
CSCE 355

Foundations
of Computation

Stephen Fenner
Daniel Padé
Duncan A. Buell

University of South Carolina

These notes are based on two lectures per week. Sections beginning with a star (*)
are optional.

Last modified January 20, 2021

i

Contents

1 1
1.1 Logical Connectives . 2
1.2 Methods of proof . 4
1.3 Notation . 5

2 7
2.1 Methods of Proof (cont.) . 7
2.2 Summations . 8
2.3 Proof by induction . 8
2.4 Proof by contradiction . 12
2.5 And Finally ... 13

3 15
3.1 Strong induction and the well-ordering principle 15
3.2 Proof that

√
2 is irrational . 16

4 19
4.1 “Proofs” that fail . 19

5 21
5.1 Describing sets . 21
5.2 Subsets and the empty set . 24
5.3 Boolean set operations . 25
5.4 Sets of sets, ordered pairs, Cartesian product 27
5.5 Relations and functions . 29
5.6 The pigeonhole principle . 30
5.7 Countable sets . 35
5.8 Uncountable sets . 40
5.9 Why should we care? . 42
5.10 Constructing the nonnegative integers 45

6 49

ii

CONTENTS iii

6.1 Alphabets and Strings . 49
6.2 Languages . 53
6.3 Finite automata . 54

7 57
7.1 String Search . 57
7.2 DFAs, formally . 57
7.3 *An Alternate Characterization of DFA Acceptance 60
7.4 Product and Complement Constructions 61

8 63
8.1 Nondeterministic finite automata (NFAs) 63
8.2 Subset construction . 65

9 67
9.1 Optimized/Lazy subset construction 67
9.2 Proof of Correctness . 67
9.3 An Example of the Worst Case 69

10 71
10.1 ε-transitions . 71
10.2 ε-NFAs . 72
10.3 *Alternate Characterizations of NFA and ε-NFA Acceptance . . 72
10.4 Eliminating ε transitions . 73
10.5 Regular expressions . 80
10.6 Buell’s additional notes . 81

11 83
11.1 Regex Examples . 83

12 85
12.1 Transforming regular expressions into ε-NFAs 85

13 89
13.1 Transforming ε-NFAs into regular expressions 89

14 95
14.1 Grammars, Type 3 grammars, and regular languages 95

15 103
15.1 Proving languages not regular . 103

16 105

iv CONTENTS

16.1 Template for Pumping Lemma Proofs 105

17 109
17.1 Closure properties of regular languages. 109

18 111

19 117
19.1 String Homomorphisms . 117
19.2 Using closure properties to show nonregularity 121

20 125
20.1 DFA minimization . 125

21 127
21.1 Constructing the minimal DFA 129

22 135
22.1 Another Language Representation 135
22.2 (*) Converting Regular Languages to Grammars 137

23 139
23.1 Sentential Forms . 139
23.2 Parse Trees . 139

24 143

25 145
25.1 Pushdown Automata . 145
25.2 Formal Definition . 146
25.3 Instantaneous Descriptions . 147
25.4 Acceptance Criteria . 148

26 151
26.1 Pushdown Automata From Grammars 152
26.2 An Alternative Proof . 156

27 159

28 165
28.1 Pumping Lemma For CFGs . 165

29 167
29.1 Turing Machines . 167

CONTENTS v

29.2 Examples . 168

30 173
30.1 Instantaneous Descriptions (IDs) of a TM computation 173

31 177
31.1 Universal Turing Machines . 177

32 183

33 187

34 191
34.1 PCP and Undecidability . 191

Lecture 1

This lecture will outline the topics and requirements of the course. We will also
jump into some review of discrete math.

Example of a two-state automaton modeling a light switch.
Some basic definitions so that we’re all on the same page.

Definition 1.0.1. A natural number is any whole number that is at least zero. We
can list the natural numbers as 0, 1, 2, 3, We let N denote the set of all natural
numbers.

Some mathematicians, especially those working in algebra or number theory,
define the natural numbers to start at 1 and exclude 0. Logicians and computer
scientists usually define them as we did above, and we’ll stick to that.

A more formal way of defining the natural numbers is as the least collection of
numbers satisfying

• 0 is a natural number, and

• if x is any natural number, then x + 1 is a natural number.

This definition is the basis of a method of proof called mathematical induction, which
we’ll describe later.

Definition 1.0.2. A number n is an integer if either x or −x is a natural number. The
integers form a doubly infinite list: . . . ,−2,−1, 0, 1, 2, We let Z denote the set of
all integers.

So the integers are all the whole numbers—positive, negative, or zero. Speak-
ing of which,

Definition 1.0.3. Let x be any real number. We say that x is positive just in the case
that x > 0. We say that x is negative just in the case that x < 0 (equivalently, −x is
positive). Additionally, we say that x is nonnegative to mean that x ≥ 0, i.e., that x
is either zero or positive.

1

2 LECTURE 1.

So that means that for any real number x , exactly one of the following three
statements is true:

• x is positive

• x = 0

• x is negative

Definition 1.0.4. A real number x is rational just in case that x = a/b for some
integers a and b with b , 0. By negating both the numerator and denominator if
necessary, we can always assume that b > 0. If x is not rational, then we say that x
is irrational. We let Q denote the set of all rational numbers.

1.1 Logical Connectives

Conditionals

Many theorems are of the form, “If H then C,” where H and C are statements.
This is called a conditional statement: H is the hypothesis and C is the conclusion.
This conditional statement can be written symbolically as H → C. H and C may
have variables, in which case the statement must be proven true for all appropriate
values of the variables. If there is any doubt, we may quantify exactly what values
those are.

Other equivalent ways of saying “if H then C” are:

• “H implies C”

• “C follows from H”

• “C if H”

• “H only if C”

• “H is a sufficient condition for C”

• “C is a necessary condition for H”

• “it cannot be the case that H is true and C is false”

Example:

For all integers x , if x2 is even, then x is even.

1.1. LOGICAL CONNECTIVES 3

Here, the hypothesis is “x2 is even” and the conclusion is “x is even.” We quantified
x over the integers, that is, we said that the statement holds for all integers x . So
the statement says nothing about x if x is not an integer (π , say). (By the way, this
statement is true, and we’ll prove it later.)

The hypothesis or the conclusion may be more complicated. Here is a statement
where the hypothesis is two simple statements joined by “and”:

For all integers x , if x > 2 and x is prime, then x is odd.

This statement is also true.

Biconditionals

A statement of the form “H if and only if C” is called a biconditional. It asserts that
both H implies C and that C implies H , i.e., C and H both follow from each other.
In other words, C and H are equivalent (have the same truth value). The phrase
“if and only if” is often abbreviated by “iff.” A proof of a biconditional usually
requires two subproofs: one that H implies C (the forward direction, or “only if”
part), and one that C implies H (the reverse direction, or “if” part).

The converse of a conditional statement “if H then C” is the conditional state-
ment “if C then H .” Thus a biconditional asserts both the conditional (forward
direction) and its converse (reverse direction).

Here are some other ways of saying “H if and only if C”:

• “H iff C”

• “C iff H”

• “H implies C and conversely”

• “H and C are equivalent”

• “if H then C and if C then H”

• “H is a necessary and sufficient condition for C”

• “C is a necessary and sufficient condition for H”

• “H and C are either both true or both false”

Symbolically, we write “H ↔ C,” and this asserts that H → C and C → H .

4 LECTURE 1.

1.2 Methods of proof

We look at several techniques to prove statements:

• direct proof

• proof by cases

• proof by contradiction

• proof by induction (and variants)

Many complex proofs combine some or all of these ingredients together.

Direct proofs

Theorem 1.2.1. For any integer x , if x ≥ 4, then 2x ≥ x2.

Proof. Notice that 24 = 16 = 42, so the statement is true for x = 4.1 Now consider
the sequence

24, 25, 26, . . .

of values on the left-hand side and the sequence

42, 52, 62, . . .

of values on the right-hand side. Taking the ratio of adjacent terms in each se-
quence, we see that

2x+1

2x
=

21

20 = 2,

and
(x + 1)2

x2 =

(
x + 1
x

)2

.

If x ≥ 4, then (x + 1)/x ≤ 5/4 = 1.25, and so(
x + 1
x

)2

≤

(
5
4

)2

=
25
16
< 2.

So the left-hand sequence values increase by a factor of 2 each time, but the right-
hand values increase by a factor of less than 2 each time. This will make all the
left-hand values at least as big as the corresponding right-hand values. �

1We could check that the statement is also true for x = 5, 6, 7, . . . 19, but this is not sufficient to
prove the statement, because we are only proving it true for some finite sample of values whereas
the theorem asserts the result for all values at least 4. It still may be useful to check a few cases,
however, to give a hint about the general argument.

1.3. NOTATION 5

This is a direct proof. We start by assuming the hypothesis, infer some new
statements based on the hypothesis and using easy and familiar facts about num-
bers (what I’ll call “high school math”), and eventually reach the conclusion. The
proof above is not completely formal, because we don’t bother proving these facts
from high school math (e.g., the fact that (a/b)2 = a2/b2 for all real a and b), but
that’s fine; these facts are so easy and intuitively obvious that proving them would
be a tedious waste of time and obscure the key points of the whole proof itself.

1.3 Notation

Now is good a time as any to mention the notation that is common in mathematics
and theoretical computer science. We define symbols as follows:

• N : the natural numbers, as mentioned above

• Z : the integers (in German, the Zahlennummer, or “counting numbers”), be-
ing all numbers

...,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, ...

• Q : the rational numbers, which are the quotients a/b of two integers a and b

• R : the real numbers

• C : the complex numbers

In this course we will use N and Z a lot, Q a little, and R and C almost not at all.
These symbols are in what is called “blackboard bold” font. Decades ago, in

books and journals, the letters would be printed in boldface. But it’s not really
possible on the blackboard to write a different symbol for a boldface letter to dis-
tinuish it from an ordinary letter, so the extra stroke would be used on the board
to indicate that the symbol was different.

Mathematics is what used to be referred to as “penalty copy” due to the large
number of special symbols, superscripts, subscripts, and the like. When Knuth
developed the TeX typesetting package, he deliberately included a font for black-
board bold. With the advent of TeX and its derivatives, mathematics stopped being
penalty copy for publishers (in part because the typesetting task was transferred
to the mathematicians doing the writing).

Nonetheless, in the 14th edition (1993) of the University of Chicago’s Manual
of Style, the manual specifically stated “Blackboard bold should be confined to the
classroom” and that authors should indicate whether that which would be written
on the board in blackboard bold should be typeset as boldface, sans serif, or some
other font.

It was the third author of these notes who later received a promise from the ed-
itors of the Manual of Style to delete that outdated point of view from subsequent

6 LECTURE 1.

editions. This came after submitting to those editors a journal paper, published by
the American Mathematical Society (which should know these things), that used
in the same paper, for three different things, the symbols Q , Q , and Q. The third
author argued that if the world’s primary math society would publish papers si-
multaneously using all three symbols, surely the curmudgeons at the U of Chicago
were just not up with the times.

Lecture 2

2.1 Methods of Proof (cont.)

Proof by cases

Theorem 2.1.1. There exist irrational numbers a,b > 0 such that ab is rational.

Proof. Consider
√

2, which is known to be irrational (we’ll actually prove this later).

Case 1:
√

2
√

2
is rational. Then we set a = b =

√
2 and we are done.

Case 2:
√

2
√

2
is irrational. Set a =

√
2
√

2
and b =

√
2. Then

ab = (
√

2
√

2
)

√
2

= (
√

2)
√

2
√

2
=
√

2
2
= 2,

which is rational. So we are done.

In either case we have found irrational numbers a,b such that ab is rational. Since
one of the two cases must hold, the Theorem must be true. �

Notice that the proof does not depend on which case holds, because we can
prove the theorem in either case. (It is actually known that Case 2 holds.) This is
how proof by cases works. You can split the hypothesis into two (or more cases)
and prove the conclusion in each case. This particular proof is nonconstructive in
that it doesn’t actually give us two numbers a and b, but merely shows us that such
numbers exist. It gives us two possibilities for the pair of values and asserts that
at least one of them is correct, but does not tell us which one. Constructive proofs
are usually preferable, but there are some theorems in math that have no known
constructive proof.

In any proof by cases, the cases must be exhaustive, that is, it must always be
that at least one of the cases holds. We will see more proofs by cases below.

7

8 LECTURE 2.

2.2 Summations

Sigma notation is shorthand for the sum over a sequence indexed by integers:

n∑
i=m

= am + am+1 + · · · + an−1 + an

The index i starts at i, and is incremented by 1 each term until it reaches n (inclu-
sive). Generalizations of the notation exist where the indices are taken from some
finite set:

•
∑

m≤i≤n
f (i)

•
∑
i ∈S

f (i)

•
n∑

i , j=0

Formally, we define summation (inductively!) as follows:

Definition 2.2.1.

n∑
i=m

f (i) =

0 (n < m)

f (n) +
n−1∑
i=m

f (i) (n ≥ m)

by definition 2.2.1, we can prove the following are valid

•
n∑

i=m
C · f (i) = C ·

n∑
i=m

f (i) for C a constant

•
n∑

i=m
f (i) +

n∑
i=m

д(i) =
n∑

i=m
[f (i) + д(i)]

•
n∑

i=m
f (i) =

n+j∑
i=m+j

f (i − j)

•
j∑

i=m
f (i) +

n∑
i=j+1

f (i) =
n∑

i=m
f (i)

2.3 Proof by induction

This method of proof is extremely useful and has many variants. It is used to prove
statements about the natural numbers. In its basic form, induction is used to prove
that some statement P(n) is true for every natural number n. The argument is in
two stages:

2.3. PROOF BY INDUCTION 9

Base case: Prove that P(0) is true. (This is often trivial to do.)

Inductive step: Prove that for any natural number n ≥ 0, if P(n) is true then P(n+1)
is true.

The base case provides the starting point for the induction, and the inductive step
provides a template for getting S to hold for the next natural number given that
you’ve established it for the current one. So if we unwind the argument, we estab-
lish that

• P(0) is true (this is the base case)

• P(1) is true (this applies the inductive step with n = 0 and the fact that we’ve
already established P(0))

• P(2) is true (by the inductive step again, this time with n = 1, as well as the
previous proof of P(1))

• etc.

The point is that once we’ve established P(n) for some value of n, then we can
conclude P(n + 1) by the inductive step. So if we prove both the base case and
the inductive step for general n, we must conclude that P(n) holds for all natural
numbers n.

