
Fall 2016 CSE Qualifying Exam

CSCE 531, Compilers

1. LR-Parsing

(a) Give definitions of FIRST(↵) and FOLLOW(X).

(b) Consider the following augmented grammar G with start symbol S 0:

S 0 ! S

S ! V ‘=’ E

S ! E

S ! V

V ! id

V ! ‘⇤’ E
E ! V

For the grammar G above generate six of the LR(1) sets of items along with
transition information for a canonical LR(1) parser

(c) Using the partial Sets-of-Items constructed in part (b) construct as much as you
can of the action table. If an action requires shifting to a state you did not
construct, say “s?” for the action.

(d) Describe in detail how the LR Parsing Algorithm will proceed in general when the
state is s, the next token is t and the stack contents is X0, X1, . . . , Xtop�1, Xtop

.

1

2. Syntax-Directed Definitions Consider the following standard LR (bottom-up) gram-
mar for arithmetic expressions with constants, addition, and multiplication (S is the
start symbol):

S ::= E

E ::= E1 + T

E ::= T

T ::= T1 ⇤ F
T ::= F

F ::= c

F ::= (E)

(Subscripts have been added to distinguish di↵erent occurrences of the same nonter-
minal in the same production.) Do either but not both of the two items below:

(a) (For 80% credit) Add semantic rules to the grammar above that, given an in-
put expression, produce an equivalent expression with the minimum number of
parentheses. So the rules in e↵ect remove unnecessary parentheses.

Your resulting expression should be passed as a string attribute to S.output. As-
sume that the terminal c has a text attribute that contains the string representing
the constant. You may use ‘+’ in your actions to denote string concatenation,
and please surround string constants with double quotes.

You should assume that + and ⇤ are associative operators, and that the usual
precedence rules apply (⇤ before +). Do not rearrange or alter the expression in
any way other than the parentheses.

(b) (For 100% credit) Do the same as the last item, but with the grammar also having
a production for subtraction:

E ::= E1 � T

Subtraction has the same precedence as addition, and both operators associate
from left to right. Subtraction is not associative.

Examples:

Input Output Comment
2 + (3 + 4) 2 + 3 + 4 addition is associative
(2 ⇤ 3) ⇤ 4 2 ⇤ 3 ⇤ 4 multiplication is associative
2 + (3 ⇤ 4) 2 + 3 ⇤ 4 multiplication presides over addition
(2 + 3) ⇤ 4 (2 + 3) ⇤ 4 parentheses needed
(2� 3) + 4 2� 3 + 4 operators associate left to right anyway
2� (3 + 4) 2� (3 + 4) parentheses needed

2

3. Control Flow and Liveness Analysis
Consider the intermediate code below.

0 sum = 0

1 i = 0

L0: 2 j = 0

L1: 3 t1 = b

4 t1 = t1 + i * w

5 t1 = t1 + j * 8

6 f = array [t1]

7 if (f > 0) goto L2

8 goto L3

L2: 9 sum = sum + f

10 goto L4

L3: 11 sum = sum - 1

L4: 12 j = j + 1

13 if (j < 32) goto L1

14 i = i + 1

L5: 15 if (i < 8) goto L0

L6: 16 return

L7: 17 goto L0

Assume that there are no entry points into the code from outside other than at the
start.

(a) (20% credit) Decompose the code into basic blocks B1,B2, . . . , giving a range of
line numbers for each.

(b) (20% credit) Draw the control flow graph, and describe any unreachable code.

(c) (40% credit) Fill in an 18-row table listing which variables are live at which control
points. Treat array as a single variable. Assume that n and sum are the only live
variables immediately before line 16 (the only exit point). Your table should look
like this:
Before line Live variables
0 · · ·
1 · · ·
2 · · ·
· · · · · ·
17 · · ·

(d) (20% credit) Describe any simplifying tranformations that can be performed on
the code (i.e., transformations that preserve the semantics but reduce (i) the
complexity of an instruction, (ii) the number of instructions, (iii) the number of
branches, or (iv) the number of variables).

3

Algorithms

1. Find tight asymptotic bounds on any positive function T (n) satisfying the following recurrence for all
large enough n:

T (n) = T

✓
2n

7

◆
+ T

✓
3n

7

◆
+ T

✓
6n

7

◆
+ n2

You may assume that any implicit floors or ceilings in the arguments to T are of no consequence.

2. A palindrome is a string that is unchanged by reversal. Specifically, a string S[1, . . . , n] is a palindrome
if S[i] = S[n � i + 1] for every i 2 {1, . . . , n}. Examples: ‘hannah’, ‘smhtiroglalgorithms’, and ‘x’ are
palindromes, but ‘turtles’ is not a palindrome.

