a nice looking text file that yalidcopen and look at in a text
editor, use:

save filename a b ¢ --ascii

Another type of output is visual. The plot command is very pdw in Matlab.
plot([1 2 3],[4 5 6], x")

There are even ways to play audio data, producing outputispleakers
sound(rand(1000, 1))

Using a DAQ system, you can send output to an actuator, likeweor a motor.

14.5 Data Structures

There are some basic data types available to use for solviriogms. The basic types are
integers, real numbers, characters, and boolean values.

Integers are integral values, like 0, 1, -2, etc. Languagesilly limit the maximum and
minimum integer values. Matlab on some platforms is limi@dpproximatelyt1e300.

Real numbers are numbers that are not integral, like 5.5 3/383. These are usually
referred to as doubles, short for double precision. On 32nbithines, a double precision
value uses 64 0/1 bits to represent the value. One bit is éositin, some of the bits are for
the exponent value, and the rest represent the binary vathe mantissa.

Characters are basically anything on the keyboard.
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Boolean values are either TRUE or FALSE. In Matlab, a positiumeric value means
TRUE and 0 or anything negative is false. Logical operatetgrn O or 1, but 5 or 0.5 would
be seen as true, just like -2 would be seen as false.

Data structures are really more complicated data types.nTdie ones engineers use are
arrays. Arrays are just indexed data values. A one dimeakamay is a vector, while a two
dimensional array is a matrix. Vectors are all matrices irilddg so they could be nx1 or 1xn
(column or row vectors).

a=[5 6 7]
b=[5; 6 ; 7]

The previous would create a row vector and a column vectordtialn. You can access
individual elements of an array, so a(2) would ask for th@sdelement of a.

c=a(2)
Matlab also allows you to access multiple elements of aryarra
c=a(2:3)

This would assign ¢ as a vector with only the second and théments of a.
Matrices are two dimensional arrays. Each element in a xmla&s a row and a column
index.

a=[ 4 56 : 7 8 9]

This makes a matrix with two rows and three columns. You capssthe row and column
elements as a(row,col) so

a( 2, 3)

would access the second row, third column element. In tlss,cavalue of 9.
You can use variables as the index when accessing elements:

a=s[ 4 56 ; 7 8 9]
b=2
c=a(b, b)

Which would return the 2,2 element of a, in this case 8.

Note that Matlab will complain if you try to access an elemehan array that has not
been assigned yet, like a(5,5) in this example.

Characters can be used in an array. An array of charactessiadly called a string:

a="This is a string.’
b=a(1:4)

This would put the first four elements of a into the variablenkihis case 'This’

Complex Data Structures

Matlab also allows you to have more complex data structw@shat multiple pieces of
data are associated with a single variable.

per son. age=30
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per son. nanme=" Toni
per son. phone=5551234

This means you could pass the data structure to a functidgnangingle variable name.

14.6 IF statements

IF statements allow you to check a logical condition. If thgital condition is met, you
do something. If not, you may do something else.

| F (1<0)
di sp(’ Amazingly, 1 is less than Q')
c=1
END

Notice the indentation for the IF statement. Indentatidp$ieead your code. As you see,
you can put one statement to execute, or as many as you want.

| F (a<b)
di sp(’ Apparently, a is LESS than b")
ELSE
di sp(’ Apparently, a is NOT LESS than b’)
END

You can put extra logical conditions in an IF statement as.wel

| F (a<b)
di sp(’ Apparently, a is LESS than b’)
ELSEI F (a>b)
di sp(’ Apparently, a is GREATER than b’)
ELSE
di sp(’ Apparently, a nust be EQUAL to b’)
END

If you have multiple IF and ELSEIF statements. If one comditis met, the conditions
after and the ELSE code will never execute.

| F (a<b)

di sp(’ Apparently, a is LESS than 5")
ELSElI F (a>2)

di sp(’ Apparently, a is GREATER than 2’)
ELSElI F (a<7)

di sp(’ This will never execute, since one of the first two
condi tions nust be true’)
ELSE

di sp(’ Apparently, a nust be EQUAL to b’)
di sp(’ This will never execute, since one of the first two
condi tions nust be true’)
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END

You can have an IF statement inside an IF statement.

| F (a<b)
| F (a>0)
di sp(’ Apparently, a is LESS than b and positive’)
ELSE
di sp(’ Apparently, a is LESS than b and not positive’)
END
ELSE
di sp(’ Apparently, a is NOT LESS than b’)
END

You can also have more complicated logical statements #giig and OR operators

I F ((a<b) & (a>0))
di sp(’ Apparently, a is LESS than b and positive’)
END

14.7 FOR statements

If you want to do something a few times, and you know how mamg$ you want to do
it, use a FOR statement.

FOR i=1:3
a(i)=i*i;
END

This will make a into a vector [1 4 9].
You can use variables for the index as well.

| =l engt h(a)

FOR i =1:l ength(a)
b(i)=a(i)"2;

END

So, no matter how long the vector a is, this will put the eleta@h a, squared into b, and
b will be the same length as the vector a.
You can also have nested FOR loops as well.