A common variant is to start the induction with some natural number other
than 0 for the base case, for example, 1. So here the base case is to prove P(1) and
the induction step is to prove P(n) → P(n + 1) for any n ≥ 1. From this we conclude
that S holds for all positive integers (not necessarily for 0). Similarly, you can use
any other integer as the base case—for an arbitary example, you can prove P(17)
as the base case then prove P(k) → P(k + 1) for all integers k ≥ 17. Conclude that
P(n) holds for all integers n ≥ 17. You could also start the induction with a negative
integer if you want.

For our first example of induction, we reprove Theorem 1.2.1. Proofs by induc-
tion tend to be more formally correct and less “hand-wavy” than alternatives.

Proof of Theorem 1.2.1 by induction. We let P(n) be the statement that 2n ≥ n2, then
we wish to prove P(n) for all integers n ≥ 4. Thus we start the induction at 4 as our
base case.

Base case: Clearly, 24 = 16 = 42, so P(4) is true.

Inductive case: Here we must show for all integers n ≥ 4 that P(n) implies P(n+1).
Fix an arbitrary integer n ≥ 4, and assume that P(n) holds, i.e., that 2n ≥ n2.
(This assumption is called the inductive hypothesis.) We want to infer that

10 LECTURE 2.

P(n + 1) holds, i.e., that 2n+1 ≥ (n + 1)2. We can do this by a direct chain of
inequalities:

2n+1 = 2(2n) (sum of exponents rule)

≥ 2n2 (inductive hypothesis)

= n2 + n2

≥ n2 + 4n (since n ≥ 4, we have n2 ≥ 4n by multiplying both sides by n)

= n2 + 2n + 2n

≥ n2 + 2n + 1 (because 2n ≥ 2(4) = 8 ≥ 1)

= (n + 1)2.

�

In the proof above we set things up to make use of the inductive hypothesis. If
an inductive proof does not make use of the inductive hypothesis somewhere, it is
surely suspect.

Here is a more useful example. First, a familiar definition.

Definition 2.3.1. Let x be any integer. We say that x is even iff x = 2k for some
integer k. We say that x is odd to mean that x is not even.

Is 0 even? Yes, because 0 = 2 · 0 and 0 is an integer. Is 18 even? Yes, because
18 = 2 · 9 and 9 is an integer. Is −4 even? Yes, because −4 = 2(−2) and −2 is an
integer. Is 3 even? No, 3 is odd.

Now for the theorem we prove by induction. The proof will also use cases.

Theorem 2.3.2. For every integer n ≥ 1, either n is even or n − 1 is even.

Proof. Let P(n) be the statement, “either n is even or n − 1 is even.” We prove by
induction that P(n) holds for all integers n ≥ 1 (so we’ll start the induction at 1
instead of 0.

Base case: To see that P(1) holds, we just note that 0 = 1 − 1 and 0 is even.

Inductive step: Fix any integer n ≥ 1. We prove directly that if P(n) holds then
P(n + 1) holds. Assume that P(n) holds, i.e., that either n is even or n − 1 is
even (this is the inductive hypothesis), and consider the statement P(n + 1):
“either n + 1 is even or (n + 1) − 1 is even.”

Case 1: n is even. Then since (n + 1) − 1 = n, we have that (n + 1) − 1 is even
in this case, which implies that P(n + 1) holds, and so we are done.

2.3. PROOF BY INDUCTION 11

Case 2: n is odd, i.e., n is not even. Since the inductive hypothesis P(n) (which
we assume is true) says that either n is even or n − 1 is even, we must
have then that n − 1 is even. By the definition of evenness, this means
that n − 1 = 2k for some integer k. But then, by “high school math”,

n + 1 = (n − 1) + 2 = 2k + 2 = 2(k + 1).

Since k +1 is an integer, this shows that n+1 is even. Thus P(n+1) holds
in this case as well.

We’ve established P(n + 1) assuming P(n) in either case. Since the cases are
exhaustive, we have P(n) → P(n + 1) for all n ≥ 1.

We can now conclude by induction that P(n) holds for all integers n ≥ 1. �

A corollary of a theorem is a new theorem that follows easily from the old one.
The theorem we just proved has a corollary that strengthens it:

Corollary 2.3.3. If n is any integer, then either n is even or n − 1 is even.

Note that in the corollary, we’ve dropped the restriction that n ≥ 1.

Proof. Let n be any integer. We know that either n > 0 or n ≤ 0, and we prove the
statement in each case.

Case 1 If n > 0, then n ≥ 1 (because n is an integer), so Theorem 2.3.2 applies
directly to this case.

Case 2 If n ≤ 0, then negating both sides gives −n ≥ 0, and adding 1 to both sides
gives 1−n ≥ 1. Since 1−n is an integer at least 1 we can apply Theorem 2.3.2
to 1 − n to get that either 1 − n is even or (1 − n) − 1 = −n is even.

We then look at these two cases separately: If 1 − n is even, then 1 − n = 2k for
some integer k. Then negating both sides gives n−1 = −(1−n) = −2k = 2(−k),
and so n − 1 is even because −k is an integer. Likewise, if −n is even, then we
can write −n = 2` for some integer `. Negating both sides, we get n = −2` =
2(−`). So since −` is an integer, n is even.

So in both cases, either n is even or n − 1 is even. �

Induction on the length of a string

We will do many proofs in this course by induction on the length of a string of
symbols. The following is an example of how this might work.

Theorem 2.3.4. Let s = 1...1 be a string of n 1-bits. Then as a binary number the string s
represents 2n − 1.

12 LECTURE 2.

Proof. Base case: Let s = 1, a string of length n = 1. As a binary number, this is the
number 1 = 21 − 1.

Inductive case: Let s = 1...1 be a string of n 1-bits. By the inductive hypothesis, s
represents the integer 2n − 1. Our goal is to prove that the string s1 of n + 1
1-bits represents the integer 2n+1 − 1. Consider first the string s0, of n 1-bits
followed by a single 0. Appending the 0 to the right end of the string is
equivalent to multiplying the represented integer by 2, so s0 represents the
integer

2 · (2n − 1) = 2n+1 − 2.

Changing the 0 to a 1 is now equivalent to adding 1 to the represented integer,
so the string s1 represents

2 · (2n − 1) + 1 = 2n+1 − 2 + 1 = 2n+1 − 1,

which is exactly what we were trying to prove.
�

2.4 Proof by contradiction

The next theorem’s proof uses a new proof techique: proof by contradiction. To prove
a statement S by contradiction, you start out assuming the negation of S (i.e., that
S is false) then from that assumption you prove a known falsehood (a “contradic-
tion”), such as 0 = 1 or some such. You can then conclude that S must be true,
because its being false implies something absurd and impossible.

To prove a conditional statement “if H then C” by contradiction, you start by
assuming that the conditional is not true, i.e., that H is true butC is false, then from
that you prove a contradiction, perhaps that H is false (and so H is both true and
false, which is a contradiction). Proof by contradiction may be useful if you don’t
see any direct way of proving a statement.

Theorem 2.4.1. An integer n is odd iff n = 2k + 1 for some integer k.

Proof. The statement is a biconditional, and we prove each direction separately.

Forward direction: (For this direction, we assume that n is odd and prove that
n = 2k + 1 for some integer k.) Assume n is odd. Then n is not even, and so
by Corollary 2.3.3, we must have that n − 1 is even. So n − 1 = 2k for some
integer k (definition of being even). So we have n = (n − 1) + 1 = 2k + 1.

Reverse direction: (For this direction, we assume that n = 2k + 1 for some integer
k and prove that n is odd.) Assume that n = 2k + 1 for some integer k. Now
here is where we use proof by contradiction: We want to show that n is odd,

2.5. AND FINALLY ... 13

but we have no direct way of proving this. So we will assume (for the sake of
contradiction) that n is not odd, i.e., that n is even. (From this we will derive
something that is obviously not true.) Assuming n is even, we must have n =
2` for some integer ` (definition of evenness). Then we have 2k + 1 = n = 2`.
Subtracting 2k from both sides, we get 1 = 2` − 2k = 2(` − k). Dividing by 2
then gives

` − k =
1
2
.

But ` and k are both integers, and so ` − k is an integer, but 1/2 is not an
integer, and so they cannot be equal. This is a contradiction,1 which means
that our assumption that n is even must be wrong. Thus n is odd.

�

The next corollary says that odd times odd is odd.

Corollary 2.4.2. Let a and b be integers. If a and b are both odd, then their product ab is
odd.

Proof. Assuming a and b are both odd, by Theorem 2.4.1 (forward direction) we
can write a = 2k + 1 and b = 2` + 1 for some integers k and `. Then

ab = (2k + 1)(2` + 1)
= 4k` + 2k + 2` + 1
= 2(2k` + k + `) + 1
= 2m + 1

where m = 2k` + k + `. Since m is clearly an integer, we use Theorem 2.4.1 again
(reverse direction this time) to conclude that ab is odd. �

2.5 And Finally ...

We close this with one of the most famous proofs in mathematics. This comes from
the first problem set in Royden’s Real Analysis, a textbook for the graduate level
analysis course that virtually all mathematics doctoral students take.

The purpose of this example is simply to show that sometimes one must do so
thinking in orthogonal ways to “the usual way”.

Theorem 2.5.1. If x is a member of the empty set, then x is a green-eyed lion.

1A contradiction is often indicated symbolically by⇒⇐.

14 LECTURE 2.

Proof. What we have in more notation is

x ∈ ∅ ⇒ x is a green-eyed lion

�

Now, how would we prove or disprove this?
Well, obviously if it were possible to find an element x in the empty that is not

in fact a green-eyed lion, then this theorem would be false.
And if it is not possible to find an element x in the empty set that isn’t a green-

eyed lion, clearly the theorem is true.
But ... there is by definition no element x that is in the empty set.
So there can be no such element x that is in the empty set and for which the

property “is a green-eyed lion” fails to be true.

Lecture 3

3.1 Strong induction and the well-ordering principle

Strong induction is a kind of mathematical induction. Fix an integer c to start the
induction. To prove a that a statement P(n) holds for all integers n ≥ c, it suffices to
prove that P(n) follows from P(c), P(c + 1), P(c + 2), . . . , P(n − 1). In other words, it is
enough to prove P(n) assuming that P(k) holds for all integers k with c ≤ k ≤ n − 1.
This still requires proving P(c) outright with no assumptions, but then you can
establish P(c+1) given P(c), because you’ve just proved P(c). Then you can establish
P(c + 2) assuming both P(c) and P(c + 1) since you’ve proved both of the latter, and
so on. So strong induction gives a template to iterate the proof to all n ≥ c.

In regular induction, you can only assume P(n) to prove P(n + 1), so it appears
that regular induction is more restrictive than strong induction. It turns out that
regular induction and strong induction actually have the same proving power, that
is, any proof using strong induction can be converted into one using regular in-
duction, and vice versa. Sometimes, however, just assuming P(n) is not enough to
directly prove P(n + 1), so strong induction may work easily in some cases where
it is difficult or clunky to apply regular induction. That said, why would you ever
use regular induction when you can always use strong induction? Why, indeed;
I don’t have a good answer. Perhaps regular induction is conceptually simpler
when it can be applied.

The well-ordering principle of the natural numbers states

IfX is any nonempty set of natural numbers, thenX has a least element.
That is, there is some z in X such that z ≤ w for all w in X .

This should be pretty intuitive, and we can use it freely.

* Equivalence of strong induction and the well-ordering principle

Strong induction (starting at 0) and the well-ordering principle are actually equiv-
alent: it is easy to prove one from the other and vice versa.

15

16 LECTURE 3.

Proof of the well-ordering principle using strong induction. Let X be any nonempty set
of natural numbers. We use strong induction and proof-by-contradiction to show
that X has a least element. For every natural number n, let P(n) be the property that
n < X , i.e., that n is not an element of X . We now prove by strong induction that
P(n) is true for every natural number n, hence X must be empty, which contradicts
the fact that X is nonempty.

Base case: If P(0) were false, then that would mean that 0 ∈ X , and since 0 is the
least integer, 0 must be the least element of X , contradicting our assumption
that X has no least element. So P(0) must be true. (See how this is a mini-
proof by contradiction.)

Inductive step: Fix any natural number n and assume (inductive hypothesis) that
P(m) is true for all natural numbers m ≤ n. This means that m < X for all
natural numbers m ≤ n. Then P(n + 1) must also be true, for if P(n + 1) were
false, then n+1 would be the least element of X . Again, a contradiction. Thus
P(n + 1) is true.

To reiterate: by strong induction, we have that P(n) (equivalently, n < X) is true for
all natural numbers n, and hence X must be empty. This finishes the proof of the
well-ordering principle. �

Proof of strong induction using the well-ordering principle. Let S be any property of num-
bers. Suppose that P(0) is true, and for any natural number n, we know that if
P(0), . . . , P(n) are all true then P(n + 1) must also be true. Then we use the well-
ordering principle and proof-by-contradition to show that P(n) is true for all nat-
ural numbers n. Let X be the set of all natural numbers n such that P(n) is false,
i.e.,

X = {n ∈ N | P(n) is false}.

It suffices to show that X is empty. Suppose, for the sake of contradiction, that X is
nonempty. Then by the well-ordering principle, X must have a least element, say
n0. Since n0 ∈ X we have that P(n0) is false, so in particular, n0 , 0. Let n = n0 − 1.
Then n is a natural number, and since n0 is the least element of X , we have that
0, . . . ,n < X . Thus P(0), . . . , P(n) are all true, but P(n + 1) ⇐⇒ P(n0), which is false,
violating our assumptions about the property S . Thus X must be empty. �

3.2 Proof that
√

2 is irrational

We’ll now use the well-ordering principle together with contradiction to prove that√
2 is irrational — a fact that has been known since ancient times.

Theorem 3.2.1. There is no rational number q such that q2 = 2.

3.2. PROOF THAT
√

2 IS IRRATIONAL 17

Proof. For the sake of contradiction, let’s assume that there does exist q ∈ Q such
that q2 = 2. We can set q = a/b for integers a,b with b > 0, and so b is a natural
number, and (a/b)2 = 2. Now let X be the set of all natural numbers b > 0 such that
(a/b)2 = 2 for some integer a, i.e.,

X = {b ∈ N | b > 0 and there exists a ∈ Z such that (a/b)2 = 2 }.

By our assumption, X is nonempty, and so by the well-ordering principle, X must
have some least element n > 0 where there exists some integerm such that (m/n)2 =
2. We then have

2 =
(m
n

)2
=
m2

n2 .

