
Q-exam, Fall 2020, Architecture (CSCE 513)

1. Consider the following loop:

for (i=0; i<1024; i++)

for (j=0; j < n; j++) {

a[j*64 + i] = a[(j+1) * 64 + i] * a[i];

 a[i] = a[i] + b[j]

}

1) Is this loop parallel? Why or why not?
2) Is there a potential strategy to execute the inner loop in multiple threads? How or

why not?
3) Is it possible to unroll the inner loop without the compiler having access to the value

of n? Please explain your answer.

2. AMAT: In the system the memory has:
• Separate L1 instruction and data caches, Hit Time = 1 cycle
• 64KB L1 instruction cache with 5% miss rate, block size = 32B
• 64KB L1 data cache with 10% miss rate, block size = 32B
• 256KB L2 unified cache, Hit Time = 6 cycles, block size = 64B, miss rate = 50%
• Main Memory Access time is 100 cycles for the first 128 bits and subsequent

128-bit chunks are available every 8 cycles
• L1 caches are direct mapped, L2 is four-way associative
• Assume there are no misses to main memory

1) What is the average memory access time for instruction reference?
2) What is the average memory access time for data reference?
3) Assume the only memory reference instructions are loads(20%) and stores(5%). What

percentage of total memory references are instruction references?
4) What is the average memory access time? State any assumptions if needed.

3. The following loop is the so-called DAXPY loop (double-precision aX plus Y) and is the
central operation in Gaussian elimination. The following code implements the DAXPY
operation, Y = aX + Y, for a vector length 100. Initially, R1 is set to the base address of
array X and R2 is set to the base address of Y:

Assume the functional unit latencies as shown in the following table. Assume a one-
cycle delayed branch that resolves in the ID stage. Assume that results are fully
bypassed.

1) Assume a single-issue pipeline. Show how the loop would look both unscheduled by

the compiler and after compiler scheduling for both floating-point operation and
branch delays, including any stalls or idle clock cycles. What is the execution time (in
cycles) per element of the result vector, Y, unscheduled and scheduled? How much
faster must the clock be for processor hardware alone to match the performance
improvement achieved by the scheduling compiler? (Neglect any possible effects of
increased clock speed on memory system performance.)

2) Assume a single-issue pipeline. Unroll the loop as many times as necessary to
schedule it without any stalls, collapsing the loop overhead instructions. How many
times must the loop be unrolled? Show the instruction schedule. What is the
execution time per element of the result?

Fall 2021 CSE Qualifying Exam
CSCE 531, Compilers

1. Register Allocation

Consider the following program to compute the greatest common divisor
of two numbers using Euclid’s algorithm.

gcd(a, b)1: LABEL start
2: IF a<b THEN next ELSE swap
3: LABEL swap
4: t := a
5: a := b
6: b := t
7: LABEL next
8: z := 0
9: b := b mod a

10: IF b = z THEN end ELSE start
11: LABEL end
12: RETURN a

(a) Compute succ(i), gen(i), and kill(i) for each instruction in the pro-
gram. An example of the table to be filled is provided next to the
program.

gcd(a, b)1: LABEL start
2: IF a<b THEN next ELSE swap
3: LABEL swap
4: t := a
5: a := b
6: b := t
7: LABEL next
8: z := 0
9: b := b mod a

10: IF b = z THEN end ELSE start
11: LABEL end
12: RETURN a

i succ[i] gen[i] kill[i]

1
2
3
4
5
6
7
8
9

10
11
12

(b) Calculate in and out for every instruction in the program. Show your
work in tabular form. Use of fixed-point iteration is recommended.

(c) Draw the (register-)interference graph for a, b, t, and z.

(d) Make a three-coloring of the interference graph.

(e) Explain how one could modify the program to use only two registers.
You do not need to provide a solution; only describe the approach
that you would take.

1

2. Syntax-Directed Definition Consider the following grammar for arith-
metic expressions with constants, addition, and multiplication, where S is
the start symbol and c is a numeric constant:

E ::= E + E
E ::= E ∗ E
E ::= c
E ::= (E)

(a) Show that the grammar is ambiguous.

(b) Assume that + and * are associative and that, as usual, * has higher
precedence that +. Rewrite the grammar to eliminate ambiguity,
thus obtaining the standard LR (bottom-up) grammar for arithmetic
expressions with constants, addition, and multiplication. (Use sub-
scripts to indicate different occurrences of the same nonterminal in
the same production.)

(c) Write an attribute grammar by adding semantic rules to the gram-
mar you just obtained that, given an input expression, produces an
equivalent expression with the minimum number of parentheses. So
the rules in effect remove unnecessary parentheses. Your resulting ex-
pression should be passed as a string attribute to S.output. Assume
that the terminal c has a text attribute that contains the string rep-
resenting the constant. Use ‘+’ in your actions to denote string con-
catenation, and please surround string constants with double quotes.
As for the previous part of this question, assume that + and * are
associative operators, and that the usual precedence rules apply (*
before +). Do not rearrange or alter the expression in any way other
than by removing unnecessary parentheses.

