
Fall 2017 CSE Qualifying Exam
Core Subjects

Architecture (513)

Not given in Fall 2017.

Compilers (531)

1. LR-Parsing. Consider the following augmented grammar G with start symbol S ′:

S ′ → S

S → i S

S → i S e S

S → a

(a) Give FIRST(S) and FOLLOW(S) with respect to G.

(b) Generate all of the LR(1) sets of items along with complete transition information
for a canonical LR(1) parser for G.

(c) Using the sets-of-items constructed in part (b), construct the action table and
describe any conflicts.

(d) Describe in detail how an arbitrary LR parsing algorithm will proceed in general
when the next token is t and the stack contents are s0, s1, . . . , stop−1, stop.

2. Syntax-Directed Translation. The do-if statement in a C-like language has the
following syntax:

S → do S1 if B

At run time, it tests the Boolean expression B first. If this is true, then the statement
S1 is executed once; otherwise, nothing happens. Give semantic actions necessary for
generation of intermediate or assembly code for this statement, assuming a one-pass
compiler. As always with a one-pass compiler, the code for statement S1, which could

1

be quite long, is generated while S1 is being parsed and before B is parsed. You are
allowed to use intermediate actions and place attributes on the semantic stack, as with
yacc/bison.

3. Control Flow and Liveness Analysis. The following fragment of 3-address code
was produced by a nonoptimizing compiler:

1 start: i = 1

2 loop1: if i > n goto part2

3 j = 1

4 sum = 0

5 loop2: if j > i goto fin2

6 o = i * 8

7 o = o + j

8 s = a[o]

9 t = j * 8

10 v = a[t]

11 y = s * v

12 if s < n goto fin1

13 sum = sum + y

14 j = j + 1

15 goto loop1

16 fin1: j = sum

17 goto fin2

18 fin2: i = i + 1

19 o = i * 8

20 a[o] = sum

21 goto loop2

22 part2: no-op

Assume that there are no entry points into the code from outside other than at start.

(a) (20% credit) Decompose the code into basic blocks B1, B2, . . . , giving a range of
line numbers for each.

(b) (30% credit) Draw the control flow graph, describe any unreachable code, and
coalesce any nodes if possible.

(c) (30% credit) Is the variable o live just before line 9? Is the variable y live just
before line 14? Explain. Assume that n and sum are the only live variables
immediately after line 22.

(d) (20% credit) Describe any simplifying transformations that can be performed on
the code (i.e., transformations that preserve the semantics but reduce (i) the
complexity of an instruction, (ii) the number of instructions, (iii) the number of
branches, or (iv) the number of variables).

2

Algorithms (750)

1. Let T (n) be the function defined on the positive integers by the recurrence

T (1) = 1 ,

T (n) = nT (bn/2c) + 1 (for n > 1).

Give a reasonably simple function of n that is an asymptotically tight bound on T (n)
assuming n is a power of 2 (in which case the floor has no effect). There are no
requirements on your bound if n is not a power of 2.

2. You are given a directed acyclic graph (dag) G = (V,E) with n vertices, m edges, and
nonnegative integer edge weights w(e) for all e ∈ E. Describe an algorithm that prints
a path in G of longest weighted length. (The weighted length of a path is the sum
of the weights of the edges along the path.) You may assume that G is given by the
standard adjacency list representation with vertex array V [1 . . . n] and that this array
has been topologically pre-sorted, that is, there is no edge from V [i] to V [j] if i ≥ j.
Your algorithm should run in linear time, i.e., O(n + m) time. (You may attach any
attributes to the entries of V that you find useful.)

3. Let G be a connected graph, and let T1 6= T2 be two distinct spanning trees of G.
Show that for every edge e1 ∈ T1 \ T2, there exists an edge e2 ∈ T2 \ T1 such that
(T1 \ {e1}) ∪ {e2} is a spanning tree of G.

3

Theory (551)

1. Fix an alphabet Σ. Given two strings x, y ∈ Σ∗ of the same length, the interleave of x
and y is the string

x#y := x1y1x2y2 · · ·xnyn ,

where n = |x| = |y| and x = x1 · · ·xn and y = y1 · · · yn. For two languages L1, L2 ⊆ Σ∗,
define

L1#L2 := {x#y : x ∈ L1 ∧ y ∈ L2 ∧ |x| = |y|} .

Show that if L1 and L2 are both regular, then L1#L2 is regular. [Hint: From an
m-state DFA for L1 and an n-state DFA for L2 one can build a 2mn-state DFA for
L1#L2.]

2. Given a Turing machine M and an input string w, let space(M,w) be the number of
cells of M ’s tape that are scanned at least once in M ’s computation on input w. (It
may be that space(M,w) =∞.) A universal space bound is a function s : Σ∗ → Σ∗ such
that, for any M and w such that space(M,w) <∞, we have space(M,w) ≤ s(〈M,w〉).
(We encode natural numbers as strings in some reasonable way.)

Show that no universal space bound can be computable.

3. Let RVC be the restriction of VERTEX COVER to graphs where all cycles have lengths
that are multiples of 3. Show that RVC is NP-complete. [Hint: polynomially reduce
VERTEX COVER to RVC.]

4