Multiplying both sides by n2, we get

m2 = 2n2

And thus m2 is even. This means that m itself must be even (if m were odd, then
m2 = mm would also be odd, by Corollary 2.4.2—that’s a mini-proof by contradic-
tion). So we can writem = 2k for some integer k. Then we have

2n2 =m2 = (2k)2 = 4k2.

Dividing by 2 gives

n2 = 2k2

whence n2 is even. Thus n is even by an argument similar to the one for m. So we
can write n = 2` for some integer ` > 0. Now we have(

k

`

)2

=

(
2k
2`

)2

=
(m
n

)2
= 2

This means that ` is in the set X , because there is an integer k such that (k/`)2 =
2. But ` = n/2, which is less than n, and this contradicts the fact that n is the
least element of X . Thus our original assumption about the existence of q must be
false. �

Lecture 4

4.1 “Proofs” that fail

Theorem 4.1.1. All horses are the same color

Proof. The proof proceeds by induction:

Base case: All horses are the same color in a set with one horse.

Inductive step: We assume all horses have the same color in a set with n horses.
Take the set {h1,h2, . . . ,hn+1} and split it into two sets:

S1 = {h1, . . . ,hn}

S2 = {h2, . . . ,hn+1}

By the inductive hypothesis, all horses in S1 have the same color and all
horses in S2 have the same color. Since these two sets overlap, then all horses
have the same color.

�

Theorem 4.1.2. 1 = 2

Proof. Let a = b

a2 = ab

a2 + a2 = a2 + ab

2a2 = a2 + ab

2a2 − 2ab = a2 − ab

2(a2 − ab) = a2 − ab

2 = 1

�

19

Lecture 5

Let’s review some basic facts about sets. A set is a collection of things (its members
or elements). For any object x and set S , we write x ∈ S to mean that x is a member
of set S (equivalently, x is in S). We write x < S to mean that x is not a member of S
(x is not in S).

A set can be an essentially arbitrary collection of things, and it is completely
determined by its members. No other information is carried by the set. That is, if A
and B are sets, then A = B if all members of A are also members of B and vice versa
(i.e., they have the same members). This is worth stating formally:

Fact 5.0.1 (Axiom of Extensionality). If two sets have the same members, then they are
equal. That is, for any sets A and B, if z ∈ A ⇐⇒ z ∈ B for all z, then A = B.

Given any object x and set S , there are only two possibilities: either x ∈ S or
x < S . There is no sense in which “x appears in S some number of times” or “x
appears in one place in S and not another”, etc.; these notions are not relevant to
sets.

5.1 Describing sets

Listing the elements of a set

If the members of a set are easily listable, then we can denote the set by listing
its members, separated by commas and enclosed in braces (curly brackets). For
example,

{1, 4, 9, 16, 25} (5.1)

denotes the set whose members are the five smallest squares of positive integers.
In keeping with the notion of set above, the members can appear in any order, and
duplicate occurrences of a member don’t matter. In particular, all the following
expressions represent the same set (5.1), above:

• {1, 4, 9, 16, 25}

21

22 LECTURE 5.

• {4, 25, 16, 1, 9}

• {9, 1, 9, 9, 16, 1, 4, 25}

• etc.

In some cases — only when it is intuitively clear—the listing can omit some
elements and use an ellipsis (. . .) instead. For example, if n is a natural number,
then the set of all natural numbers between 0 and n inclusive can be written as

{0, 1, 2, . . . ,n}

or even just

{0, . . . ,n}

if the context is clear enough. Here, we are omitting some number of elements in
the listing (although they are in the set), using an ellipsis instead. A good reason
for doing this is that we may not have a specific value of n in mind (we may be
arguing something for all n), so we can’t give a completely explicit listing that
works in all cases. The ellipsis can also be used to denote infinite sets, e.g.,

N = {0, 1, 2, . . .},
Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

Definition 5.1.1. For any finite set A (i.e., A has a finite number of elements), we let
‖A‖ denote the number of elements of A. This number is always a natural number
(for finite sets) and is called the cardinality of A.

So for example, ‖{1, 4, 9, 16, 25}‖ = 5.

Set formers

If the members of a set are not so easily listable, even using ellipses (e.g., the set
has many members that don’t form a regular pattern, or the set is infinite, or there
is no easy way to express some of the set’s members), then a set former may be used
to describe the set. In general, a set former is an expression of the form{

〈expression〉 | 〈property〉
}
.

Here, 〈expression〉 is some arbitrary expression, usually involving one or more
variable names, e.g., x,y, z, . . ., and 〈property〉 is some statement about the vari-
ables used in the 〈expression〉. The set former above denotes the set whose mem-
bers are all possible values of the expression as the variables range over all possible

5.1. DESCRIBING SETS 23

values satisfying the property. The divider (|) can be read as “such that”, and the
set former itself can be read as, “the set of all 〈expression〉 such that 〈property〉.”

For example, the set (5.1) above can be denoted by the set former

{x2 | x ∈ Z ∧ 1 ≤ x ∧ x ≤ 5}

Informally, this is the set of all squares of integers in the range 1 to 5, inclusive.1

The two inequalities involving x can be contracted to the shorthand, “1 ≤ x ≤ 5”,
so the set former can be written,

{x2 | x ∈ Z ∧ 1 ≤ x ≤ 5}.

Generally, a set may have more than one set former denoting it. The set former

{x2 | x ∈ N ∧ 0 < x < 6}

denote the same set.
Any variable name introduced in the expression part of a set former is local

to the set former itself. Such a variable is called a dummy variable. The actual
name chosen for this variable does not affect the set, provided the name is used
consistently throughout the set former. For example, we can change the name x to
y in the set former above to get a new set former for the same set:

{y2 | y ∈ Z ∧ 1 ≤ y ≤ 5}.

Here is another example using two dummy variables to denote the set of ratio-
nal numbers:

Q =
{a
b
| a,b ∈ Z ∧ b , 0

}
.

We can rename each dummy variable consistently throughout to obtain another
set former for the same set:

Q =

{
x

y
| x,y ∈ Z ∧ y , 0

}
.

The dummy variables used in a set former have no meaning outside of the set
former. They are “local” to the set former. This is similar to variables local to a
function in a programming language; they cannot be accessed outside the body of
the function.

1We will use the wedge symbol (∧) to mean “and” (conjunction), the vee symbol (∨) to mean “or”
(disjunction), and the prefix ¬ to mean “not” (negation). Following standard logical convention, we
will always use “or” inclusively. That is, for statements P and Q , the statement P ∨ Q is true just
when P is true or Q is true or both, i.e., when at least one of P,Q is true. If we ever mean the exclusive
version, we will say so explicitly.

24 LECTURE 5.

Don’t confuse a set with its members!

A set is a single mathematical object that is intended to group together some num-
ber of mathematical objects into a single whole. A set should never by confused
with its elements, even if the set has only one element. {17} is the set consisting of
the number 17 as its only member, but {17} itself is not a number.

5.2 Subsets and the empty set

Definition 5.2.1. For any sets A and B, we say A is a subset of B, and write A ⊆ B, to
mean that every element of A is also an element of B. More formally, A ⊆ B iff for
all z, z ∈ A =⇒ z ∈ B.

We write A * B to mean that A is not a subset of B, in other words, there is at
least one element of A that is not an element of B.

Be careful not to confuse the two relations A ⊆ B and A ∈ B. The former says
that everything in A is also in B, whereas the latter says that the set A itself is an
element of B. Remember that the set A is a single object distinct from its members.

The empty set (sometimes called the null set) is the set with no members. (By
the Axiom of Extensionality, there can be only one such set, hence we are justified
in calling it the empty set.) It is usually denoted by the symbol ∅. Here are some
other ways to denote it:

∅ = {} = {x | x ∈ Z ∧ x < Z} = {x | 0 = 1}

For each of the set formers, the point is that the property is not satisfied by any x ,
so the denoted set has no elements. Notice that ‖∅‖ = 0, and ∅ is the only set whose
cardinality is 0.

Here are some easy properties of the subset relation:

Fact 5.2.2. For any sets A, B, and C,

1. ∅ ⊆ A (∅ is a subset of every set),

2. A ⊆ A (every set is a subset of itself, i.e., the subset relation is reflexive),

3. if A ⊆ B and B ⊆ C, then A ⊆ C (the subset relation is transitive),

4. if A ⊆ B and B ⊆ A, then A = B (the subset relation is antisymmetric).

Proving two sets equal

The last item in Fact 5.2.2 (antisymmetry of ⊆) deserves some comment. It is true
because if everything in A is in B and vice versa, then A and B have the same
elements, and so must be equal by Extensionality. We will often need to prove that

5.3. BOOLEAN SET OPERATIONS 25

two sets are equal, and we can use antisymmetry to do this. Suppose we have sets
A and B that we want to prove equal. Antisymmetry says that our proof can consist
of two subproofs: one that A ⊆ B, and the other that B ⊆ A. To prove “subsethood,”
e.g., that A ⊆ B, we show that any element of A must also lie in B. Thus we can
follow this template:

Let z be any element of A. Then blah blah blah . . . and therefore, z ∈ B.

We will see some examples of this type of proof shortly.

5.3 Boolean set operations

Definition 5.3.1. Let A and B be any sets. We define

A ∪ B := {z | z ∈ A ∨ z ∈ B},

A ∩ B := {z | z ∈ A ∧ z ∈ B},

A − B := {z | z ∈ A ∧ z < B}.

A ∪ B is called the union of A and B; A ∩ B is the intersection of A and B; A − B is the
complement of B in A (also called the complement of B relative to A).

These three operations are called Boolean because they correspond to the Boolean
connectives OR, AND, and NOT, respectively. Informally, A ∪ B is the set of all
things that are either in A or in B (or both). A ∩ B is the set of all things common to
(in both) A and B. A − B is the set of all things in A which are not in B. (It could be
read, “A except B.”)

For example, letA = {1, 3, 4, 6} and let B = {0, 2, 4, 6, 7}. ThenA∪B = {0, 1, 2, 3, 4, 6, 7},
A ∩ B = {4, 6} and A − B = {1, 3}.

It turns out that the intersection operation can be defined in terms of the other
two. This will give us our first example of a proof of set equality.

Proposition 5.3.2. For any sets A and B,

A ∩ B = A − (A − B).

Proof. To show equality, it suffices to show (1) that A ∩ B ⊆ A − (A − B) and (2) that
A − (A − B) ⊆ A ∩ B.

1. Let z be any element of A ∩ B. We show that z ∈ A − (A − B). Since z ∈ A ∩ B,
we have by definition that z ∈ A and z ∈ B. Since A − B = {x | x ∈ A ∧ x < B},
the element z (being in B) fails this criterion, and thus z < A − B. But since
z ∈ A, we then have z ∈ A − (A − B), again by definition. Since z was chosen
arbitrarily from A ∩ B, it follows that A ∩ B ⊆ A − (A − B).

26 LECTURE 5.

2. Now let z be any element of A − (A − B). We show that z ∈ A ∩ B. From
z ∈ A − (A − B) it follows by definition that z ∈ A and z < A − B. Recalling that
A−B = {x | x ∈ A ∧ x < B}, if z < A−B, then z must violate this condition, i.e.,
it is not the case that both z ∈ A and z < B. That is, either z < A (violating
the first statement) or z ∈ B (violating the second). We know by assumption
that z ∈ A, so it must be the second: z ∈ B. Thus z ∈ A and z ∈ B, so by
definition z ∈ A ∩ B. Since z is an arbitrary element of A − (A − B), it follows
that A − (A − B) ⊆ A ∩ B.

�

The preceding proof can be “condensed” to a string of equivalences involving
an arbitrary object z (using 0 to mean FALSE):

z ∈ A − (A − B) ⇐⇒ z ∈ A ∧ z < (A − B)

⇐⇒ z ∈ A ∧ ¬(z ∈ (A − B))

⇐⇒ z ∈ A ∧ ¬(z ∈ A ∧ z < B)

⇐⇒ z ∈ A ∧ (z < A ∨ z ∈ B)

⇐⇒ (z ∈ A ∧ z < A) ∨ (z ∈ A ∧ z ∈ B)

⇐⇒ 0 ∨ (z ∈ A ∧ z ∈ B)

⇐⇒ z ∈ A ∧ z ∈ B

⇐⇒ z ∈ A ∩ B.

This derivation shows the parallels between the Boolean set operations and their
logical counterparts (AND, OR, NOT). Although it may look more formal, such a
derivation is not necessarily preferable: the Boolean transformations are hard to
pick through, and justifying the steps requires some Boolean identities (De Mor-
gan’s Law and a distributive law, for example) that you may or may not know. A
more prosaic proof like the first one above is perfectly fine, and it works in cases
where no formal chain of equalities/equivalences is possible.

The next fact, given without proof, gives several basic identities satisfied by the
Boolean set operators.

Fact 5.3.3. For any sets A, B, and C,

• A ∪ B = B ∪A and A ∩ B = B ∩A. (Union and intersection are both commutative.)

• (A ∪ B) ∪C = A ∪ (B ∪C) and (A ∩ B) ∩C = A ∩ (B ∩C). (Union and intersection
are both associative. This justifies dropping parentheses for repeated applications of
the same operation, e.g., A ∪ B ∪C and A ∩ B ∩C.)

• A ∪A = A ∩A = A.

5.4. SETS OF SETS, ORDERED PAIRS, CARTESIAN PRODUCT 27

• A ∩ B ⊆ A ⊆ A ∪ B.

• A − B ⊆ A.

• A ∪ ∅ = A and A ∩ ∅ = ∅.

• A ⊆ B iff A ∪ B = B iff A ∩ B = A iff A − B = ∅.

Here is another example of a proof that two sets are equal. It is one of the
distributive laws for ∪ and ∩.

Theorem 5.3.4 (Intersection distributes over union). For any sets A, B, and C,

A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C).

Proof. First, we show that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C). Let z be any element of
A ∩ (B ∪C). Then z ∈ A, and z ∈ B ∪C, which means that either z ∈ B or z ∈ C.

Case 1: z ∈ B. Then since z ∈ A, we have z ∈ A ∩ B. Thus z ∈ (A ∩ B) ∪ (A ∩ C)
(because z ∈ (A ∩ B) ∪ (anything)).

Case 2: z ∈ C. Similarly, since z ∈ A, we have z ∈ A ∩C and so z ∈ (A ∩ B) ∪ (A ∩C).

In any case, we have z ∈ (A ∩ B) ∪ (A ∩C).
Second, we show that (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). Let z be any element of

(A ∩ B) ∪ (A ∩C). Then either z ∈ A ∩ B or z ∈ A ∩C.