[ rows, col s] =si ze(a)
FOR rowcount er =1: r ows
FOR col counter=1:col s
b(rowcount er, col count er) =a(rowcount er, col count er) +5
END
END
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14.8 WHILE statements

WHILE statements execute until some condition is met. Théans they could execute
forever, if the condition is not ever met. These statemergsiaeful if you don’t know how
many times you want something to execute.

sum=0

dat a=1

WHI LE (dat a>0)
dat a=i nput (' Enter a positive nunber, or 0 to quit’)
sumrFsunmtdat a

END

di sp([’ The resulting sumis ' nunRstr(data)])

This would keep prompting the user for another number, amtlthdt number to sum.
When the user enters 0 (or any negative number) the loop $@akand continues on, dis-
playing the result.

14.9 Scripts

In Matlab, you can start up the Matlab environment and statereng commands at the
prompt, >>. This is great for simple things, but for anythstightly complex you may want
to save your commands. Type “edit” at the prompt to open tkedditor. You can type a
bunch of commands in that text editor and save it on the coenpusually the file name ends
with a .m extension. To run your commands from the text filej lgave multiple options.

Assuming the file name has no spaces and starts with a changatiecan just type the
file name at the prompt and all the commands in the file wouldweg(until it hits some sort
of error or finishes). This also assumes Matlab is currembcgied the directory where you
saved your file. The “current directory” at the top right$eibu where Matlab thinks it is right
now. Hit the ’..." button to change the directory.

For a few lines of text, you can highlight the selected comaisafnom the text editor and
copy-paste the text into the Matlab window. CTRL-C is copy &TRL-V is paste. You can
also highlight the selection, then right click on the textl @elect 'evaluate selection’.

14.10 Functions

Script files end with a .m extension and do something spedijethe text in the file.
In some cases, you may want to generalize a procedure to detlsioig, like compute the
mean of a vector. You can specify a function in a file with a .rteegion similar to a script.
The function must be saved in a file named procedurename.mfifBhline of the file has a
specific format. For example, the following would need to &eesl in a file myfunction.m in
the current directory of Matlab. (Typingdi t myf uncti on at the command prompt will
open the Matlab editor and create a new file myfunction.m)

function mean = nyfunction(x)
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n=I engt h( x)

mean=0

for i=1:n
mean=nmean+x(i)

end

mean=nean/ n

This function takes what ever inpxtfigures out the length of, figures out the sum of the
elements in the input, then calculates the mean of the vethis assumes is a vector (or a
scalar value). You can call this function from another fimcor call it from a script or call it
from the Matlab prompt.

The variablexis whatever you call the function with, so the following wdwiork:

myfunction( [ 1 2 3 4] )
a=[ 345 6]
myfunction(a)

Note that the variablasandi are used inside the function. These are called local vasabl
If you had a variable namend or i outside of the function, calling the function would not
change the value of the variables outside the function.

n=>5
myfunction( [ 1 2 3] )

Here,n would still be 5, although insideyf unct i on nwill have a value of 3.
You can specify multiple outputs for your functions as well.

function [m nval, maxval ] =m nmaxfuncti on(x)
m nval =x( 1)
maxval =x( 1)
n=I engt h( x)
for i=2:n
if (x(i)<mnval)
m nval =x(1i)
end
if (x(i)>maxval)
maxval =x(i)
end
end

Think about what happens in this functionxiis length 1, the resulting minval and maxval
are justx. Otherwise, it goes through the indicesxdirom 2 to the end looking for a bigger
and bigger or smaller and smaller values.
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14.11 Debugging

Debugging just means fixing your code. For example, you matgwode that goes past
the end of a vector or does not produce the desired outputn¥mi think about the variable
values at each step in your code and think about what is happaheach step. This is called
a variable trace. Sometimes it helps to print out variablaesat many points in your code
and see where things go wrong. Matlab will print out variald&ies if you type a variable
name by itself.

>> a=2

You can suppress this normal output by using a semicoloreagnid of a line.

function out =nyfunction(x)
count =0
out =0
whi | e (count <l engt h(x))
out =x( count)
count =count +1
end

This function will not work. The count variable starts at 6,Matlab will complain when
you try to access the Oth element of the vatue

Pseudo Code

Pseudo Code is just a way of sketching out a solution metlogglolUsing pseudo code,
you don’t have to use accurate code syntax. You can sumnstdps into a single idea, like
“find the minimum and maximum values of the data” or “save thadn the specified format.”

Compiling vs. Interpreting

On aPC, you have executable programs. These are specialithdbe commands needed
to run something on the computer. Executable files on a PCrereké. These are created by
compilers. You take source code written in C or C++ or Forseeome other language and
run it through a compiler to make an executable file. For exaniS Word is a .exe file and
so is Matlab.

