
Algorithms

1. Let X[1, . . . , n] be an array of n positive integers, and let O[1, . . . , n− 1] be an array of n− 1 symbols
drawn from the set {+, ∗}. We can form an arithmetic expression by interleaving the two arrays, like
this:

X[1] O[1] X[2] O[2] · · · O[n-2] X[n− 1] O[n-1] X[n]

Notice, however, that we can get different values by inserting balanced parentheses into this expression
at different places. For example, if X = [1, 2, 3, 4, 5] and O = [+, ∗,+, ∗], some of the choices are:

1 + (2 ∗ (3 + (4 ∗ 5))) = 47

(((1 + 2) ∗ 3) + 4) ∗ 5 = 65

(1 + 2) ∗ (3 + (4 ∗ 5)) = 69

(1 + 2) ∗ ((3 + 4) ∗ 5) = 105

Your objective is to determine how large the value of the expression can become. In the example above,
the last parenthezation turns out to be optimal, so the correct answer is 105.

Specifically, you should describe an algorithm that, given X and O, computes the largest value that
can be achieved by inserting balanced parentheses into the expression. Your algorithm must run in
O(n3) time. (You may assume that arithmetic operations on the input numbers take constant time.)
Explain why your algorithm works, in enough detail to convince an intelligent but skeptical reader that
it is correct. Your algorithm only needs to output the value obtained by the optimal parenthezation;
it does not need to output the optimal parenthezation itself.

2. Three arrays A, B, and C of positive integers, each containing n elements sorted into increasing order,
are given. Assume that there is least one element common to all three arrays. That is, assume there
exist indices i, j, and k, such that A[i] = B[j] = C[k].

• Describe an algorithm that finds this common element in Θ(n) time. If there is more than one
common element, your algorithm may return any of them. Explain why your algorithm works,
in enough detail to convince an intelligent but skeptical reader that it is correct.

• Describe how to extend your algorithm to the more general problem in which there are m input
arrays, instead of exactly three. What is the run time of your extended algorithm?

3. Find tight asymptotic bounds on any positive real-valued function T (n) satisfying the following re-
currence for all sufficiently large n:

T (n) = T
(n

3

)

+ T
(n

6

)

+ T
(n

9

)

+ n

That is, find an expression f(n), as simple as possible, such that T (n) = Θ(f(n)). Use the substitution
method to prove that your answer is correct. (Note: Implicit floors or ceilings in the recurrence do
not affect the answer.)



Spring 2018 CSE Qualifying Exam
CSCE 531, Compilers

1. LR-Parsing. Consider the following augmented grammar G with start symbol S 0:

S 0 ! R

R ! L = R

R ! L

L ! ⇤ R

L ! a

(The idea is that R stands for “r-value” and L stands for “l-value.”)

(a) For the grammar G above generate all of the LR(1) sets of items I0, I1, I2, . . . , I10
(eleven states in all) along with complete transition information for a canonical
LR(1) parser.

(b) Using the sets-of-items constructed in part (b), construct the action table and
describe any conflicts. Assume the productions are numbered in order from 0 to
4.

(c) Describe in detail how an arbitrary LR parsing algorithm will proceed in general
when the next token is t and the stack contents are s0, s1, . . . , stop�1, stop.

2. Syntax-Directed Translation. The do-alternatingly statement with grammar be-
low:

S ! doalternate S1 or S2 until B

executes S1 then tests B, if this is false then S2 executes followed by a test of B again.
As long as B evaluates to false this statement alternates between S1 and S2; when B
evaluates to true the loop is exited. Give semantic actions necessary for generation of
intermediate or assembly code for this statement.

1



3. Control Flow and Liveness Analysis. The following fragment of 3-address code
was produced by a nonoptimizing compiler:

1 start: sum = 0
2 i = 1
3 test: if i > n goto end1
4 switch: goto disp
5 case1: sum = sum + 1
6 goto end2
7 case2: t1 = i
8 t2 = 2 * t1
9 t3 = t2 - n

10 sum = sum + t2
11 case3: t1 = sum
12 t2 = t1 + 2
13 sum = t2
14 goto end2
15 default:sum = sum + 1
16 goto end2
17 goto end2
18 disp: if i == 5 goto case1
19 if i == 8 goto case2
20 if i == 13 goto case3
21 goto default
22 end2: i = i + 1
23 goto test
24 end1: print sum

Assume that there are no entry points into the code from outside other than at start.

(a) (20% credit) Decompose the code into basic blocks B1, B2, . . . , giving a range of
line numbers for each.

(b) (30% credit) Draw the control flow graph, describe any unreachable code, and
coalesce any nodes if possible.

(c) (30% credit) Give a table with 24 rows saying which variables are live immediately
before each line number. Assume that n and sum are the only live variables
immediately after line 24.

(d) (20% credit) Describe any simplifying transformations that can be performed on
the code (i.e., transformations that preserve the semantics but reduce (i) the
complexity of an instruction, (ii) the number of instructions, (iii) the number of
branches, or (iv) the number of variables).

2