Any string can be expanded into a palindrome by inserting characters. The table below shows some
examples, with the inserted letters shown as capitals.

Original String Palindrome
abb abbA

turtles SELtRurtles
smorgasbord DROBsAGROmorgasbord
algorithms SMHTIROGLalgorithms

kayak kayak

Describe, in pseudocode, a ⇥(n2) time algorithm that takes as input a string of length n, and outputs
the length of the shortest palindrome that can be formed by inserting characters into the input string.
Your algorithm only needs to compute the length of the palindrome; it does not need to generate the
palindrome itself. Explain why your algorithm works, in enough detail to convince an intelligent but
skeptical reader that it is correct.

(Hint: Let p[i, j] denote the length of the shortest palindrome that can be formed by inserting characters
into S[i, . . . , j]. How can you fill in the table p?)

3. Consider a binary tree data structure represented as a collection of n nodes, in which each node v has
three attributes:

(i) An integer key v.key. The keys are all distinct.

(ii) A pointer v.left to the left child. If v has no left child, then v.left = nil.

(iii) A pointer v.right to the right child. If v has no right child, then v.right = nil.

A binary tree is represented by a pointer to its root (or a nil pointer, if empty).

This question has two parts; you should answer both.

(a) (50% credit) Describe, in pseudocode, a ⇥(n) time algorithm that decides whether a given tree
is a binary search tree.

Hint: Be sure that your algorithm correctly identifies that this tree is a BST: 5

3

1

7

6

(b) (50% credit) Describe, in pseudocode, a ⇥(n) time algorithm that decides whether a given tree
is a max-heap. (Repeating for emphasis: The input is a binary tree represented by node objects
with pointers to their children. The input is not the traditional array representation of a heap.)

Hint: Be sure that your algorithm correctly identifies that this tree is not a max-heap: 9

8

1

7

6

In both cases, the input is given as a pointer to the root node. Explain why your algorithms work, in
enough detail to convince an intelligent but skeptical reader that they are correct.

Architecture	
	

1.	 For	this	question	consider	the	following	loop:	

	

for	(i=0;i<1024;i++)	

		for	(j=0;j<n;j++)	

				a[j*128+i]	=	a[(j+2)*128+i]	*	16;	

	

a.	 Is	this	loop	parallel?		Why	or	why	not?	

b.	 Suppose	you	wanted	to	execute	the	inner	loop	in	multiple	threads.		Describe	a	potential	strategy	
for	achieving	this.	

c.	 Is	there	a	way	to	transform	the	loop	nest	to	increase	its	potential	parallelism?		How	or	why	not?	

d.	 Using	the	original	code,	is	it	possible	to	unroll	the	inner	loop	without	the	compiler	having	access	
to	the	value	of	n?		What	are	the	potential	advantages	of	unrolling	the	loop?	

	 	

2.	 Consider	the	following	segment	of	MIPS	assembly	code:	

	

loop:	 mov	 r2,r3	

	 beq	 r2,r8,complete	

	 addi	 r4,r4,4	

	 lw	 r3,0(r4)	

loop2:	 beq	 r2,r3,exit	

	 sll	 r5,r2,2	

	 lw	 r6,0(r5)	

	 sw	 r6,0(r7)	

	 addi	 r7,r7,4	

	 addi	 r2,r2,1	

	 j	 loop2	

exit:	 j	 loop	

complete:	

	

a.	 Identify	all	the	data	dependencies	in	the	inner	loop.	

b.	 In	what	ways	can	a	programmer	parallelize	this	code?	

c.	 Is	there	any	instruction	level	parallelism	available	in	this	code?	

	 	

3.	 Consider	the	following	code:	

	

float	a[1024*1024],	b[1024*1024],	c[1024*1024];	

for	(i=0;i<1024;i++)	

		for	(j=0;j<1024;j++)	{	

				sum=0.0;	

				for	(k=0;k<1024;k++)	sum+=a[i*1024+k]*b[k*1024+j]	

				c[i*1024+j]=sum;	

}	

	

a.	 What	is	the	arithmetic	intensity	of	the	i-loop,	j-loop,	and	k-loop?	

b.	 What	is	the	minimum	cache	size	needed	to	avoid	any	conflict	and	capacity	misses	in	the	k-loop?	

c.	 How	many	times	does	the	processor	access	the	a-array	before	the	same	element	is	accessed	
twice?		How	many	times	does	the	processor	access	the	b-array	before	the	same	element	is	
accessed	twice?	