Case 1: z ∈ A∩ B. Then z ∈ A and z ∈ B. Since z ∈ B, it surely follows that z ∈ B ∪C
as well. Thus z ∈ A ∩ (B ∪C).

Case 2: z ∈ A∩C. Similarly, we get z ∈ A and z ∈ C, whence it follows that z ∈ B∪C,
and so z ∈ A ∩ (B ∪C) as before.

In either case, z ∈ A ∩ (B ∪C). �

5.4 Sets of sets, ordered pairs, Cartesian product

Sets are objects themselves, so we can form sets of sets. For example, the set

{∅, {3, 4}, {3}, {4}}

is a set containing four elements, each a set of integers drawn from the set {3, 4}.
In fact, this is the set of all subsets of {3, 4}. We can forms sets whose elements are
sets whose elements are also sets of

The empty set is an actual object, despite having no elements. And so, ∅ , {∅},
because the second set is not empty (it has one member, namely ∅).

28 LECTURE 5.

Given any mathematical objects a and b, we can form the ordered pair of a and
b as a single object, denoted (a,b). Don’t confuse this with {a,b}; the latter is
sometimes called the unordered pair of a and b. In (a,b), the order matters, and
so (a,b) , (b,a) unless a = b. Duplicates also matter, so (a,a) , a. Given the ordered
pair (a,b), a is called the first coordinate of the pair, and b is the second coordinate. The
key fact about ordered pairs is that they just completely identify their coordinates
and nothing else:

Fact 5.4.1. For any ordered pairs (a,b) and (c,d),

(a,b) = (c,d) ⇐⇒ (a = c ∧ b = d).

That is, two ordered pairs are equal iff their corresponding coordinates are both
equal. This is the only relevant fact about ordered pairs. Any correct “implementa-
tion” of ordered pairs only needs to satisfy this one fact.

Definition 5.4.2. Let A and B be any sets. We define the Cartesian product of A and B
as follows:

A × B := {(a,b) | a ∈ A ∧ b ∈ B}.

For example,

{1, 2, 3} × {3, 4} = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}.

We take all combinations of an element from A with an element from B. A has three
elements, B has two elements, and their Cartesian product has 3 · 2 = 6 elements.
This should suggest to you the following fact:

Fact 5.4.3. If A and B are finite sets, then so is A × B, and

‖A × B‖ = ‖A‖‖B‖.

Notice that

{3, 4} × {1, 2, 3} = {(3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)} , {1, 2, 3} × {3, 4}

so Cartesian product is not commutative in general.
Proving the following distributive laws will be a homework exercise.

Fact 5.4.4 (Cartesian product distributes over union and intersection). For any sets
A, B, and C,

A × (B ∪C) = (A × B) ∪ (A ×C),

(A ∪ B) ×C = (A ×C) ∪ (B ×C),

A × (B ∩C) = (A × B) ∩ (A ×C),

(A ∩ B) ×C = (A ×C) ∩ (B ×C).

We must state both types of distributive law for each operation (union and
intersection), because Cartesian product is not commutative.

5.5. RELATIONS AND FUNCTIONS 29

* Ordered pairs as sets

One standard, traditional way to define an ordered pair as a set is as follows:

Definition 5.4.5. Let a and b be any mathematical objects. Then the ordered pair
of a and b is defined as

(a,b) := {{a}, {a,b}}.

It can be shown that this definition of ordered pairs satisfies Fact 5.4.1, and so
it is a legitimate way to implement ordered pairs as sets. There are other ways, but
all correct implementations must satisfy Fact 5.4.1.

Exercise: With this definition, what are (3, 4), (3, 3), and ((3, 4), 5) as sets? Write
them as compactly as possible in standard set notation (i.e., comma separated list
between braces).

5.5 Relations and functions

I will just give the basic notions here. I hope that this is mostly review from
MATH 374 at least.

Given two setsA and B, a (binary) relation fromA to B is any subset R ofA×B. That
is, R consists entirely of ordered pairs of the form (a,b) for some a ∈ A and b ∈ B.
We sometimes write aRb to mean (a,b) ∈ R. If B = A, then we say that R is a binary
relation on A. For example, ≤ is a binary relation on R, consisting of all ordered
pairs (x,y) of real numbers such that x ≤ y. (Notice that we usually write “x ≤ y”
instead of “(x,y) ∈≤”, which looks silly even though it is more formally correct.)
For another example, the equality relation “=” is the binary relation (on any set
A) consisting of the ordered pairs (x, x) for all x ∈ A. There are lots of interesting
possible types of binary relations on a set: equivalence relation, pre-order, partial
order, total order, tournament, etc. We will not need these concepts.

A relation f from set A to set B is called a function mapping A into B iff for every
a ∈ A there exists a unique (that is, exactly one) b ∈ B such that (a,b) ∈ f . If this is
the case, we may write f : A→ B, and we say that A is the domain of f and that B
is a codomain of f . Also, for every a ∈ A, we let f (a) denote the unique b ∈ B such
that (a,b) ∈ f (read this as “f of a” or “f applied to a”), and we say that f maps a to
b. If f (a) = f (b) implies a = b (for all a,b ∈ A), then we say that f is one-to-one. If for
all b ∈ B there exists a ∈ A such that b = f (a), then we can say that f maps A onto B
(rather than simply into).

30 LECTURE 5.

5.6 The pigeonhole principle

The pigeonhole principle is a useful tool in mathematical proofs. Here it is, stated
formally using functions. It is a reasonably obvious fact about mappings between
finite sets, and we will not prove it (although there is a fairly straightforward proof
by induction).

Theorem 5.6.1 (Pigeonhole Principle). LetA and B be finite sets, and suppose f : A→ B
is any function mapping A into B. If ‖B‖ < ‖A‖, then f cannot be one-to-one, that is, there
must exist distinct a,b ∈ A such that f (a) = f (b).

Less formally, however you associate to each element of a finite set A some
element of a smaller set B, you must wind up associating the same element of B
to (at least) two different elements of A. The principle gets its name from homing
pigeons: if you have m pigeons and each must fly through one of n holes, where
n < m, then two pigeons must fly through the same hole.

Here is an example adapted from Wikipedia: There must be at least two resi-
dents of Los Angeles with the same number of hairs on their heads. The average
number of hairs on a human head is about 150, 000, and it is reasonable to assume
that nobody has more than 1, 000, 000 hairs on their head. Since there are more
than 1, 000, 000 people living in Los Angeles, at least two have the same number of
hairs on their heads. That is, the function mapping each Angelino to the number
of hairs on his or her head cannot be one-to-one.

Here is another, classic example that combines the pigeonhole principle with
proof-by-cases:

Proposition 5.6.2. In any graph with at least two vertices, there exist two vertices with
the same degree.

Stated another way, at a party with n ≥ 2 people, there are always two different
people who shake hands with the same number of people at the party.

Proof. Let G be a graph with n vertices, where n ≥ 2. Then the degree of any
vertex is in the set {0, 1, . . . ,n − 1}. Let V be the set of vertices of G, and let
d : V → {0, 1, . . . ,n − 1} be the function mapping each vertex to its degree. We have
‖V ‖ = n.

Case 1: G has an isolated vertex (that is, there exists a v ∈ V such that d(v) = 0).
Then no vertex has degree n − 1, and so in fact, d(V) ⊂ {0, 1, . . . ,n − 2}. Since
the set on the right has n−1 elements, by the pigeonhole principle, there exist
vertices u , v such that d(u) = d(v).

Case 2: G has no isolated vertices. Then d(V) ⊆ {1, 2, . . . ,n − 1} and the set on
the right has n − 1 elements. Thus as in Case 1, there exist u , v such that
d(u) = d(v).

5.6. THE PIGEONHOLE PRINCIPLE 31

�

There is a stronger version of the pigeonhole principle:

Theorem 5.6.3 (Strong Pigeonhole Principle). Let A and B be finite sets with ‖A‖ =m
and ‖B‖ = n > 0, and suppose f : A→ B is any function mapping A into B. Then there
exists an element b ∈ B such that b = f (a) for at leastm/n many a ∈ A.

This version can be proved by contradiction: If each of the n points b ∈ B had
fewer than m/n many pre-images (i.e., a ∈ A such that f (a) = b), then there would
be fewer than n(m/n) =m pre-images in all. But then this would not account for all
them elements of A, each of which is a pre-image of some b ∈ B.

The strong pigeonhole principle implies the (standard) pigeonhole principle: if
m > n, then m/n > 1, and so there must be some b ∈ B with at least two pre-images
(since the number of pre-images must be a natural number).

There are versions of the pigeonhole principle involving infinite sets. Here is
one:

Theorem 5.6.4. LetA and B be sets such thatA is infinite and B is finite. For any function
f : A→ B there must exist b ∈ B such that b = f (a) for infinitely many a ∈ A.

*Application: Hall’s theorem

Your organization has a number of members. Among its members there are some
committees made up of groups of members, which may overlap (the same person
could belong to more than one committee). Each committee must have a chair, who
must be a member of the committee. To ease workloads, you don’t want the same
person to chair more than one committee (although a chair may still be a member
of multiple committees). Hall’s theorem addresses when this is possible.

Definition 5.6.5. A (finite) set system is a pair (D, C), where D is any finite set (the
“domain”) and C is any collection of subsets of D.

Think of D as the organization (i.e., the set of its members), the elements of C
being the committees.

Definition 5.6.6. Let (D, C) be a set system. A system of distinct representatives (sdr)
for (D, C) is a one-to-one mapping r : C → D such that r (S) ∈ S for all S ∈ C.

Think of r (S) as being the chair of committee S . An sdr is then a choice of chair
for each committee with no person chairing more than one committee (r is one-to-
one).

32 LECTURE 5.

Example. Let D := {1, 2, 3, 4} and C := {{1, 2}, {1, 3}, {2, 3}, {2, 3, 4}}. One possible
sdr maps

{1, 2} 7→ 1
{1, 3} 7→ 3
{2, 3} 7→ 2
{2, 3, 4} 7→ 4

There is one other sdr for this example. Find it.
Here is a set system with no sdr: D := {1, 2, 3} and C := {{1}, {1, 2}, {1, 3}, {2, 3}}.
There is one obvious case where an sdr does not exist. If some set of j many

committees comprises a total of fewer than j many members, then there are not
enough different committee members to be chairs of all these j committees. This
is the pigeonhole principle in action. In the second example above, there are four
sets containing a total of three elements, so no sdr.

Hall’s theorem2 says that this is the only case where there is no sdr.

Definition 5.6.7. A set system (D, C) has the (?)-property if, for every j > 0 and j
many (pairwise distinct) sets S1, S2, . . . , S j ∈ C, we have��S1 ∪ S2 ∪ · · · ∪ S j

�� ≥ j .

If (D, C) has an sdr, then by the pigeonhole principle it must have the (?)-
property. Hall’s theorem is the converse.

Theorem 5.6.8 (Hall’s theorem). If set system (D, C) has the (?)-property, then (D, C)
has an sdr.

Proof. We use induction3 on k := |C|. For the base case, if k = 0, then C = ∅, whence
(D, C) has an sdr, namely, the empty mapping.

Now assume k > 0 and that the theorem holds for all j < k, that is, for all j < k
and for any set system (D ′, C′) such that |C′ | = j < k, if (D ′, C′) has the (?)-property,
then (D ′, C′) has an sdr. (This is the inductive hypothesis.) We need to show that
(D, C) has an sdr. We have two cases:

Case 1: For every positive j < k and for every collection of j many sets S1, . . . , S j ∈
C, we have

|S1 ∪ · · · ∪ S j | > j

2Quite amazing, IMHO.
3strong induction, actually

5.6. THE PIGEONHOLE PRINCIPLE 33

(note the strict inequality). Then choose an arbitrary S ∈ C and some arbi-
trary x ∈ S . (S is nonempty because (D, C) has the (?)-property.) Define

D ′ := D − {x} ,

C′ := {T ∩ D ′ | T ∈ C ∧ T , S}

= {T − {x} | T ∈ C ∧ T , S} .

(D ′, C′) is a set system. Let ` := |C′ |. We have ` < k, because in the set former,
T ranges over all sets in C except for S . We next show that (D ′, C′) has the (?)-
property: Let T1, . . . ,Tj be j many arbitrary (pairwise distinct) sets in C′, for
some 0 < j ≤ `, and letT ′1, . . . ,T

′
j be elements of C − {S} such thatTi = T ′i − {x}

for all 1 ≤ i ≤ j. We have

T1 ∪ · · · ∪Tj = (T
′
1 − {x}) ∪ · · · ∪ (T

′
j − {x}) = (T

′
1 ∪ · · · ∪T

′
j) − {x} ,

and thus
|T1 ∪ · · · ∪Tj | ≥ |T

′
1 ∪ · · · ∪T

′
j | − 1 . (5.2)

By the Case 1 assumption (and the fact that 0 < j < k), we have

|T ′1 ∪ · · · ∪T
′
j | > j .

Then combining this with (5.2), we have

|T1 ∪ · · · ∪Tj | ≥ j .

Since T1, . . . ,Tj were chosen arbitrarily from C′, this establishes that (D ′, C′)
has the (?)-property. Now since |C′ | = ` < k, we can apply the inductive
hypothesis to (D ′, C′) to get that (D ′, C′) has an sdr r ′ : C′→ D ′. Now extend
r ′ to a function r : C → D by defining

r (S) := x ,

r (T) := r ′(T − {x}) (for all T ∈ C − {S}).

The function r ′ is one-to-one because it is an sdr, and since x < D ′, the func-
tion r is also one-to-one. Since r (S) = x ∈ S and r (T) ∈ T for allT ∈ C, we have
that r is an sdr for (D, C).

Case 2: Not Case 1, that is, there exists a positive j < k and j many sets S1, . . . , S j ∈
C such that

|S1 ∪ · · · ∪ S j | ≤ j .

By the (?)-property for (D, C), we actually have equality:

|S1 ∪ · · · ∪ S j | = j .

34 LECTURE 5.

Now let C′ := {S1, . . . , S j }. Then |C′ | = j < k, and the set system (D, C′) has
the (?)-property, because all the sets in C′ are also in C. Then by the inductive
hypothesis (D, C′) has an sdr r ′ : C′→ D. Let R be the range of r ′, i.e.,

R := rng(r ′) = {r (Si) | 1 ≤ i ≤ j} .

Since r ′ is one-to-one, |R | = j. Since r ′(Si) ∈ Si for all 1 ≤ i ≤ j, we have
R ⊆ S1 ∪ · · · ∪ S j . But then, R = S1 ∪ · · · ∪ S j , because both sets have size j.
Define

D ′ := D − R ,

C′′ := {T − R | T ∈ C ∧ T < C′} = {T ∩ D ′ | T ∈ C − C′} .