Matlab, MathCAD, and Java are all interpreted environmeihs$erpreted files rely on
some executable to be running. Matlab figures out what to da tpven .m file. Interpreted
environments are usually slower than compiled code.
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14.12 Exercises

Start Matlab and try out the following examples. Type theddoles that do not start with
a % symbol in the Matlab prompt or in the editor, then run thémsome cases, make the
specified function or script file and try running it in the Mailprompt. Type ’edit’ at the
prompt to get the Matlab editor. You can type complex comrsandhe editor, then run them
as a single .m file at the command prompt.

% Cormments vary from | anguage to | anguage.

% Use coments to explain what your code is doing.

% Iln Matlab, anything to the right of a %is treated as a coment!
% DATA STRUCTURES

% We use variables to represent data of different types

% Traditional data structures include:

% i ntegers

i =1
j =5

% real nunbers (doubl e precision)

pi =3. 141
epsi | on=0. 001

% strings

name=" bubba’
city="col unbi a’

% and bool ean TRUE FALSE expressi ons.

% Note that in MATLAB, boolean is expressed as O=fal se, 1= true.
flagl = ( 1 <0)
flag2 (1>0)

% Al so note that there are various Bool ean operators you can
use.

% These include <. >, <=, >= == ~=,

% In Matlab & nmeans | ogical AND, | nmeans |ogical OR
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% ~ nmeans conplenent, and xor is XOR
% See: help rel op

% Speci al data structures

% Arrays - Arrays contain nultiple pieces of data i ndexed

% al ong one or nore di nensions for exanple, a vector can be
% seen as a 1D array of real nunbers and a matrix can be

% described as a 2D array of real nunbers.

b=[1 2 3 4]
b(1)

b(1:2)

A=[1 2 3;4 5 6]
A(1,1)

A(:,1)

A(:,1:2)

% Note that you can use N di nensional arrays,
% but matrix nultiplication won't work:

C(2,2,2,2)=5

% Note that strings are really just a 1D array of single characters
name=' bubba

name

name(2: 4)

% You can use arrays of strings

names={’ Bob’,’ Sue’,’ Toni}
names( 2)

% Structures - Structures provide convi eninet representation

% for storage of data associated with a single nane.

ssc.a=[1 0 ; 0 1]
ssc.b=[1 ; O]
ssc.c=[1 0]

ssc. d=[ 0]
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ssc. nane=' Test Model 1’
ssc. dat e=' 2/ 25/ 03’

% Most | anguages handl e strings and structures differently,
% so wat ch out.

% MATLAB i ncl udes many nice functions for matrix mani pul ati on

% and matrix operation that are not available in other |anguages.
% Mat | ab al so i ncludes data structures for conpl ex nunbers

% (al so not avail able in nost other |anguages.

% Assi gnnment statenents

% Most of you code is assignnent statenents.
% When you wite a line of code, the name left of the = takes

% on the val ues of whatever is right of the =

c=2+3
c=c+2+Cc*cC

% Sone functions are built in.
d=sqgrt (5)

e=si n(2)
f =exp( 3)

% Mul tipl e expressions can be eval uated at once, be careful
% of brackets.

g=sin(exp(sqrt(6)))

% Order of operations - when maki ng an assignnent for a
% conpl ex expression, you follow the standard order of
% oper at i ons:

% Pl ease Excuse My Dear Aunt Sally

% Par ens, inner first
% Exponents, Powers or root
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% Multiply or

% Divide (left to right)
% Add or

% Subtract (left to right)

c= 100 - 10%(2 + 3) + 4
d= 36 / 4%(5 - 2) + 6

% I1f you have doubts, use nore parens to specify the desired

or der.

% FLOW CONTROL

%If statenents
%If statenents allow for sections of code to be executed only

%if a conditionis net. The condition nust evaluate to a TRUE
% or FALSE val ue.

X=3

if (x>0)

X=X"2
end

if ( (x<0)&(y<0) )
X=X"2:
y=y”"2;

end

X,y

% Note the indentation of code inside the |IF statenent.
% This really hel ps code be | egi bl e.
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%I1f / Else
% Usual ly, I'F syntax includes an el se condition. Wenever the

% condition is not net, the second section of code executes.

x=0
if (x>0)
disp(’x is strictly positive’)
el se
disp(’x is 0 or negative’)
end

% Usual ly, I'F syntax includes elseif conditions. The bool ean
% val ues are checked in order. Wenever a condition is net,
% t he corresspondi ng section of code is executed. Note that
% even t hough a second conditional statement may evaluate to
%true, it never gets a chance to execute.

x=1

i f (x==0)
disp(’x is 0")
el seif (x==1)
disp(’x is 1)
el sei f (x==2)
disp(’x is 2")
el sei f (x==3)
disp(’x is 3)
el sei f (x==1)
disp(’x is 1, second tinme, will not run’)
el se
displ(’x is not 0, 1, 2, or 3)
end

% LOOPS
% Loops let you do repetitive stuff easily.

