
Spring 2015 CSE Qualifying Exam
Core Subjects

February 21, 2015

Architecture

1. In this question we examine two loops and analyze their potential for parallelization.

(a) Consider the following loop:

for (i=0;i<100;i++) {

A[i] = B[2*i+4];

B[4*i+5] = A[i];

}

Does this loop have a loop-carried dependency? Why or why not?

(b) Consider the following loop:

for (i=0;i < 100;i++) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

Are there dependencies between S1 and S2? Is this loop parallel? If not, show
how to make it parallel.

2. A (m,n) correlating branch predictor uses the behavior of the most recent m executed
branches to choose from 2m predictors, each of which is an n-bit predictor. Consider a
(1, 2) correlating predictor that can track four branches.

For the following branch outcomes, provide each prediction, the table entry used to
make the prediction, any updates to the table as a result of the prediction, and the
final misprediction rate of each predictor.

1

Initialize the predictor to the following state:
Entry Branch Last outcome Current Prediction

0 0 T T
1 0 NT NT
2 1 T NT
3 1 NT T
4 2 T T
5 2 NT T
6 3 T NT
7 3 NT NT

Branch PC (word address) Outcome
454 T
543 NT
777 NT
543 NT
777 NT
454 T
777 NT
454 T
543 T

3. Assume we have a function for an application of the form F (i, p), which gives the
fraction of time that exactly i processors are usable given that a total of p processors
is available. That means that

p∑
i=1

F (i, p) = 1

Assume that when i processors are in use, the application runs i times faster. Rewrite
Amdahl’s law so it gives the speedup as a function of p for some application.

2

Compilers

1. Suppose we want to build expressions out of var and const tokens with the following
allowed operators (seven in all):

Operators Type Associativity
@, # unary postfix left to right
*, & unary prefix right to left
+, - binary infix left to right
? : ternary infix right to left

Groups of operators have the same type, precedence, and associativity. Groups are
listed in order of decreasing precedence. Expressions can also include parentheses to
coerce evaluation order as usual.

The single ternary operator ? : deserves some explanation. This operator builds ex-
pressions of the form A?B:C. The right associativity means that an expression of the
form A?B:C?D:E should be grouped as A?B:(C?D:E) rather than (A?B:C)?D:E.
Expressions of the form A?B?C:D:E are also possible (with the obvious grouping).

Give a grammar, suitable for LR(1) parsing, for these expressions. Use 〈expr〉 as the
start symbol. Your grammar should reflect the precedence and associativity of the
operators as closely as possible. No semantic actions are required.

2. Consider the usual bottom-up grammar for arithmetic expressions built from integer
constants with + and ∗ and parentheses:

〈expr〉 ::= 〈expr〉1 + 〈term〉
〈expr〉 ::= 〈term〉
〈term〉 ::= 〈term〉1 ∗ 〈factor〉
〈term〉 ::= 〈factor〉
〈factor〉 ::= (〈expr〉)

〈factor〉 ::= intconst

If E is any expression given by this grammar, we define the full inner parenthesiza-
tion (FIP) of E to be the same as E except that each proper subexpression of E is
surrounded by exactly one pair of matching parentheses. Any other extraneous paren-
theses, such as those surrounding other parentheses, or E itself, are not included. Thus
we have the following examples:

3

E FIP of E
2 2

2 + 3 (2) + (3)
(2) + 3 (2) + (3)
(2 + 3) (2) + (3)

2 + 3 + 4 ((2) + (3)) + (4)
2 + ((((3 + 4)))) (2) + ((3) + (4))

2 + 3 ∗ 4 (2) + ((3) ∗ (4))
(2 + 3) ∗ 4 ((2) + (3)) ∗ (4)
2 ∗ 3 ∗ 4 ((2) ∗ (3)) ∗ (4)

Add semantic rules to the grammar above to compute the FIP of an expression as a
string attribute 〈expr〉.fip. The only expressions or operations you are allowed that
involve strings are the following:

• string literals (in double quotes),

• intconst.str , as well as the .fip attributes of any nonterminals,

• the concatenation operator, Concat(s1, . . . , sn), which returns the concatenation
s1 · · · sn of strings s1, . . . , sn,

• assignment

You should assume that intconst.str is the string representation of the corresponding
integer constant given by the lexical analyzer. No other terminals have attributes.

4

3. The following fragment of 3-address code was produced by a nonoptimizing compiler:

1 start: x := 1

2 y := 1

3 sum := x

4 sum := sum + 1

5 loop1: if x = n then goto out1

6 loop2: if y = x then goto out2

7 t1 := a[y]

8 t2 := y * t1

9 t3 := t1 + x

10 if t3 < n then goto skip

11 t3 := t3 - n

12 skip: sum := sum + t3

13 y := y + 1

14 goto loop2

15 goto loop2

16 out2: a[x] := sum

17 sum := x + 1

18 x := x + 1

19 goto loop1

20 out1: x := x - 1

21 t1 := a[x]

22 print t1

23 if x = 0 then goto out

24 goto out1

25 out:

Assume that there are no entry points into the code from outside other than at start.

(a) (20% credit) Decompose the code into basic blocks B1, B2, . . . , giving a range of
line numbers for each.

(b) (20% credit) Draw the control flow graph, and describe any unreachable code.

(c) (40% credit) Fill in a 25-row table listing which variables are live at which control
points. Treat the array a as a single variable. Assume that n and sum are the
only live variables immediately before line 25. Your table should look like this:
Before line Live variables

1 . . .
2 . . .
3 . . .

.

5

(d) (20% credit) Describe any simplifying transformations that can be performed on
the code (i.e., transformations that preserve the semantics but reduce (i) the
complexity of an instruction, (ii) the number of instructions, (iii) the number of
branches, or (iv) the number of variables).

6

Algorithms

1. You are given an n× n array A[1 . . . n, 1 . . . n] where n ≥ 1 and all entries are either 0
or 1. Describe an algorithm that runs in time O(n) that decides whether or not there
exists an i with 1 ≤ i ≤ n such that the i’th row of A contains all 0’s and the i’th
column of A contains all 1’s except for A[i, i]. That is, you want to decide whether
there exists i such that A[i, j] = 0 for all 1 ≤ j ≤ n and A[k, i] = 1 for all 1 ≤ k ≤ n
such that k 6= i.

Justify your answer.

[Note that A has n2 many entries, so your algorithm does not have enough time to
examine all of them.]

(For what it is worth, if A is the adjacency matrix of a digraph, then a vertex is called
a universal sink iff it has outdegree 0 and indegree n− 1. Your algorithm determines
whether a universal sink exists.)

2. Find tight asymptotic bounds on any positive-valued function T (n) satisfying the fol-
lowing recurrence for all positive integers n:

T (n) = 99
100

T (n− 1) + n17 .

That is, find an expression f(n), as simple as possible, such that T (n) = Θ(f(n)).
Show your work.

3. Describe Prim’s algorithm for finding a minimum spanning tree in an undirected graph
G = (V,E). Give enough detail so that a reasonably good programmer with a sophisti-
cated knowledge of data structures can implement the algorithm efficiently given your
description. What is the worst-case running time of the algorithm (asymptotically,
in terms of |V | and |E|)? What conditions on G, if any, are necessary to guarantee
success?

7