(D ′, C′′) is a set system, and |C′′ | ≤ |C − C′ | = k − j < k, so we can apply
the inductive hypothesis to (D ′, C′′) provided we can show that it has the
(?)-property.

Claim 5.6.9. (D ′, C′′) has the (?)-property.

We prove Claim 5.6.9 afterward.

By Claim 5.6.9 and the inductive hypothesis, (D ′, C′′) has an sdr r ′′ : C′′→ D ′.
Now we combine r ′ and r ′′ into a single sdr r for (D, C) by defining, for all
T ∈ C,

r (T) :=
{
r ′(T) if T ∈ C′,
r ′′(T − R) if T ∈ C − C′.

Observe that r is well-defined. Why? Because the domains of r ′ and r ′′ are
disjoint: for every T ′ ∈ C′ and for every T ′′ ∈ C′′, we have T ′ ⊆ R and
T ′′ ∩ R = ∅, and since both T ′ and T ′′ are nonempty, we must have T ′ , T ′′.

The maps r ′ and r ′′ are both one-to-one, and their ranges are disjoint (empty
intersection): rng(r ′) = R and rng(r ′′) ⊆ D ′ = D − R. Thus r is one-to-one. We
also have r (T) ∈ T for all T ∈ C, and so r is an sdr for (D, C).

In both cases then, (D, C) has an sdr. �

Proof of Claim 5.6.9. Let T1, . . . ,Tq ∈ C
′′ be any q many pairwise distinct sets in C′,

where q > 0. We want to show that

|T1 ∪ · · · ∪Tq | ≥ q .

By the definition of C′′, for each i with 1 ≤ i ≤ q there exists a set T ′i ∈ C − C
′ such

thatT ′i −R = Ti . We observe that the setsT ′1, . . . ,T
′
q, S1, . . . , S j are all pairwise distinct;

in particular, no T ′i can equal any Si′ because the latter is in C′ and the former is in
C − C′. So by the (?)-property of (D, C) and recalling that R = S1 ∪ · · · ∪ S j , we have

|T ′1 ∪ · · · ∪T
′
q ∪ R | = |T

′
1 ∪ · · · ∪T

′
q ∪ S1 ∪ · · · ∪ S j | ≥ q + j . (5.3)

5.7. COUNTABLE SETS 35

Also, Ti ⊆ T ′i ⊆ Ti ∪ R for all i, and so

T1 ∪ · · · ∪Tq ∪ R = T
′
1 ∪ · · · ∪T

′
q ∪ R ,

which combines with (5.3) to give

|T1 ∪ · · · ∪Tq ∪ R | ≥ q + j .

Therefore, we finally have

|T1 ∪ · · · ∪Tq | = |(T1 ∪ · · · ∪Tq ∪ R) − R | (because (T1 ∪ · · · ∪Tq) ∩ R = ∅)
= |T1 ∪ · · · ∪Tq ∪ R | − |R |

≥ q + j − j

= q ,

and we are done. �

Discussion. Here are some things to ponder:

1. Which case does the first example given earlier fall into?

2. Use the proof to recursively build an sdr for that example step by step.

3. In the k = 1 case, you have a set system of the form (D, {S}) for some S ⊆ D.
How does the size of S determine which case to apply?

4. Although Hall’s theorem is conceptually elegant, it does not suggest any effi-
cient algorithm to find an sdr (or even just determine if one exists), since one
presumably would need to exhaustively check all subsets of C to establish
whether the (?)-property holds. There is, however, an efficient algorithm for
this problem: an sdr corresponds to a sufficiently large matching in a certain
bipartite graph, which can be found by an efficient max-flow algorithm due
to Edmonds and Karp.

5.7 Countable sets

In this lecture we will talk about how to “count” the number of elements of an infi-
nite set and present a counting technique that is absolutely fundamental to think-
ing about some later things in this course.

Definition 5.7.1. We say that a set has infinite cardinality (shortened to “is infinite”
or “is an infinite set”) if the number of elements in the set is larger than any given
integer n. We say that a set has finite cardinality if there exists an integer n that is
larger than the number of elements in the set.

36 LECTURE 5.

Note that any set, under these definitions, is either of finite cardinality or of
infinite cardinality, but not both.

Fact 5.7.2. Let S = {1, 2, 3, ...}. then S has infinite cardinality.

Proof. Assume not, that is, assume that there exists an integer m that is larger than
the number of elements in the set. However, we can enumerate S as

S = {1, ...,m,m + 1, ...}

But now each of the elements j for integers 1 ≤ j ≤ m is in S , which is a total of m
elements. But we’re not done. There is at least m + 1, which is one more. So S has
more than m elements. So S cannot be of finite cardinality and must be of infinite
cardinality. �

Definition 5.7.3. We say that sets S and T have the same cardinality if there is a 1-1
and onto function f : S → T .

Definition 5.7.4. We say that a set S is countably infinite (sometimes shortened to
countable) if there is a 1-1 and onto function f : N→ S .

Theorem 5.7.5. The set N of natural numbers is countably infinite.

Proof. We let f be the identity function f (n) = n. �

Theorem 5.7.6. The set N+ of natural numbers is countably infinite.

Proof. We let f be the function f : N→ N+ such that f (n) = n + 1. �

Note that this last implies that we can “count” using either the nonnegative
integers

{0, 1, 2, 3, ...}

or the positive integers
{1, 2, 3, ...}

depending on which is more convenient.
Note also that this can be extended so that shifting up (or down) by any finite

number of places doesn’t change the countable-ness. We can show that

{3, 4, 5, ...}

is countable by shifting by 3 instead of just by 1. We shift down a finite number of
places on the “left” end of the set, and this doesn’t affect the counting because we
can always adjust with the infinite number of things on the right end of the set.

Theorem 5.7.7. The set of nonnegative even integers is a countable set.

5.7. COUNTABLE SETS 37

Proof. We map N to {0, 2, 4, 6, ...} in the obvious way:

f (n) = 2n

�

so 0→ 0, 1→ 2, 2→ 4, 3→ 6, 4→ 8, 5→ 10, ...

Theorem 5.7.8. The set of positive odd integers is a countable set.

Proof.
f (n) = 2n + 1

�

So among other things, we have two sets, all nonnegative integers and all even
nonnegative integers, each of which is infinite, one of which is properly contained
within the other, but which have the same cardinality, a concept we usually think
of as “having the same number of elements.”

This shows that a set, the set of all nonnegative integers, “has the same num-
ber of elements” (according to the notion of “the same number of elements” that
is Definition 5.7.3) as a set, the set of even nonnegative integers, that we would
normally think of as having only half as many elements. We can work the other
way as well.

Theorem 5.7.9. The set Z of all integers is a countable set.

Proof. We map from N to Z as follows.

0→ 0
1→ 1
2→ −1
3→ 2
4→ −2
5→ 3
...

�

Now, let’s pause a moment. We start with a countably infinite set, the nonneg-
ative integers.

If we add or delete one element, or five elements, or any finite number of ele-
ments, we do not change the cardinality; the set is still countably infinite.

If get rid of half the elements (e.g., all the odd numbers), the set is still countably
infinite.

38 LECTURE 5.

If we double the number of elements (e.g., to get the integers), the set is still
countably infinite.

What about an infinite number of copies of a countably infinite set?

Theorem 5.7.10. Let R = {(a,b) : a,b ∈ N} be the set of all pairs of nonnegative integers
(think of these as the points with integer coordinates in the upper right quadrant of the
x − y plane). Then R is a countable set.

Proof. Note that this is a set that extends infinitely in two dimensions:

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) ...
(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) ...
(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) ...
(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) ...
...

We enumerate these using a dovetailing approach that is a cornerstone of the the-
ory of computing (and other things as well). We enumerate upwards and to the
right along the off-diagonals.

1→ (0, 0)

2→ (0, 1)
3→ (1, 0)

4→ (0, 2)
5→ (1, 1)
6→ (2, 0)

7→ (0, 3)
8→ (2, 1)
9→ (1, 2)

10→ (3, 0)
...

�

Note that we could not count just by starting with the top row, because that’s
of infinite length, and we would never finish that row and be able to move on the
next row. Similarly, we could not count down the left column, because we would
never finish that column and be able to move on to the next column. By counting
on the diagonals, we never go down an infinite rabbit hole; although each diagonal

5.7. COUNTABLE SETS 39

is one longer than the previous diagonal, each is of finite length and we know we
will finish the diagonal.

We are going to pair the previous argument with the following theorem that
will allow us to be a little sloppy in listing things.

This also shows something interesting: the cardinality of a countable set is the
smallest cardinality of any set that is not finite. That is, there isn’t anything that is
infinite but “smaller than” countable.

Theorem 5.7.11. [The “We can be a little sloppy theorem.”] Let T be a countable set. Let
S be a subset of T that is not finite. Then S is a countable set.

Proof. If T is countable, then we can enumerate the elements of T : t0, t1, t2, t3, t4, ...
We will build the function д : N→ S perhaps as follows:

t0 ∈ S 0→ t0
t1 ∈ S 1→ t1
t2 < S skip
t3 < S skip
t4 ∈ S 2→ t4
...

Since we assumed S to be infinite, we wind up in the rightmost column with an
assignment of every nonnegative integer to an element of S . �

We can combine the dovetailing argument of Theorem 5.7.10 with the ability
to be a little sloppy in the following. It might be a little tedious to try to define a
tableau that consisted only of rational numbers in lowest terms. The ability to be a
little sloppy helps because it doesn’t require us to solve all those tedious details.

Theorem 5.7.12. The set of rational numbers Q is a countable set.

Proof. Since the rational numbers consist of all quotients a/b where a ∈ Z and b ∈
Z,b , 0, we can write the rationals in a tableau similar to the tableau for pairs of
nonnegative integers.

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) ...

(−1, 1) (−1, 2) (−1, 3) (−1, 4) (−1, 5) ...
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) ...

(−2, 1) (−2, 2) (−2, 3) (−2, 4) (−2, 5) ...
...

where the element (a,b) represents the rational number a/b, which may or may
not be in lowest terms. The rational numbers that are the elements of this tableau
clearly form a countably infinite set, enumerated by the dovetailing argument used

40 LECTURE 5.

for pairs. This set contains all the rationals, but the tableau has repeats since not
all these represent a rational number in lowest terms.

However, we can apply the “We can be a little sloppy” Theorem 5.7.11. The
set of all rational numbers in lowest terms is certainly an infinite subset of the
elements in this tableau. The set of elements in this tableau is countable. So the set
of all rational numbers is countable. �

Metaphysics

We have that the set of pairs of elements, where the elements come from a count-
able set, is a countable set. We can easily extend this to the set of triples of elements,
each of which comes from a countable set. The set of triples (a,b, c) is clearly in 1-1
correspondence with the set of pairs ((a,b), c). Since the set of pairs (a,b) is count-
able, showing that the set of pairs ((a,b), c) is countable is just a slight variation of
the proof of Thereom 5.7.10.

Indeed, for any fixed and finite n, the set of n-tuples, each of whose coordinates
comes from a countable set, is countable just by a repeated application of Thereom
5.7.10.

5.8 Uncountable sets

We have shown that several kinds of “infinite” sets that would seem to be “of
different sizes” are in fact “the same size” under our Definition 5.7.3 of “size”. At
this point it is then perfectly legitimate to inquire if there is anything that is not
countable.

The answer is yes. (Of course the answer is yes. If the answer were no, then
it’s unlikely that there would be enough “there” there in this discussion to warrant
even having the discussion.)

Theorem 5.8.1. The set of real numbers in the open interval (0, 1) is a set that is infinite
but not countably infinite.

Proof. We will prove this by contradiction. Every number r in the interval from 0.0
to 1.0 inclusive can be written as a decimal expansion

0.d0d1d2d3...

Now, let’s assume that this set is in fact countable, which means that we can
enumerate its elements as r0, r1, r2, ..., Since each of these has a decimal expansion,
we can write these as

r0 =0.d00d01d02d03...

r1 =0.d10d11d12d13...

r2 =0.d20d21d22d23...

...

5.8. UNCOUNTABLE SETS 41

Let us then construct a real number s by means of its decimal expansion, and we
construct s as

s = 0.s0s1s2s3...

where
s0 = d00 + 1 (mod 10)
s1 = d11 + 1 (mod 10)

...

. That is, si = dii + 1 if dii is a digit 0 through 8, and is 0 if dii is 9. (We don’t want to
add 1 and go from 9 to 10, because that’s two digits and not one digit.)

This is clearly a real number, defined by an infinite decimal expansion, and it’s
in the range from 0.0 to 1.0 inclusive. We claim that this real number cannot be any
of the ri that we enumerated.

And it’s not, because s differs, along the diagonal, from any of the ri that we
enumerated, in exactly the i-th digit dii .

This is a significant proof by contradiction. We assumed the negation of the
conclusion, that the interval was in fact a countable set. We enumerated the ele-
ments of the set, which we could do if it were countable.

And then we showed that there was a real number in the set of the hypothesis
that was not in our purported enumeration of elements. �

Commentary

This is the second of the three famous “diagonalization” arguments that will ap-
pear in this lecture. Like the first one, this is absolutely classic. It is probably fair
to say that no graduate student in mathematics anywhere in the world in (at least)
the last 75 years has not seen this argument. This is part of the canon.

Theorem 5.8.2. The cardinality of the interval (−1, 1) on the real line is the same as the
cardinality of the interval (0, 1).

Proof. The 1-1 function needed for the definition of equal cardinalities is

f (x) = 2x − 1.

What this function does is map 1/2 to 0, stretch the interval (1/2, 1) into the
interval (0, 1), and stretch the interval (0, 1/2) into the interval (−1, 0). �

Now we go for another of the classic basic statements of cardinality.

Theorem 5.8.3. The cardinality of the interval (−π/2, π/2) on the real line is the same as
the cardinality of the interval (0, 1).

Proof. This proof is just a variation of the “stretching” proof just completed. �

42 LECTURE 5.

Theorem 5.8.4. The cardinality of the (finite) interval (−π/2, π/2) is the same as the
cardinality of the entire real line R.

Proof. There is a classic proof by projection. Imagine we take the finite interval and
wrap it into a half circle as in the following diagram. We then project as if with a
beam of light. Any point x on the half-circle maps to exactly one point f (x) on the
real line. And since we carefully chose not to include the endpoints of the interval,
the project always hits the real line, however far out on the line that might happen
to be. (Projecting the two endpoints would of course be parallel to the real line and
thus not intersect it.) �

5.9 Why should we care?

Theorem 5.9.1. The total number of legal computer programs (in any programming lan-
guage) is countably infinite.