% FOR
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% FOR | oops are useful when you know how many tines you may
% want to run the | oop before you enter the loop. This is
% especially good for mani pulating data in an array.

x=[2 43657 21]
s=I engt h( x)

for i=1:1:s
[
x(i)=x(i)"2;
end
X

% I n MATLAB, you can start the | oop at any nunber and
% i ncrement by any val ue.

x=[]

for 1=2:5:30
X=[ X i]
end
% Note that array indices in MATLAB start at 1. For an array
% (vector) of length s you will get an error if you try to

% access el enments 0 or s+1

X
s=I engt h( x)
x(0)

X(s+1)

% WHI LE
% WHI LE | oops continue to evaluate until the a bool ean val ue

%is not |onger positive These are usually used when the
% nunber of iterations in the |oop are not know before
% entering the | oop.

val ue=i nput (' I nput a nunber or Qto quit: ",'s);
val ue=str 2numval ue);
whi l e (val ue)

newal ue=val uexval ue;
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di sp([’ New value is ' nunstr(newal ue) ]);

disp(’ ");
val ue=i nput (' I nput a nunber or Qto quit: ",'s);
val ue=str 2numval ue);

end

% NESTED STATEMENTS

% You can have an if statement inside an if statenment:

x=1
y=3
i f (x<0)
if (y<0)
disp(’ x and y are negative’);
el se
di sp(’ x negative, y positive or 0');
end
el se
if (y<O0)
di sp(’ x positive or 0 and y negative’);
el se
disp(’ x and y positive or 0');
end
end

% Note the indentation increases as nore statenents are nest ed.
% Nested FOR / WHI LE
A=[]
for i=1:3
for j=1:3
[P ]]
A(i,J) =i+,
end % end for colums | oop
end % end for rows | oop

A

% Vari abl e trace / debuggi ng
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% When you have an error, the error may be apparent or hidden.
% An apparent error may cause the programto stop and report

%the offending line. The error may be a syntax error or a

% coding logic error (array index problem divide by zero, etc)
% Hi dden errors cause the code to run in unintended ways.

% Wther way, you may need to "trace" variable values to nake
% sure the programis perform ng as expected. In MATLAB, you

% can print variable values just by using the nanme of the
% variabl e wi thout a sem col on.

A

% or use whos to get information on a vari abl es
whos

whos A

whos n*

% SUBRQOUTI NES

% User defined scripts
% I n MATLAB, you can save a string of commands in a textfile

%wth a.mextension. Typing the nane of the conmand at the

% pronpt will cause the conmands to be executed as if you
% were typing commands at the pronpt.

t=[-1:.01:5];

u=t >=0;
y=exp(-t).*u;
subplot(2,1,1)

pl ot (t, u)

title(’My nane is’)
subplot (2,1, 2)
plot(t,y)

Print out the plot to turn in.

% User defined function
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% If you continually are doing the same procedure, you can
% generalize the procedure to make your own function. Sone
% functions are built in (sin, exp, length, etc).

% The function takes input argunents, perfornms sone

% operations, and returns output values. |In MATLAB, you put

% your function in a text file wwth a .m extension.

function mean = stat(x)
U%STAT Interesting statistics.
n = length(x);
mean = sum(x) / n;

% You can have nore interesting functions that return
% nmul tiple outputs:

function [nean, stdev] = stat(x)
%STAT Interesting statistics.
n = length(x);
mean = sum(x) / n;
stdev = sqrt(sum((x - nean).”2)/n);

% Scope of vari abl es

% Vari abl e scope is inportant!

% | nside functions, you may use new vari ables. These are

% often called | ocal variables. 1In the previous exanple, nis

% a |l ocal variable. n takes a value when the function is
%called. |If variable n had a val ue outside of the function,

%it would not be changed.

n=5

stat([1 234556 7 8])

n

% Vari abl es can be defined as global. This neans that they

% can be changed inside a subroutine, assum ng the subroutine
% knows it is a global variable.

clear n
gl obal n
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n=5
stat([1 2 34556 7 8])
n

% Recur si ve functi ons

function out=fact (x)
if (isreal(x))

if (x==1)
out =1
el se
out =x*fact ( x- 1)
end
end

% Everything to this point has been with respect to procedura
% programm ng. CS often discuss object-oriented progranmm ng.

% This is a nethodol ogy that considers all data as objects.

% These objects all have a class. One object may be a

% subcl ass of anot her object. For exanple, you may have a

% cl ass student. There may be a subcl ass undergraduate and a
% subcl ass graduate. Al students should have a nane, but

% under gr aduat es woul d have cl ass standi ng and graduate

% students woul d have advisors. Procedures can be witten for

% each class. MATLAB is not easy to use for object oriented

% programm ng, | suggest Java.
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Chapter 15
TLAs of PSE

Three Letter Acronyms of Process Systems Engineering

There are many acronyms used in engineering and technilct. fi€his may serve as an
initial foray into

Note that many of the terms are not actually acronyms, biieranitialisms. To my
understanding, an acronym is usually pronounced as a wirerrdnan individual letters.

