
Fall 2015 CSE Qualifying Exam
Core Subjects

September 26, 2015

Architecture

1. Assuming the classical 5-stage pipeline with no forwarding except through the registers
and all operations execute in one cycle. Assume you predict branch not taken and then
branch is taken.

Now Assume the following differences
Given the code below:

loop: LD R6, 0(R1)

ADD R5, R6, R6

ADD R10, R6, R5

ADD R8, R8, R6

DADDIU R1, R1, -8

BNE R1, R2, loop

(a) Identify a stall that could be improved by forwarding and explain in detail how
the forwarding case could be detected and handled.

(b) Explain how a branch delay slot improves performance in general and explain for
this loop an instruction that could be moved to the delay slot.
Now assume the following differences from the 5-stage pipeline:

• Both the instruction memory and data memory require two cycles (IM1, IM2,
DM1, DM2) and

• the register file is dually ported and there are two write back cycles WBE and
WBM so that you can write the result of an execution and a DM reference
in the same cycle.

(c) Show the order of the of the cycles that would mimimize the amount of hardware
necessary forwarding.

(d) List 6 (or all if there are less than 6) forwarding paths; i.e. give the source, the
target of the forwarding, and the condition that would cause it to occur.

1

2. AMAT

(a) Assume an L1 has a hit rate of 90% and the L2 has a hit rate of 80%. Further
assume that there is no L3 and references to main memory always hit and we
have a block transfer time of 100 cycles from main memory to L2, and the block
transfer time from L2 to L1 is 10 cycles. What is the average memory access
time? (Assume hit time to L1 is 1 cycle).

(b) Now for the rest of this question assume you break the L1 up into data and
instruction caches with hit rates 80% data and 90% instruction. If all instructions
and data references are to 1 word quantities and 50% of the instructions are
memory reference instructions then

i. What percentage of references to memory are references to instructions mem-
ory?

ii. If the What is the AMAT for data references assuming a miss penalty to the
unified L2 of 100 cycles? (Note this is not consistent with part a!!!)

iii. What is the overall AMAT?

(c) What is in the TLB?

(d) Describe in detail the process of translating a Virtual address into a physical
address.
Is this process implemented in hardware, software or both?

(e) If Pages are 4096 bytes long and the address space is 4GB then how many entries
are in the page table?

(f) Given the code below and a direct mapped cache with 256 lines of 32B bytes.

double a[8192];

double sum = 0.0;

for(i=0; i < 8192; i=i+4)

sum = sum + a[i];

Assume that the non-array variables are stored in registers and ignore instruction
references. What is the hit ratio?

2

3. Reorder Buffer

(a) Explain the contents of the ROB.

(b) Explain a situation that would cause a structural hazard with respect to the CDB.

(c) What additional hardware is required for a dual commit ROB?

(d) ROB trace - dual issue
Assume the following:

• Ten ROB slots.

• 1 integer Execution unit, 3 reservation stations, one cycle to execute.

• 1 Floating Add Unit, 3 reservation stations, 6 cycles to execute.

• 1 Floating MULT Unit, 2 reservation stations, 10 cycles to execute.

• Functional units are pipelined.

• There is no forwarding between functional units; results are communicated by the
common data bus (CDB).

• The execution stage (EX) does both the effective address calculation and the mem-
ory access for loads and stores.

• Thus, the pipeline is IF/ ID/ IS/ EX/ WB. Loads require one clock cycle.

• The issue (IS) and write-back (WB) result stages each require one clock cycle.

• There are five load buffer slots and five store buffer slots.

• Assume that the Branch on Not Equal to Zero (BNEZ) instruction requires one
clock cycle.

loop: LD F0, 0(R1)

MULT.D F8, F0, F0

ADD.D F2, F2, F8

DADDIU R1, R1, +8

BNE R1, R2, loop

Fill in the table below for as much as you can assuming the BNE is predicted taken
and succeeds. (Do not add rows to the table.)

3

Iter. Instruction Issues at Execute/memory Write CDB Commit

4

Compilers

1. Consider the following grammar:

S → V = E

E → E − E | (E)

E → V

V → 〈id〉 [〈Elist〉]

〈Elist〉 → 〈Elist〉 c E

〈Elist〉 → ε

(The c stands for “comma,”, and ε denotes the empty string.)