Proof. There are clearly infinitely many legal programs, since we can always imag-
ine just being redundant:

void main() {

5.9. WHY SHOULD WE CARE? 43

int n;
n = 1;

}

and

void main() {
int n;
n = 1;
n = 1;

}

and

void main() {
int n;
n = 1;
n = 1;
n = 1;

}

and so forth. Stupid, but legal, and infinitely many.
So let’s think of how we can enumerate the legal programs. Let’s restrict our-

selves for the moment to Python programs. Since there are only finitely many pro-
gramming languages (even if we consider all the languages in non-English script),
if we show how to demonstrate that each language has only countably many pro-
grams, then demonstrating that all together we have only countably many is just
using the argument about pairs, triples, etc.

My current keyboard has 81 keys, and I don’t think I need anything for a
Python program that doesn’t appear on my keyboard. So there are 81 possible
Python programs that consist of one character. There are 812 possible Python pro-
grams that consist of two characters, and are 813 possible Python programs that
consist of three characters, and so forth. Of course, most of these are not legal, but
we are not going to care because we have the “we can be a little sloppy” theorem.

Enumerating the possible programs by length, clearly we see that there are
only countably many such programs. Indeed, if we assigned a keyboard charac-
ter to each of the values from 0 through 80, then we would know exactly how to
enumerate the programs. Each possible program of k characters would be a k-digit
number base 81 (read left to right or right to left, depending on what convention
for reading we chose). �

Now we get to the third of the “diagonalization” methods.

44 LECTURE 5.

Theorem 5.9.2. There is a computer program P that will enumerate (i.e., list) all the
Python programs that are legal, that require no input, and that terminate (i.e., do not have
infinite loops). This program will not, however, terminate.

Proof. Clearly if we just run Python on an invalid program, it will terminate and
say the program is invalid.

And clearly if we run Python on a program that crashes, it will terminate by
crashing. That’s ok.

If we run Python on a legal program that requires no input and that runs to
completion, that’s ok.

We have to fudge details a little to talk about a program that might require in-
put. If a program asks for console input, it might (if the system is naively written)
keep polling for input. That is, the Python interpreter could keep asking the con-
sole, “is there input?”, “is there input?”, “is there input?”, “is there input?”, “is
there input?”, “is there input?”, until input appeared. It is more likely on a mod-
ern system that the interpreter would wait for an interrupt that said that input was
available (that interrupt would probably be triggered by hitting the “enter/return”
key). But let’s imagine polling.

Programs requiring input, and programs that have infinite loops, will thus run
forever.

If we are going to list all the programs that don’t run forever, then we have to be
careful not to turn Python loose in an uncontrolled way on one of those programs.

This is entirely analogous to not just enumerating all the way across the top
row of the tableau in Theorem 5.7.10.

First, we enumerate all the possible Python programs: P1, P2, P3, P4, P5, P6, ...

Now we do the following:

1. a) Run P for one step on P1.

2. a) Run P for two steps on P1.

b) Run P for one step on P2.

3. a) Run P for three steps on P1.

b) Run P for two steps on P2.

c) Run P for one step on P3.

4. a) Run P for four steps on P1.

b) Run P for three steps on P2.

c) Run P for two steps on P3.

d) Run P for one step on P4.

5. and so forth

5.10. CONSTRUCTING THE NONNEGATIVE INTEGERS 45

If the program has terminated after running the program in one of these steps,
we print its sequence number.

It doesn’t really matter what we use for “step” in this. That could be one second
of CPU time, one Python instruction, one machine instruction, etc. What matters
is that we never turn total control over to a program that could be infinite in its
execution time.

This “program” as described could readily be turned into a linux script as a
double loop. If a program is legal, requires no input, and terminates, then it will
eventually be executed for more time steps than is needed to run to completion,
and the sequence number will be printed.

�

Why is this important?

This last section has had a moderate level of fudging and imprecision about legal
versus illegal programs, input, which programming language, and so forth. But
the argument about running programs for limited time periods “along the diago-
nal” is independent of this, and this is a fundamental method used in foundations
of computing.

Much of the rest of the course will be an attempt to do this section of this lecture
in a clear, crisp way. The arguments will be more abstract, but that will be to
eliminate the fudging about keys on keyboards and such.

5.10 Constructing the nonnegative integers

In this lecture we will construct the nonnegative integers in a different way and
then prove that what we have constructed is what we would intuitively have
thought we were constructing.

Definition 5.10.1. Let f (x) : R→ R be defined as follows.

f (x) = x + 1

Definition 5.10.2. We define the nonnegative integers N as follows.

N = {0} ∪ { f (n)|n ∈ N}

Note that this is a recursive definition.
Now, clearly we have 0 ∈ N and f (0) = 1 ∈ N and f (1) = 2 ∈ N and f (2) = 3 ∈ N

and so forth.
Now let’s define another function.

Definition 5.10.3. Let д(x) : R→ R be defined as follows.

д(x) = f (f (x)) = f (x + 1) = x + 2

46 LECTURE 5.

and then we will use a recursive definition to define

Definition 5.10.4.
NE = {0} ∪ {д(n)|n ∈ N}

NO = {1} ∪ {д(n)|n ∈ N}

Theorem 5.10.5.
n ∈ NE ⇐⇒ n = 2m

for somem ∈ N.

n ∈ NO ⇐⇒ n = 2m + 1

for somem ∈ N.

Proof. First off we’re going to unwind the recursive definition. We claim that

NE = {0} ∪ {д(0)} ∪ {д(д(0))} ∪ {д(д(д(0)))} ∪ ...

This is straightforward. If n ∈ N, then n = n′ + 2 for some n′ ∈ N. And If then
n = n′ + 2 = n′′ + 4 for some n′′ ∈ N. And so forth. Since we are making things
smaller with each step, this descent cannot continue infinitely, and eventually we
get to a nonnegative value less than 2. That value has to be 0 and not 1, because
applying д increases the size of the integer, and the initial application of д to 0
skips 1.. The number of times we have to un-apply д to get back to 0 is the valuem
desired for the theorem.

The proof for NO is entirely similar.
�

Now, the whole reason for doing this argument is that the previous argument
defined the even numbers to be those that were 2m and the odd numbers to be
“everything else”, without describing what an odd number looked like. Our con-
struction has described two kinds of numbers, which we could call even and odd,
but has not yet shown that these are all the numbers we can have. That’s the point
of the next theorem.

Theorem 5.10.6. If n ∈ N then either n ∈ NE or n ∈ NO but not both.

Proof. We can unwind the recursive definition of N to be

N = {0} ∪ { f (0)} ∪ { f (f (0))} ∪ { f (f (f (0)))} ∪ ...

and then we just rearrange this list.

N ={0} ∪ { f (f (0))} ∪ { f (f (f (f (0))))} ∪ ...
∪{1 = f (0)} ∪ { f (f (1))} ∪ { f (f (f (f (1))))} ∪ ...
={0} ∪ {д(0)} ∪ {д(д(0))} ∪ ...
∪{1 = f (0)} ∪ {д(1)} ∪ {д(д(1))} ∪ ...

5.10. CONSTRUCTING THE NONNEGATIVE INTEGERS 47

�

Lecture 6

6.1 Alphabets and Strings

Definition 6.1.1. Let Σ be any nonempty, finite set. A string w over Σ is any finite
sequence w1w2 · · ·wn , where wi ∈ Σ for all 1 ≤ i ≤ n. Here, n is the length of
w (denoted |w |) and can be any natural number (including zero). For each i ∈
{1, . . . ,n}, wi is the i’th symbol of w .

The set Σ we sometimes call the alphabet, and the elements of Σ symbols or char-
acters. We depict a string by juxtaposing the symbols of the string in order from
left to right. The same symbol may appear more than once in a string. Unlike with
sets, duplicates and order does matter with strings: two strings w and x are equal
iff (1) they have the same length (say n ≥ 0), and (2) for all i ∈ {1, . . . ,n}, the i’th
symbol ofw is equal to the i’th symbol of x . That is,w = x iffw and x look identical
when written out. We will consider the symbols of Σ themselves to be strings of
length 1.

The concatenation operator

Given any two strings x and y, we can form the concatenation of x followed by y,
denoted xy. It is the result of appending y onto the end of x . Thus concatenation
is a binary operator defined on strings and returning strings. Clearly, the length of
the concatenation is the sum of the lengths of the strings:

|xy | = |x | + |y |.

Concatenation is not generally commutative, that is, it is usually the case that
xy , yx (give examples where equality holds and where equality does not hold).
Concatenation is always associative, howerver. That is, if you first concatenate
strings x and y, then concatenate the result with a string z, you get the same string
as you would by first concatenating y with z then concatenating x with the result.
In other words,

(xy)z = x(yz)

49

50 LECTURE 6.

for all strings x , y, and z. Note that the parentheses above are only used to show
how the concatenation operator is applied; they are not part of the strings them-
selves.

Associativity allows us to remove parentheses in multiple concatenations. For
example the above string can simply be written xyz. The same hold for concatena-
tions of more than three strings.

The empty string

There is exactly one string of length zero (regardless of the alphabet). This string is
called the empty string and is usually denoted by ε (the Greek letter epsilon).1 The
symbol ε is special, and it should not be considered part of any alphabet. Therefore
it never appears as a literal component of any string (contributing to the length of
the string). To be technically correct to a ridiculous extent, the empty string should
be denoted as

(it is empty after all!), but this just looks like we forgot to write something, so we
use ε as a placeholder instead.

The empty string acts as the identity under concatenation. That is, for any string
w ,

wε = εw = w .

ε is the only string with this property; when part of a concatenation, it simply
disappears.

Formalities

We will often prove facts involving strings. For example, we may wish to prove
that all strings (over a fixed alphabet Σ) have a certain property. The most useful
technique for such proofs (in our case, at least) is by induction on the length of a
string. We also use induction (or if you like, recursion) to define things involving
strings. Such definitions and proofs have the advantage of being precise and not
relying on our intuitions (which are often wrong). In this subsection, we will do
both—we will define the concatenation operator formally by induction, then use
this formal definition to (formally) prove that string concatenation is associative.
In this subsection, it would be good to ignore the last two subsections entirely and
pretend that we are starting from scratch with these concepts. For example, we
will pretend that we don’t yet know that string concatenation is associative. For

1Some books and papers use λ (lambda) to denote the empty string.

6.1. ALPHABETS AND STRINGS 51

all this, we fix an arbitrary alphabet Σ and assume that all strings we mention are
over Σ.

Inductions on strings all use the following basic idea, which describes how a
string can be built out of single symbols. Definition 6.1.2 specifies what it means
to append a symbol to a string to form a longer string, or alternatively, to break
up a nonempty string by separating out its last symbol. Since every string can be
built up from the empty string ε by repeatedly appending single symbols, Defi-
nition 6.1.2 shows us how induction on strings can be done. As a bonus, it also
inductively defines the length of a string.

Definition 6.1.2. For any string x , exactly one of the following cases holds:

1. x = ε (the empty string).

2. There exist a unique string y and a unique symbol a ∈ Σ such that x = ya.

In the first case, |x | = 0. In the second case, |x | = |y | + 1, and we say that a is the
last symbol of x and y is the principal prefix of x . We also say that x results from
appending the symbol a to y.

Case 1 above describes the base case of a string induction, and Case 2 describes
the inductive case. In the rest of this subsection, we will use Definition 6.1.2 to do
three things—first formally define string concatenation (inductively on the length
of the second string), then prove that εx = x for any string x , then finally prove that
string concatenation is associative. The goal here is not to teach you anything new
about strings, but rather to illustrate how induction on strings works.

Definition 6.1.3 defines the concatenation of two strings x andy inductively (re-
cursively) on the length of y. We denote concatenation by juxtaposing the strings
being concatenated, i.e., xy is the concatenation of x and y. (We also used juxtapo-
sition in Definition 6.1.2 to denote appending a symbol to a string. These two uses
agree if we identify a single symbol with a string of lenth 1.)

Definition 6.1.3. Given any two strings x and y, we define the concatenation xy of x
and y as follows, inductively on |y |:

Base Case: If y = ε, then xy = xε := x (that is, we define the concatenation of x with
ε to be x).

Inductive Case: For y , ε, let z be the unique string and a be the unique symbol
of Σ such that y = za (that is, a is the last symbol of y and z is the principal
prefix of y, referring to Definition 6.1.2 above). Then we define

xy = x(za) := (xz)a ,

that is, we define xy to be the result of appending a to the concatenation xz.
(So xy is the unique string whose last symbol is a and whose principal prefix
is the concatenation xz, assumed to be already defined inductively).

52 LECTURE 6.

This inductive definition is well-founded (i.e., no infinite recursion) because in
the inductive case, |z | < |y |, so we can assume (inductive hypothesis) that xz has
already been defined. You can think of xz as the result of a recursive call to the
concatenation operator with arguments x and z.

The next proposition has a straightforward proof and is used as a warm-up. It
says that ε is a left identity under concatenation. (Definition 6.1.3 already defines ε
to be a right identity.)

Proposition 6.1.4. εx = x for any string x .

Proof. We proceed by induction on |x |.

Base Case: If x = ε, then εx = εε = ε = x , the second equality by the base case of
Definition 6.1.3.

Inductive Case: If x , ε, then let a be the last symbol of x and let y be the principal
prefix of x (thus x = ya). Since |y | < |x |, we can assume for the inductive
hypothesis that εy = y. Then

εx = ε(ya) = (εy)a = ya = x .

The second equality is by the inductive case of Definition 6.1.3, and the third
equality is by the inductive hypothesis.

The proposition is thus proved. �

It is not necessary to regidly structure a proof like we did above by separating
the two cases into a list. Proofs can be more prosaic and still be precise. We prove
the next proposition in a more relaxed, conversational style. Comments in brackets
are optional and can be removed.

Proposition 6.1.5. String concatenation is associative, that is, for any strings x , y, and z,

(xy)z = x(yz) .

Proof. We proceed by induction on |z |. If z = ε [base case], then we have (xy)z =
(xy)ε = xy, and likewise, x(yz) = x(yε) = xy. Thus the proposition holds in this
case. [Note that both equalities use the base case of Definition 6.1.3.] Otherwise,
let string w and symbol a be such that z = wa [noting that |w | = |z | − 1 < |z |], and
assume (inductive hypothesis) that (xy)w = x(yw). Then

(xy)z = (xy)(wa)

= ((xy)w)a [by the inductive case of Definition 6.1.3]
= (x(yw))a [by the inductive hypothesis]
= x((yw)a) [by the inductive case of Definition 6.1.3]
= x(y(wa)) [ditto]
= x(yz) .