From http://www.randomhouse.com/wotd/index.pperl@d29980825

In technical use among linguists and lexicographers, twerévo main terms. An
acronym is used for a word formed from the initial letterstod tvords (or main
words) in a series of words, when the resulting word is prowwed as a word.
Thus, OPEC, from Organization of Petroleum Exporting Caastis considered
an acronym, because it is pronounced "OH-peck," not as "€@hege-see.”

Additionally, some terms listed here were not borrowed fi@ther sources. The appropriate
acronym of initialism was included for completeness of sdopcs. Terms that were not
borrowed from other sources will denoted by an asterictnipla: MUT*Made Up Terms.

15.1 VMM Various Modeling Methods

FPM* Fundamental Process Model

A FPM is based on fundamental principles derived from plysithese fundamental
principles may be partially erroneous due to assumptiordendarring the model derivation.
Some examples of simplifying assumptions include assunti a well mixed reactor or the
assumption of no axial dispersion in a plug flow reactor. Agjlas the assumptions hold and
the fundamental principle is true, the model should be ateutOne may extrapolate using a
FPM with some limited degree of confidence. Data may be reduo fit the unknown model
parameters.

EPM* Empirical Process Model

An EPM is based on process data and limited physical insigie coeficients of the
model are derived from the data once the model form is estadadi. For example, given data
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for draining of water from a tank, an EPM may be assumed to perenental decay, and the
height as a function of time could be established to folloe/fimctioni(t) = 3e~*. A FPM
could be derived from the solution to a dynamic mass balaqaaten for the tank, assuming
flow out of the tank is proportional to the square root of thigthtof water in the tank

Vé—?(t) =0 — ky/h(t)

In the FPM, the relationship should hold for any tank systévergknown values foil”
and k. Empirically derived models typically have difficulty eapolating to new operating
conditions different from those where the model was esthbll.

MEB* Mass and Energy Balance

This is really the basis for a large amount of chemical ergjing. Given a system with
a fixed boundary and mass or energy entering or leaving thterayshe general form of the
MEB appears as:

accumulation = in — out + created — destroyed

PME* Process Modeling Environment
Many PME’s are available for computational modeling of cieahsystems
LPS' Lumped Parameter System

IDS Infinite Dimensional System

SSS Steady State Simulation

ODE Ordinary Differential Equation
PDE Partial Differential Equation
FEM Finite Element Modeling

FVM Finite Volume Modeling

NSE Navier Stokes Equations

MDS Molecular Dynamics Simulation
MMS Molecular Modeling Simulation
CCS Computational Chemistry Simulation
DFT Density Functional Theory

MCS Monte Carlo Simulation

KMC Kinetic Monte Carlo

DEM Discrete Element Modeling
DAE Differential Algebraic Equation
CIC *Consistent Initial Conditions
HDS Hybrid Dynamic System

MLD Mixed Logical Dynamic

ASS* Autonomous Switched System
PBE Population Balance Equations
PSD Particle Size Distribution

MWD Molecular Weight Distribution
PVM Process Video Microscopy
MDP* Multi Dimensional PBE

MSS Multi Scale System
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MSM Multi Scale Modeling

ANN Artificial Neural Network
PNS Peri Net Simulation

HMM Hidden Markov Model

SBS' Stochastic Batch Simulation

15.2 ODEs

ODE Ordinary Differential Equation
NSS Nonlinear State Space
LSS' Linear State Space
MIMO Multiple Input Multiple Output
SISO Single Input Single Output
LTI Linear Time Invariant
ONF* Observability Normal Form
CNF* Controllability Normal Form
LTV Linear Time Varying
TSE Taylor Series Expansion
LDS* Linearization of Dynamic System
AGI* Adams Gear Integration
RKI* Runge Kutta Integration
DTS Discrete Time Systems
SDS Sampled Data System
DTM Discrete Time Modeling

15.3 BLA Basic Linear Algebra

MRR* Matrix Row Reduction
MEP* Matrix Eigenvalue Problem
CEP Characteristic Equation Polynomial
LEV* Left Eigen Vector
REV* Right Eigen Vector
MPP Moore-Penrose Psuedo-Inverse
LPI* Left Pseudo Inverse
RPF Right Pseudo Inverse
JNF Jordan Normal Form
MES* Matrix Exponential Solution
STM State Transition Matrix
LUD* Lower Upper Decomposition
DMD Dumage Mendolson Decomposition
SVD Singular Value Decomposition
COA* Controllability and Observability Analysis
COG* Controllability and Observability Grammians
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15.4 CNM Computational and Numerical Methods