(a) Construct the sets of LR(1) items for this grammar. (Stop at 8 sets.)

i. Compute I0
ii. For which symbols x is GOTO(I0, x) nontrivial?

iii. For each such symbol x, compute GOTO(I0, x).

iv. Compute GOTO([P, $],=), where P is S → V · = E.

(b) For the sets of LR(1) items from above, provide entries of the LR(1) parse table.

2. Some programming languages allow the following as a conditional statement:

〈statement〉 ::= do 〈statement〉1 if 〈test〉

where 〈test〉 is a Boolean-valued expression. This construction is not a loop. It is
semantically equivalent to the usual if-statement, “if 〈test〉 then 〈statement〉1”, that
is, at runtime, the test is evaluated first, and the statement is executed if and only if
the test is true. (There is no “else” clause.)

Add semantic actions to the production above to translate it into 3-address code or
assembly code. Assume that 〈statement〉1 and 〈test〉 are translated into code as they
are parsed, and that the result of evaluating 〈test〉 is stored in the global variable
result, and so you can say, for example, “if result then goto L” immediately
after, where L is some label. You may also assume that any intermediate actions you
add do not cause any parser conflicts.

You are allowed the usual two primitives:

new label() returns a fresh label to be stored internally

emit(· · ·) emits its argument to the output code

You may define any attributes you find helpful, but you may not store data anywhere
else (e.g., global variables) besides in attributes of grammar symbols.

Note that 〈statement〉1 emits output code promptly ; you cannot save the output to be
emitted later.

5

3. The following fragment of intermediate code was generated by a compiler:

1 LabelA: i = 1000

2 sum = 0

3 LabelB: j = 1000

4 k = 1000

5 LabelC: t1 = j * 4000

6 t3 = t1

7 t2 = i * 4

8 t3 = t1 + t2

9 t4 = a[t3]

10 if t4 < 0 goto LabelE

11 sum = sum + t4

12 goto LabelF

13 LabelD: k = k - 1

14 if k > 0 goto LabelC

15 LabelE: sum = sum - t4

16 LabelF: j = j - 1

17 if j > 0 goto LabelC

18 i = i - 1

19 if i > 0 goto LabelB

20 LabelG: no op

Assume that the only entry point is at LabelA.

(a) Decompose the code into basic blocks.

(b) Draw the control flow graph and identify any unreachable code if there is any.

(c) Describe the liveness of each variable just before each line in the block containing
statement 10 assuming that only i, j, k, t4, and sum are live after 10.

(d) Describe any simplifying transformations that can be performed on the code (i.e.,
transformations that preserve the semantics but improve the code).

6

Algorithms

1. Find tight asymptotic bounds on any positive-valued function T (n) satisfying the fol-
lowing recurrence for all positive integers n:

T (n) = 2T (2n/3) + 3T (n/2) + n3 .

That is, find an expression f(n), as simple as possible, such that T (n) = Θ(f(n)).
Show your work.

(Note: implicit floors or ceilings in the recurrence do not affect the answer.)

2. You are given a standard binary search tree T (with no parent pointers) and two key
values k < ` (which may or may not be in T). Describe an algorithm to list all the
keys in T that are strictly between k and `. For full credit, your algorithm should take
time O(d + n), where d is the depth of T and n is the number of keys that are output
(assuming key comparisons take constant time).

3. Let G = (V,E) be a directed acyclic graph with edge weight function w : E → N giving
each edge e ∈ E a nonnegative integer weight w(e). Describe an O(|V | + |E|)-time
algorithm MaxPath(G) that takes G, represented as an adjacency list with vertex
array V [1 . . . n], and outputs the maximum weight of any path from V [1] to V [n], or
−1 if no such path exists. Describe informally how you would augment your algorithm
to actually compute a maximum-weight path.

You may define any vertex or edge attributes you find helpful. You may also assume
that G is already given in topologically sorted order. That is, for any legal indices i
and j, there can be an edge from V [i] to V [j] only if i < j.

Theory

Not given in Fall 2015.

7