6.2. LANGUAGES 53

[Note that we can only use the inductive case of Definition 6.1.3 when we are ap-
pending a single symbol to a string, not for arbitrary concatenations.] This con-
cludes the proof. �

Exercise 6.1.6. Give inductive proofs of the following for all strings x , y, and z. You
may assume without proof standard facts about natural numbers.

1. |x | ≥ 0.

2. |xy | = |x | + |y |.

3. (Right Cancellation.) If xz = yz, then x = y.

4. (Left Cancellation.) If xy = xz, then y = z.

Exercise 6.1.7. The reversal of a string x (denoted xR) is the string formed by putting
the symbols of x in reverse order. (For example, (abcb)R = bcba.)

1. Give a precise, inductive definition of the reversal xR of a string x .

2. Using your definition, give proofs by induction that |xR | = |x | and that (xR)R =
x for any string x .

6.2 Languages

Given an alphabet Σ, we let Σ∗ denote the set of all strings over Σ. For our purposes,
a language over Σ is any set of strings over Σ, i.e., any subset of Σ∗.

Languages as decision problems

The simplest type of computational problem is a decision problem. A decision prob-
lem has the form, “Given an input object w , does w have some property?” For
example, these are all decision problems:

1. Given a graph G, is G connected?

2. Given a natural number n, is n prime?

3. Given an n × n matrix A with rational entries, is A invertible?

4. Given a binary string x , does x contain 001 as a substring?

5. Given integers a, b, and c, is there a real solution to the equation ax2+bx +c =
0?

6. Given an ASCII string y, is y a well-formed expression in the C++ program-
ming language?

54 LECTURE 6.

7. Given a collection of positive integers {a1, . . . ,an} and a positive integer t (all
numbers given in binary), is there some subset of {a1, . . . ,an} whose sum is
t?

A decision problem asks a yes/no question about some input object. The given
objects are instances of the problem. Those for which the answer is “yes” are called
yes-instances, and the rest are called no-instances. An algorithmic solution (or
decision procedure) to a decision problem is some algorithm or computational device
which takes an instance of the problem as input and outputs (in some way) the
correct answer (yes or no) to the question for that instance. All the examples given
above, except for the last one, are known to have efficient algorithmic solutions.
(Computational problems that are not decision problems are ones that ask for more
than just a yes/no answer. For example, “Given a natural number n, what is the
smallest prime number larger than n?”; “Given a graphG and vertices s, t ofG, find
a path from s to t in G.” We won’t consider these here, at least for a while.)

All input objects are finite, and so can be ultimately encoded as strings. For
example, natural numbers can be given by their binary representation, graphs can
be given by their adjacency matrices, texts by their ASCII strings, etc. Any object
that could conceivably be the input to an algorithm can be placed in a file of finite
length, and in the end, that file is just a finite sequence of bits, i.e., one long binary
string. For this reason, we will assume that all inputs in a decision problem are
strings over some convenient alphabet Σ.

A decision problem, then, just asks a yes/no question about every string in
Σ∗. Given any decision problem, the yes-instances of the problem form subset
of Σ∗, i.e., a language over Σ. Conversely given any language L over Σ∗, we can
form the decision problem, “Given a string w ∈ Σ∗, is w a member of L?” In this
way, languages and decision problems are interchangeable; they encode the same
information: the answer to a yes/no question for every string in Σ∗.

Put in very general, somewhat vague terms, a computational device A recog-
nizes a language L over Σ iff the possible behaviors of A when fed strings w ∈ L
as input are distinguishable from those possible behaviors of A when fed strings
w < L as input. That is, one can tell whether a string w is in L or not by looking at
the behavior of A on input w .

6.3 Finite automata

The first computational device we consider is a very simple (and very weak) one:
the deterministic finite automaton2, or DFA for short. A DFA has a finite number
of states, with a preset collection of allowed transitions between the states labeled

2“Automaton” is the singular form of the noun. The plural is “automata.”

6.3. FINITE AUTOMATA 55

with symbols from the alphabet Σ. Starting in some designated start state, the au-
tomaton reads the input string w ∈ Σ∗ from left to right, making the designated
transition from state to state for each symbol read, until the entire string w is read.
The DFA then either accepts or rejects the input w , depending only on which state
the DFA was in at the end.

That’s it. The DFA has no auxillary memory, and it can’t do calculations on the
side. We’ll define a DFA more formally later, but in the mean time, here is a simple
example of a DFA:

A DFA recognizing binary strings that contain at least one 1

q0start q1

0

1

0, 1

Several examples of automata today:

Example 6.3.1. checking that the last symbol of a binary string is 1

ends in 0start ends in 1

1

0

0

1

Example 6.3.2. checking for an even number of 0’s in a binary string

evenstart odd

0
1

0

1

Example 6.3.3. product construction for even 0’s and odd 1’s

56 LECTURE 6.

The product construction.

q00start q01

q10 q11

0

1 1

0

0

1

0

1

a0

a1

1

0

1

0

b0 b10

1
0

1

Instead of a diagram, the transitions can also be described in a more declarative
fashion:

0 1
q00 q01 q10
q01 q00 q11
q10 q11 q00
q11 q10 q01

Assuming that the table allows us to derive Σ and the full set of states, notice
that we still need to define the start and accepting states for a complete description.

Example 6.3.4. complementary automata — obtained by swapping accepting and
non-accepting states

Lecture 7

7.1 String Search

Example 7.1.1 (KMP String Search Algorithm).

7.2 DFAs, formally

Working with transition diagrams is fine, but we have to be careful to be precise.
In order to arrive at a precise specification for an automaton, let’s take a look at a
few past examples:

q0start q1

1
0

0

1

q0start q1

q2 q3

0

1

0

1

1

0 0

1

What do these figures have in common?

• States. Call the set of states Q

• An alphabet to label the transitions. Call it Σ

• One start state, call it q0 ∈ Q

• Accepting states. Call the set of accepting states F ⊆ Q

57

58 LECTURE 7.

• Transitions. We can think of a transition as a function taking a state and a
symbol and producing a new state. In other words, for q ∈ Q, s ∈ Σ, the
transition function can be defined as δ : Q × Σ→ Q

An automaton is therefore the ordered collection (or a tuple) of those 5 elements

Definition 7.2.1. An automaton is a 5-tuple 〈Q, Σ, δ ,q0, F 〉

We want to be able to talk about automata with respect to languages, but the
transition function currently only describes what to do with the input one symbol
at a time. In order to talk about strings, we need to extend the definition of the
transition function to all strings in Σ∗.

Definition 7.2.2. LetA = 〈Q, Σ, δ ,q0, F 〉 be a DFA. We define the function δ̂ : Q × Σ∗ → Q
inductively as follows: for any state q ∈ Q ,

Base case: We define δ̂ (q, ε) := q;

Inductive case: For any x ∈ Σ∗ and a ∈ Σ, we define δ̂ (q, xa) := δ (δ̂ (q, x),a).

δ̂ (q,w) is the state you wind up in when starting in state q and reading w .

Exercise 7.2.3. Check that δ̂ agrees with δ on individual symbols, i.e., strings of
length 1.

Defining computation, acceptance, language recognition.

Definition 7.2.4. Given a string w = (w1 . . .wn) and a DFA A = 〈Q, Σ, δ ,q0, F 〉, a
computation is the sequence of states (q0, δ (q0,w1), . . . , δ̂ (q0,w))

Definition 7.2.5. For a given string w , we say an automaton accepts w iff δ̂ (q0,w) ∈
F . Any given computation may either accept or reject

Now, for a given automaton, we can precisely define the language it recognizes.

Definition 7.2.6. For a given DFA A = 〈Q, Σ, δ ,q0, F 〉, the language of A is defined as

L(A) B {w ∈ Σ∗ | δ̂ (q0,w) ∈ F }

Definition 7.2.7. We say a language L is regular if L can be recognized by some DFA

More examples:

7.2. DFAS, FORMALLY 59

Example 7.2.8. nonempty binary strings that start and end with the same symbol

q0start

q1

q2

q3

q4

0

1

0

1

1

0

1

0

0

1

Example 7.2.9. binary strings of length ≥ 2 whose penultimate symbol is 1

q0start q1 q2
0, 1

1

0

0

1

Example 7.2.10. binary strings with a multiple of 5 many 0s

q2

q3

q4q0start

q1

0

1

0

1

0

1

0

1

0

1

Exercise 7.2.11. binary representations of multiples of 3

DFAs given in tabular form.

60 LECTURE 7.

7.3 *An Alternate Characterization of DFA Acceptance

Instead of using the extended transition function to define when a DFA accepts a
string, we can use the notion of an accepting path. The next lemma makes this
connection.

Lemma 7.3.1. Let D := 〈Q, Σ, δ ,q0, F 〉 be a DFA, let q, r ∈ Q be states of D, and letw ∈ Σ∗

be a string. Then δ̂ (q,w) = r if and only if there exist k ≥ 0, symbols w1, . . . ,wk ∈ Σ, and
states s0, s1, . . . , sk ∈ Q such that

• w = w1 · · ·wk ,

• s0 = q,

• sk = r , and

• for every 1 ≤ i ≤ k, si = δ (si−1,wi).

We call the sequence of states 〈s0, . . . , sk 〉 the computation path in D from state
q to state r reading w , and k is the length of this path. The path and the symbols
w1, . . . ,wk are uniquely determined, given D, q, and w . Thus we are justified in
saying, “the computation path”

Proof of Lemma 7.3.1. By induction on k = |w |:

Base Case: k = 0. Here, w = ε, so δ̂ (q,w) = q. Letting r := q in the lemma, we see
that s0 = q = r , and so 〈q〉 satisfies all the criteria of a computation path from
q to r reading w . Conversely, if 〈s0〉 is a length-0 computation path from q to
some state r reading w , then we must have δ̂ (q,w) = q = s0 = r .

Inductive Case: k > 0 and the lemma holds for strings of length k − 1. Writew =
xa for unique x ∈ Σ∗ and a ∈ Σ. First the forward implication: Let r := δ̂ (q,w)
and let s := δ̂ (q, x). Since |x | = k − 1, by the inductive hypothesis, there exists
a computation path p := 〈s0, . . . , sk−1〉 in D from q to s reading x . We have r =
δ (s,a) by definition of δ̂ , so letting sk := r we can extend p to 〈s0, . . . , sk−1, sk 〉,
which (it is readily checked) is a computation path from q to r reading w .
Conversely, suppose 〈s0, . . . , sk−1, sk 〉 is a computation path from q to some
state r reading w . We want to show that r = δ̂ (q,w). By the definition of
computation path, we have r = sk = δ (sk−1,a). It follows that 〈s0, . . . , sk−1〉 is a
computation path from q to sk−1 reading x . By the inductive hypothesis, we
then have sk−1 = δ̂ (q, x), whence

r = sk = δ (sk−1,a) = δ (δ̂ (q, x),a) = δ̂ (q, xa) = δ̂ (q,w)

as required.

7.4. PRODUCT AND COMPLEMENT CONSTRUCTIONS 61

Thus the lemma is proved. �

A computation path from the start state q0 to an accepting state is called an
accepting path. A computation path from q0 to a rejecting state is called a rejecting
path. The next theorem is an immediate corollary of Lemma 7.3.1.

Theorem 7.3.2. Let D be a DFA with alphabet Σ, and let w ∈ Σ∗ be a string. D accepts w
if and only if D has an accepting path reading w .

7.4 Product and Complement Constructions

Now that we have formal definitions of automata, we can create precise statements
(proofs) about certain automata and the languages they recognize.

Here are formal definitions of the complementation and product construction
we have used to recognize the intersection of the languages of two DFAs. This is
described formally (using slightly different notation) on page 137, if you want to
read ahead.

Definition 7.4.1. LetA = (Q, Σ, δ ,q0, F) and B = (R, Σ, ζ , r0,G) be DFAs with common
alphabet Σ.

1. We define the product of A and B as the following DFA:

A ∧ B := (Q × R, Σ,η, (q0, r0), F ×G) ,

where

η((q, r),a) := (δ (q,a), ζ (r ,a))

for all q ∈ Q , r ∈ R, and a ∈ Σ.

2. We define the complement of A as the following DFA:

¬A := (Q, Σ, δ ,q0,Q − F) .

We’ll now prove formally the two fundamental facts about these two construc-
tions. In both, we let Σ denote the common alphabet of the automata.

Theorem 7.4.2. For any DFA A, L(¬A) = L(A), where L(A) = Σ∗ − L(A).

Proof. Noticing thatA and ¬A share the same state set, transition function, and start
state, we have, for every string w ∈ Σ∗,

w ∈ L(¬A) ⇐⇒ δ̂ (q0,w) ∈ Q − F

⇐⇒ δ̂ (q0,w) < F

⇐⇒ w < L(A)

⇐⇒ w ∈ L(A) .

62 LECTURE 7.

Thus L(¬A) = L(A) as required. �

Theorem 7.4.3. For any DFAs A and B, L(A ∧ B) = L(A) ∩ L(B).

Proof. Let A, B, and A∧ B be as in the definition above. First we show by induction
on the length of a string w that the extended function η̂ behaves as one would
expect given δ̂ and ζ̂ . That is, we prove that η̂((q0, r0),w) = (δ̂ (q0,w), ζ̂ (r0,w)).

Base case: η̂((q0, r0), ε) = (q0, r0) = (δ̂ (q0, ε), ζ̂ (r0, ε)).

Inductive case: Let x be a string over Σ and let a be a symbol in Σ. Assume
(inductive hypothesis) that the equation holds for x , i.e., that η̂((q0, r0), x) =
(δ̂ (q0, x), ζ̂ (r0, x)). We show the same equation for the string xa:

η̂((q0, r0), xa) = η(η̂((q0, r0), x),a) (definition of η̂)

= η((δ̂ (q0, x), ζ̂ (r0, x)),a) (inductive hypothesis)

= (δ (δ̂ (q0, x),a), ζ (ζ̂ (r0, x),a)) (definition of η)

= (δ̂ (q0, xa), ζ̂ (r0, xa)) (definitions of δ̂ and ζ̂)

So the same equation holds for xa. By induction, the equation holds for all
strings w .