FPA Floating Point Arithmetic
SMA Sparse Matrix Algebra
FDA Finite Difference Approximation
SNS Simple Newton Step
IVP Initial Value Problem
FVP Final Value Problem
NMS Newton’s Method Solution
BMS Bisection Method Solution
GSC Grahm Schmitt Colocation
MIM Model Identification Methods
SSG Steady State Gain
OTC Open loop Time Constant
PLS Partial Least Squares
PCA Principal Component Analysis
PRBS Pseudo Random Binary Sequence
CLI Closed Loop Identification
LSE Least Squares Estimate
PFI Plant Friendly Input
MSA Multivariate Statistical Analysis
MOM Method Of Moments

15.5 LTM Laplace Transform Modeling

LOT Linear Operator Theory
OTF Open loop Transfer Function
DDF Dirac Delta Function
EDF Exponential Decay Function
HSF H Step Function
RPF Rectangular Pulse Function
SWF S Wave Function
IRF ldeal Ramp Function
FOS First Order System
TDS Time Delay System
FOTD First Order + Time Delay
SOS Second Order System
HOS High Order System
IRS Inverse Response System
LLS Lead Lag System
DFS Direct Feed System
OUS Open loop Unstable System
PZE Pole Zero Excess
SPS Strictly Proper System
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BIBO Bounded Input Bounded Output
FVT Final Value Theorem

ITT Initial Value Theorem

LCF Linear Composite Function
PFE Partial Fraction Expansion

ILT Inverse Laplace Transform

FRA Frequency Response Analysis
RHP Right Half Plane

LHP Left Half Plane

HPF High Pass Filter

LPF Low Pass Filter

BPF Band Pass Filter

CTF Open loop Transfer Function

15.6 DTM Discrete Time Modeling

FIR Finite Impulse Response
FMM Fading Memory Model
ZOH Zero Order Hold
ARM Auto Regressive Model
MAM Moving Model
ARMA Auto Regressive Moving Average
DVM Discrete Volterra Model
VLP \olterra Laguere Polynomial

15.7 NSA Nonlinear System Analysis

SSL Steady State Locus
SSM Steady State Manifold
ASR Asymmetric Step Response
HNO Hard Nonlinear Operators
AS Actuator Saturation
AH Actuator Hysterisis
VS Valve Stiction
SLC Stable Limit Cycle
PFB Pitch Fork Bifurcation
SHB Sub (Super) Critical Hopf Bifucation
PPA Phase Plane Analysis
SF Stable Focus
UF Unstable Focus
SN Stable Node
UN Unstable Node
SP Saddle Point
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PNM Process Nonlinearity Measures

15.8 BFC Basic Feedback Control

FCS Feedback Control System
STA Setpoint Tracking Analysis
DRA Disturbance Rejection Analysis
MMA Model Mismatch Analysis
DCS Distributed Control System
DAQ Data Acquisition
MNF Measurement Noise Filter
SSC Steady State Control
ECL Explicit Control Law
ICL Implicit Control Law
OLC Open Loop Control
NSC Nyquist Stability Criterion
CLS Closed-Loop Stability
FFC Feed Forward Control
PID Proportional Integral Derivative
ZNT Ziegler Nichols Tuning
CCT Cohen Coon Tuning
SAE Sum Absolute Error
SSE Sum Square Error
QDR Quarter Decay Ration
NST Ninety-five percent Settling Time
SSO Steady State Offset
SRC Step Response Curve

15.9 MNC Multivariable and Nonlinear Control

MTF Multivariable Transfer Function
STF State space Transfer Function
GSC Gain Scheduling Control
FLC Fuzzy Logic Control
NNC Neural Network Control
MMC Multi Model Control
IMC Internal Model Control
RGA Relative Gain Array
RLD Root Locus Diagram
MCM Multivariable Control Methods
MDC Multivariable Decoupling Control
MPC Model Predictive Control
DMC Dynamic Matrix Control
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FSF Full State Feedback

MRC Multi Rate Control

LQR Linear Quadratic Regulator
LQG Linear Quadratic Gaussian
EKF Extended Kalman Filter

DGC Differential Geometric Control
IOL Input Output Linearization

SEL State space Exact Linerization
TDF Two Degree of Freedom

SSI SubSpace Identification

FFT Fast Fourier Transform

DSC Direct Synthesis Control

HIC H Infinity Control

MSC Mu Synthesis Control

ICM Inferential Control Methods
ACM Adaptive Control Methods
CCC CasCade Control

BBC Bang Bang Control

OOC Open loop Optimal Control
OCT Optimal Control Theory

LSC Lyapunov Stability Criterion
SGT Small Gain Theorem

LSC Loop Shaping Control

PMT Phase Margin Tuning

GMT Main Margin Tuning

NSC Nominal Stability Criterion
NPC Nominal Performance Criterion
RSC Robust Stability Criterion
RPC Robust Performance Criterion
MDD M Delta Diagram

MLS Measurement Location Selection
RTO Real Time Optimization

15.10 SPC Statistical Process Control

PDF Probability Density Function
GDF Gaussian Distribution Function
NDF Normal Distribution Function
WDF Weibel Distribution Function
BDF Binomial Distribution Function
STT Student T Test
ARE Algebraic Riccatti Equation
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15.11 FDE Fault Diagnosis and Estimation