Input Output Comment
2 + (3 + 4) 2 + 3 + 4 addition is associative
(2 * 3) * 4 2 * 3 * 4 multiplication is associative
2 + (3 * 4) 2 + 3 * 4 multiplication has precedence over addition
(2 + 3) * 4 (2 + 3) * 4 parentheses needed

2

3. Predictive (LL(1)) Parsing Consider the following grammar for postfix
expressions:

E ::= EE+
E ::= EE∗
E ::= c
E ::= (E)

(a) Eliminate left-recursion in the grammar.

(b) Do left-factorization of the grammar produced in part (a).

(c) Calculate Nullable, FIRST for every production, and FOLLOW for
every non-terminal in the grammar produced in part (b).

(d) Make an LL(1) parse table for the grammar produced in part (b).

3

Fall 2020 CSE Qualifying Exam
CSCE 551, Theory

1. Let Σ := {a, b, c}. For any string w ∈ Σ∗, let r(w) be the string in Σ∗ that results by
removing from w every occurrence of “b” that immediately follows an occurrence of
“a”. For example,

r(abc) = ac r(abb) = ab r(ac) = ac r(cb) = cb r(ba) = ba

(Note that r(w) may still have a “b” immediately following an “a”.)

For any language L ⊆ Σ∗, define

r(L) := {r(w) | w ∈ L} .

Show that if L is regular, then r(L) is regular.

2. Let A be any language over some alphabet Σ. Suppose there is a computable function
f such that, for any x, y, z ∈ Σ∗,

f(x, y, z) =

{
1 if x, y, z are pairwise distinct and A ∩ {x, y, z} = ∅,
0 otherwise.

Show that A is decidable. [Note that f(x, x, x) = 0 for all x, so just computing
f(x, x, x) does not tell you anything about A.]

3. Let G be a (simple, undirected) graph with n vertices and m edges. An exact half
vertex cover (ehvc) of G is a set C of vertices of G such that exactly m/2 edges have at
least one endpoint in C (the other m/2 edges having neither endpoint in C). Obviously,
for an exact half vertex cover to exist, m must be even.

Let EHVC be the following decision problem:

Instance: A graph G and a positive integer K.
Question: Does G have an ehvc of size ≤ K?

Clearly, EHVC is in NP. Show that EHVC is NP-complete by describing a polynomial
reduction from VERTEX COVER to EHVC.

1

Fall 2020 Q-exam — CSCE 750 (Algorithms)

1. (Solving a Recurrence) Let T (n) be the function defined for all integers n ≥ 1 by the following
recurrence:

T (n) = 2T (n/2) + (1/2)T (n− 1) + n

Find an expression f(n), as simple as possible, such that T (n) = Θ(f(n)). Use the substitution method
to prove that your answer is correct. (Note: Implicit floors or ceilings in the recurrence do not affect
the answer.)

2. (Cutting a sheet) Suppose you have a large, flat sheet of metal, measuring n units long and m
units wide, where n and m are positive integers. Rectangles made of this particular metal can be
very valuable for certain construction projects, but their value depends on the specific dimensions
of the rectangle. Specifically, you are given a price array P [1, . . . , n][1, . . . ,m], in which P [i, j] is a
non-negative integer that represents the amount of money that a rectangle of metal i units long and
j units wide can be sold for. (You should not assume anything about the relative values of different
sizes of rectangles.) You have a saw that can make a complete horizontal cut or a complete vertical
cut across any rectangle of the metal, forming two smaller rectangles. These cuts must be made at
integer positions. There is no cost to use the saw. Your goal is to make a series of zero or more cuts,
starting from the original n×m sheet, to maximize the total value of the resulting rectangles.

Describe an algorithm, as efficient as possible, that takes as input the original dimensions n and m
along with the price array P [1, . . . , n][1, . . . ,m], and outputs the maximum total value that can be
obtained. Explain how and why your algorithm works, in enough detail to convince an intelligent but
skeptical reader that it is correct.

3. (Building a new road) Consider a weighted directed graph G1 = (V,E1) in which the vertices
represent cities and the edges represent existing roads that directly connect pairs of cities. Weights on
the edges represent the travel times along those roads. Thus, for any two vertices s, t ∈ V , the length
of the shortest path in G1 between s and t represents the total time needed to travel from s to t.

Now suppose we are given a new weighted directed graph G2 = (V,E2), for which E1 ∩E2 = ∅. Notice
that the two graphs share the same vertex set V . Edges in E2 represent new roads that might possibly
be built in the future.

Suppose only one new road from E2 can be built. We are interested in determining, for a given pair of
cities (s, t), the ‘best’ new road to build. That is, which one new road from E2 would cause the length
of the shortest path in G1 from s to t to be reduced the most?

Since the edge weights represent travel time, all of the weights in each of the graphs G1 and G2 are
non-negative.

Specifically, you should describe an algorithm that:

(a) takes as input the two graphs G1 = (V,E1) and G2 = (V,E2) represented as adjacency lists, along
with two vertices s and t, and

(b) outputs an edge e ∈ E2 that minimizes the length of the shortest path from s to t in the graph
(V,E1 ∪ {e}). (If more than one edge leads to the minimum, your algorithm may return any of
them.)

Explain how and why your algorithm works, in enough detail to convince an intelligent but skeptical
reader that it is correct. For full credit, your algorithm should run in O(|E1| log |V |+ |E2| log |V |) time.