FDI Fault Detection and Isolation
QTA Qualitative Trend Analysis
ANN Artificial Neural Networks
RBF Radial Basis Function
BNN Butterfly Neural Network
HPL Hidden Perceptron Layer
SEM State Estimation Methods
PEM Parameter Estimation Methods
LOE Luenberger Observer Estimation
KFE Kalman Filter Estimation
WSS Wide Sense Stationary
ACF Auto Correlation Function
GDW Gaussian Distributed White noise
MHE Moving Horizon Estimation
RDA Residual Direction Analysis
FGM Fault Gain Matrix
EIV Error In Variables
MLM Maximum Likelihood Methods
ERS Expert Rule System
FTA Fault Tree Analysis
SDG Sign Directed Graph
DEA Disturbance Estimation and Analysis
OOP Object Oriented Programming
BBN Bayesian Belief Network
HMI Human Machine Interface
AAM Alarm Analysis Methods
AFH Alarm Flooding Handling

15.12 NOM Numerical Optimization Methods

NLP NonLinear Programming
KKT Karush Kuhn Tucker
LP Linear Programming
QP Quadratic Programming
IPM Interior Point Methods
GA Genetic Algorithm
SA Simulated Annealing
MINLP Mixed Integer Nonlinear Programming
GBD Generalized Benders Decomposition
OA Outer Approximation
DO Dynamic Optimization
MIDO Mixed Integer Dynamic Optimization
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NCV NonConVex

CVF ConVex Function

CVS ConVex Set

UBD Upper BounD

LBD Lower BounD

CA Convexity Analysis

PSD Positive Semi Definite

IA Interval Analysis

DR Directed Rounding

CR Convex Relaxation

CH Convex Hull

PF Perturbation Function

NP Non-deterministic Polynomial

ABB Alpha Brach-and-Bound

B&B Branch and Bound

B&R Branch and Reduce

POS Pareto Optimal Surface

OUU Optimization Under Uncertainty
MLO Multi Level Optimization

BMC Big M Constraint

CP Constraint Programming

MAO Multi Agent Optimization

DPT Disjunctive Programming Techniques
GDP Generalized Disjunctive Programming
DP Dynamic Programming

PL Propositional Logic

TE Total Enumeration

RS Random Search

IP Integer Programming

MIP Mixed Integer Programming

BDM Business Decision Maker

ROI Return On Investment

OFC Objective Function Cut

LM Lagrange Multiplier

ACS Active Constraint Set

DGO Deterministic Global Optimization
SO Stochastic Optimization

DS Degenerate Solution

BFGS

BF Barrier Function

SQP Sequential Quadratic Programming
RGM Reduced Gradient Methods

CCA Computational Complexity Analysis
GC Gantt Chart

OR Operations Research
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NO Network Optimization

BNA Bottle Neck Analysis

LSS Large Scale Scheduling
DSS Decision Support Systems
LMI Linear Matrix Inequality

BMI Bilinear Matrix Inequality
PTC Polynomial Time Complexity
ROI Return On Investment

TSP Traveling Salesman Problem
SMP Set Matching Problem

SCP Set Covering Problem

KSP KnapSack Problem

RAP Resource Allocation Problems
CPD Chemical Process Design

15.13 VAI Various Applications and Industries

MPA Metabolic Pathway Analysis
MCA Metabolic Control Analysis
DDS Drug Delivery Systems
HGP Human Genome Project
DCC Distillation Column Control
CRC Chemical Reactor Control
PWC Plant Wide Control
HCS Hierarchical Control System
BRC Bio Reactor Control
IDC Interaction of Design and Control
HS Hybrid Systems
MEM Micro Electro Mechanical
PS Particulate Systems
PPS Portable Power Systems
PEM Polymer Electrolyte Membrane
WGS Water Gas Shif
ATR AutoThermal Reforming
PROX PReferential OXidation
CPO Catalytic Partial Oxidation
PEM Proton Exchange Membrane
GDL Gas Diffusion Layer
CSA Cell Stack Assembly
FPS Fuel Processing System
TMS Thermal Management System
PCS Power Conditioning System
PCI PetroChemical Industries
SCI Specialty Chemical Industries
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WWT Waste Water Treatment

ECM Environmentally Conscious Manufacturing
PPI Pulp and Paper Industries

CCI Commodity Chemicals Industries
PI Pharmaceutical Industries

BMI Bio Medical Industries

Al Automotive Industries

FAI Food and Agricultural Industries
PGS Power Generation Systems
PPS Portable Power Systems

PEM Polymer Electrolyte Membrane
AES Alternative Energy Systems

Tl Textile Industries

MD Materials Development

CC Combinatorial Chemistry

DIA Defense Industry Applications
BS Batch Systems

MCS Micro Chemical Systems

IT Information Technology

MPI Mineral Processing Industries
CPI Consumer Products Industries

S| Steel Industries

AAI Airline and Aircraft Industries

El Entertainment Industries

BFI Banking and Financial Industries
TTI Transportation and Trade Industries
PHC pH Control

15.14 GFA Governmental Funding Agencies

NSF National Science Foundation
NIH National Institute of Health
DOE Department of Energy
NASA National Space Administration
DOD Department of Defense
ARL Army Research Laboratory
ONR Office of Naval Research
NSA National Security Agency
NRO Naval Reconnassance Office
DEA Drug Enforcement Agancy
FBI Federal Buruea of Invesitation
CIA Central Intelligence Agency
NEA National Endowment for the Arts
USDA US Department of Agriculture
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FDA Food and Drug Administration
DHS Department of Homeland Security
TSA Travel Security Agency

15.15 CPD Chemical Process Detalls

PFID Process Flow and Instrumentation Diagram
PV Process Variable
MV Manipulated Variable
CV Control Variable
DV Disturbance Variable
MCV Manual Control Valve
ACV Automatic Control Valve
RPS Remote Pressure Sensor
TTS Thermowell Temperature Sensor
OCM Online Concentration Measurement
MFM Magnetic Flow Meter
SFM Steam Flow Meter
LLI Liquid Level Indicator
LSM Laboratory Sample Measurement
BUO Basic Unit Operations
PFD Process Flow Diagram
PFR Plug Flow Reactor
CSTR Continuous Stirred Tank Reactor
FBR Fluidized Bed Reactor
HXN Heat eXchanger Network
BDC Binary Distillation Column
SSS Side Stream Splitter
SGP Steam Generation Plant
CWU Cold Water Utilities
HWU Hot Water Utilities
SSC Steam Stripping Column
ESP Electro Static Precipitator
EHP Environmental Holding Ponds
DEE Double Effect Evaporators
STH Shell and Tube Heat Exchanger
DIW De lonized Water

15.16 MID Measurement and Instrumentation Devices

GC Gas Chromatograph
MS Mass Spectroscop
GCMS Gas Chromatograph / Mass Spectroscope

170



IR
FTIR
ATR
RS
SEM
TEM
AFM
XFM
XPS
XRD
TGA
BOD
COD

15.17 BCP Basic Computer Programming

DTM Deterministic Turing Machine
PPL Procedural Programming Language
OOP Object Oriented Programming
BEA Binary Executable Application
IPL Interpreted Programming Language
OO0 Order Of Operations
PEMDAS Please Excuse My Dear Aunt Sally
BDS Basic Data Structures
CDS Complex Data Structures
DMA Dynamic Memory Allocation
IVV Initial Variable Value
VAS Variable Assignment Statement
VNC Variable Name Collision
FCS Flow Control Syntax
IWL Infinite While Loop
FCC Finite Convergence Criteria
BLC Boolean Logic Condition
PCE Psuedo Code Example
PBD Procedural Block Diagram
DIO Data Input / Output
REH Robust Error Handling
UVT Unknown Variable Trace
NIS Nested If Statement
RFC Recursive Function Call
LVS Local Variable Scope
GVS Global Variable Scope
SNAFU Situation Normal, All Fouled Up
TANSTAFEL There is No Such Thing As A FreE Lunch
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GIGO Garbage In, Garbage Out
VSI Various Software Issues

OS Operating System

OSS Open Source Software

GNU GNU is Not Unix

GCC GNU C Compiler

GPL GNU Public License

YACC Yet Another Compiler Compiler
MPI Message Passing Interface
SMP Shared Memory Processing
G77 GNU Fortran 77

JVM Java Virtual Machine

C++ C Plus Plus

NFS Network File System

AFS Andrew File System

SMB SaMBa Network File System
SSH Secure Shell

SCP Secure CoPy

SFTP Secure File Transfer Protocol
FTP File Transfer Protocol

SMTP Simple Mail Transfer Protocol
POP

IMAP

HTML Hyper Text Markup Language
SGML Standard Generalized Markup Language
IT Information Technology

WWW World Wide Web

TCP /IP Transmission Control Protocol / Internet Protocol
RTS Real Time System

RTOS Real Time Operating System
VCP Various Computer Parts

CPU Central Processing Unit

FPU Floating Point Unit

GPU Game Processing Unit

MMU Memory Management Unit
L1C Level 1 Cache

L2C Level 2 Cache

RISC Reduced Instruction Set Commands
LCD Liquid Crystal Display

CRT Cathode Ray Tube

FDD Flash (or Floppy) Disk Drive
HDD Hard Disk Drive

USB Universal Serial Bus

SIMM Single Inline Memory Module
UPS Uninterruptible Power Supply

172



PNP Plug aNd Play

PCI Personal Computer Interface
VGA Video Graphics Adapter

SVGA Super Video Graphics Adapter
XGA

WAN Wireless Area Network

SAN Storage Area Network

LAN Local Area Network

NIC Network Interface Card
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