Now to prove the theorem, let w ∈ Σ∗ be any string. We have

w ∈ L(A ∧ B) ⇐⇒ η̂((q0, r0),w) ∈ F ×G (definition of acceptance for A ∧ B)

⇐⇒ (δ̂ (q0,w), ζ̂ (r0,w)) ∈ F ×G (the equation we just proved inductively)

⇐⇒ δ̂ (q0,w) ∈ F and ζ̂ (r0,w) ∈ G (definition of Cartesian product)
⇐⇒ w ∈ L(A) and w ∈ L(B) (definitions of acceptance for A and B)
⇐⇒ w ∈ L(A) ∩ L(B) (definition of set intersection)

Thus L(A ∧ B) = L(A) ∩ L(B), because they have the same elements. �

Lecture 8

8.1 Nondeterministic finite automata (NFAs)

NFAs are like DFAs, where each state can have multiple (or no!) transitions for
each symbol in the alphabet. Here are a couple of examples:

• An NFA accepting all strings that contain at least one 0 anywhere

q0start q1
0

0, 1 0, 1

0 1
→ q0 {q0,q1} {q0}

∗q1 {q1} {q1}

• An NFA accepting all strings that end in 01

63

64 LECTURE 8.

q0start q1 q2
0

0, 1

1

0 1
→ q0 {q0,q1} {q0}

q1 ∅ {q2}

∗q2 ∅ ∅

Notice that every DFA is essentially an NFA where each state has only one
transition per symbol.

Definition 8.1.1. An NFA is a 5-tuple A = 〈Q, Σ, δ ,q0, F 〉 where:

• Q is a finite set of states,

• Σ is an alphabet of input symbols,

• q0 ∈ Q is the start state,

• F ⊆ Q is the set of final or accepting states, and

• δ : Q×Σ→ P (Q) is the transition function taking pairs of a state and an input
symbol to a subset of Q . P (Q) is called the powerset of Q (and is sometimes
denoted 2Q).

Extended Transition Function

Again, to define acceptance and computation we extend the transition function
from δ : Q × Σ→ P (Q) to δ̂ : Q × Σ∗ → P (Q).

Definition 8.1.2. We define δ̂ inductively:

Basis: δ̂ (q, ε) B {q}. In other words, if we don’t read in anything we stay in the
same state.

Induction: Suppose w is of the form w = xa for some string x and some symbol a.
Also suppose δ̂ (q, x) = {p1,p2, . . . ,pk }. Let

k⋃
i=1

δ (pi ,a) = {r1, r2, . . . , rm}

Then δ̂ (q,w) B {r1, r2, . . . , rm}.

8.2. SUBSET CONSTRUCTION 65

Definition 8.1.3. Given an NFA A = 〈Q, Σ, δ ,q0, F 〉 and a string w , we say A accepts
w iff

δ̂ (q0,w) ∩ F , ∅

Definition 8.1.4. The language of an NFA A = 〈Q, Σ, δ ,q0, F 〉 is written L(A) and is
defined

L(A) B {w | δ̂ (q0,w) ∩ F , ∅}

This doesn’t really look like computation, does it? On the face of it, an NFA
doesn’t look like an actual computing device, since it “doesn’t know” which tran-
sition to make on a symbol. So what’s the point of an NFA? Best answer now:
NFAs (like a DFAs) can be used to specify languages. If you want to communicate
to someone a particular language in a precise way with a finite amount of infor-
mation, you may be able just to provide an NFA recognizing the language. This
completely specifies the language, because it pins down exactly which strings are
in the language and which are out. Often, an NFA can specify a language much
more compactly than the smallest possible DFA.

Definition 8.1.5. Two automata A and B are equivalent if L(A) = L(B)

This suggests the question: are there languages that are recognized by NFAs
but not DFAs? Surprisingly, no. We’ll prove that for any NFA N , there is a DFA
D that recognizes the same language. D may need to have many more states than
N , though. The conversion from an arbitrary NFA to an equivalent DFA is known
as the subset construction, because the states of the DFA will be sets of states of the
NFA.

8.2 Subset construction

Here we give a construction to convert some NFAs to DFAs using the example
given before

66 LECTURE 8.

An NFA accepting all strings that end in 0, 1

q0start q1 q2
0

0, 1

1

0 1
→ q0 {q0,q1} {q0}

q1 ∅ {q2}

∗q2 ∅ ∅

Start with the table of all possible subsets. If any subset contains an accepting
state then that whole subset is accepting. Only the subset containing the original
start state is the new initial state.

0 1
∅ ∅ ∅

{q0} {q0,q1} {q0}

{q1} ∅ {q2}

∗{q2} ∅ ∅

{q0,q1} {q0,q1} {q0,q2}

∗{q0,q2} {q0,q1} {q0}

∗{q1,q2} ∅ {q2}

∗{q0,q1,q2} {q0,q1} {q0,q2}

Lecture 9

9.1 Optimized/Lazy subset construction

An NFA accepting all strings that end in 0, 1

q0start q1 q2
0

0, 1

1

0 1
→ {q0} {q0,q1} {q0}

{q0,q1} {q0,q1} {q0,q2}

∗{q0,q2} {q0,q1} {q0}

A DFA accepting all strings that end in 0, 1

{q0}start {q0,q1} {q0,q2}
0

1
0

1

0

1

9.2 Proof of Correctness

The subset construction works in this case, but does it work in general? First, we
need to define formally what it is.

67

68 LECTURE 9.

We start with an NFA N = 〈Q, Σ, δN ,q0, FN 〉, and the goal is to create a DFA
D = 〈P (Q) , Σ, δD, {q0}, FD〉 such that L(N) = L(D).

Notice that in D, the set of states, the alphabet, and the start state are all “triv-
ially constructable” from the description of N (e.g. the alphabet is the same). All
thats left is to construct FD and δD :

• FD is the subsets of P (Q) such that for each S ∈ P (Q), S ∩ FN , ∅

• For each set S ∈ P (Q) and for each symbol a ∈ Σ, we define the transition

δD (S,a) B
⋃
p∈S

δN (p,a)

Theorem 9.2.1. If from an NFA N = 〈Q, Σ, δN ,q0, FN 〉 we construct the DFA D =
〈P (Q) , Σ, δD, {q0}, FD〉 by the subset construction, then L(D) = L(N).

Proof. First, we prove that the extended transition functions agree on any string w :

δ̂D ({q0},w) = δ̂N (q0,w)

First note that δ̂D : P (Q) × Σ → P (Q) and δ̂N : Q × Σ → P (Q), so the equivalence
above is well-formed (i.e. the return types agree). We prove this by induction on
the length of w .

Basis: Let w = ε. From the definitions of the transition functions,

δ̂D ({q0}, ε) = {q0} = δ̂N (q0, ε)

Induction: Assume the statement is true for |w | = n. Let |w | = n + 1. Then w = xa
where x ∈ Σ∗,a ∈ Σ. Then since |x | = n, by the inductive hypothesis

δ̂D ({q0}, x) = δ̂N (q0, x)

Call both of these sets {p1, . . . ,pk }.

By the inductive part of the definition of δ̂N we have

δ̂N (q0,w) =
k⋃
i=1

δN (pi ,a)

By the subset construction, we also have

δD ({p1, . . . ,pk },a) =
k⋃
i=1

δN (pi ,a)

9.3. AN EXAMPLE OF THE WORST CASE 69

Since δ̂D ({q0}, x) = {p1, . . . ,pk }, we can write the following chain of equalities:

δ̂N (q0,w) =
k⋃
i=1

δN (pi ,a)

= δD ({p1, . . . ,pk },a)

= δD (δ̂D ({q0}, x),a)

= δ̂D ({q0}, xa)

= δ̂D ({q0},w)

�

Now observe that D accepts iff δ̂D ({q0},w)∩FN , ∅, and N accepts iff δ̂N (q0,w)∩
FN , ∅. By the above theorem, D accepts iff N accepts.

9.3 An Example of the Worst Case

The reduction from nondeterministic to deterministic could conceivably go from
an NFA of |Q | = n states to a DFA with 2n states, since in fact all the subsets of Q
might be needed. Are there examples in which this worst case is “achieved”? Yes,
almost.

Consider the NFA below, with n + 1 states, that accepts all strings for which the
n-th from the last symbol is a 1.

A worst case example of NFA→ DFA

q0start q1 q2, ...,qn−1 qn
1

0, 1

0, 1 0, 1

The DFA version D of this automaton must be able to remember the last n sym-
bols it has read. If D has read w = a1a2...an , then w will be accepted if a1 = 1. But
if a1 , 1, and D reads an+1, then D will accept if a2 = 1, so it needs to be able to
remember that symbol.

There are 2n possible n-bit strings, so if D can be implemented with fewer that
2n states, then by the pigeonhole principle there would be two different strings
w1 = a1a2...an and w2 = b1b2...bn of n bits that took D from the start state to the
same state q.

70 LECTURE 9.

If these are two different strings, then they must differ in some bit, WLOG bit
i, so that ai , bi .

We may assume by symmetry that ai = 1 and bi = 0. Now if i = 1, then q is a
final state because D accepts w1, but also q is not a final state because D rejects w2,
and that’s a contradiction.

If i , 1, then we can add i − 1 zeros to the end of both w1 and w2. Now since D
readsw1 andw2 and moves from the start state to some state q, D must continue on
from q by reading those zeros as part of either string to arrive at some state p. That
is: D reads either w1 or w2 and moves to state q, and reads either w10...0 or w20...0
and moves to q and then on to p. But now we have ai = 1 as the n-th symbol from
the end, and p must be a final state, but we have bi = 0 as the n-th symbol from the
end, and p must be a non-final state.

Again, we have a contradiction.
We must conclude that at least 2n states are needed in order to remember n

symbols.

Lecture 10

10.1 ε-transitions

An ε-NFA (or an NFA with ε-transitions, or ε-moves), is an NFA with an additional
type of allowed transition: an edge labeled with ε. When this edge is followed, no
symbol from the input is read, i.e., the input pointer is not advanced. These ε-
transitions allow more flexibility in designing an automaton for a language.

Good example (from a book exercise): The language of all binary strings that
are either one or more repetitions of 01 or one or more repetitions of 010.

Every NFA is essentially an ε-NFA, but even ε-NFAs are no more powerful at
recognizing languages than DFAs.

Definition 10.1.1. The ε-closure of a state is defined recursively as

Basis State q is in ECLOSE(q)

Induction If state p is in ECLOSE(q), then ECLOSE(q) also contains all of δ (p, ε)

Definition 10.1.2. The ε-closure of a set of states S is defined as

ECLOSE(S) =
⋃
s ∈S

ECLOSE(s)

Example

1start

2 3

4 5

6

7

ε

ε

ε ε

a

b

ε

71

72 LECTURE 10.

10.2 ε-NFAs

Definition 10.2.1. An ε-NFA is a 5-tuple 〈Q, Σ, δ ,q0, F 〉, where δ : Q × (Σ ∪ {ε}) →
P (Q)

Again, extend the transition function:

Definition 10.2.2. The extended transition function δ̂ : Q × Σ∗ → P (Q)

Basis δ̂ (q, ε) = ECLOSE(q)

Induction Suppose w = xa for x ∈ Σ∗ and a ∈ Σ. Compute δ̂ (q,w) as follows:

1. Let δ̂ (q, x) = {p1, . . . ,pk }

2. Let
k⋃
i=1

δ (pi ,a) = {r1, . . . , rm}. Notice this is only some of the states reach-

able from all the pi ’s

3. Then δ̂ (q,w) = ECLOSE({r1, . . . , rm})

Definition 10.2.3. Given an ε-NFA N = 〈Q, Σ, δ ,q0, F 〉, the language of N is

L(N) B
{
w | δ̂ (q0,w) ∩ F , ∅

}
Example: search for “colo[u]r”

10.3 *Alternate Characterizations of NFA and ε-NFA
Acceptance

In Section 7.3, we gave an alternate characterization of DFA acceptance using ac-
cepting paths rather than the extended transition function. Here we present (briefly
and without proofs) similar ways of characterizing NFA and ε-NFA acceptance.
You should look back at that section to compare it with what follows.

Theorem 10.3.1. Let N := 〈Q, Σ, δ ,q0, F 〉 be an NFA, and let w ∈ Σ∗ be a string. Then N
acceptsw if and only if there exist k ≥ 0, symbolsw1, . . . ,wk ∈ Σ, and states s0, s1, . . . , sk ∈
Q such that

• w = w1 · · ·wk ,

• s0 = q,

• sk ∈ F , and

• for every 1 ≤ i ≤ k, si ∈ δ (si−1,wi).

10.4. ELIMINATING ε TRANSITIONS 73

We call 〈s0, s1, . . . , sk 〉, if one exists, an accepting path of N on w . Note the simi-
larity with Lemma 7.3.1 and Theorem 7.3.2. Unlike with DFAs, however, the path
may not be unique (although w1, . . . ,wk are still uniquely determined from w , and
k = |w |).

Theorem 10.3.2. Let N := 〈Q, Σ, δ ,q0, F 〉 be an ε-NFA, and let w ∈ Σ∗ be a string. Then
N accepts w if and only if there exist k ≥ 0, strings w1, . . . ,wk ∈ Σ ∪ {ε}, and states
s0, s1, . . . , sk ∈ Q such that

• w = w1 · · ·wk ,

• s0 = q,

• sk ∈ F , and

• for every 1 ≤ i ≤ k, si ∈ δ (si−1,wi).

The only difference between Theorems 10.3.1 and 10.3.2 is that in the latter,
some of the wi may be ε. This means that now the wi are not even uniquely deter-
mined by w , and in fact, we could have k > |w | (we always have k ≥ |w |).

10.4 Eliminating ε transitions

Let N = (Q, Σ, δ ,q0, F) be an ε-NFA. We define an equivalent NFA N ′ (without ε-
transitions). There are two similar but not identical ways of doing this (this is not
in the book):

Method 1

We let N ′ = (Q, Σ, δ ′,q0, F
′), where

1. For all q ∈ Q − {q0} and a ∈ Σ, define

δ ′(q,a) B ECLOSE(δ (q,a)) =
⋃

r ∈δ (q,a)

ECLOSE(r) .

2. Define

F ′ B {q ∈ Q | ECLOSE(q) ∩ F , ∅} .

3. For all a ∈ Σ, define

δ ′(q0,a) B
⋃

q∈ECLOSE(q0)

ECLOSE(δ (q,a)) .

One can prove that L(N ′) = L(N).

74 LECTURE 10.

Example 1

Consider the example to be found two chapters from now. This accepts either a
single 0 or a single 1, and nothing else. But it’s a simple example that allows the
process of removing the ε transitions to be observed.

q0start

q1

q2

q3

q4

q5

ε

ε

0

1

ε

ε

Let’s do the table for δ .

δ ε 0 1
q0 {q1,q2} ∅ ∅

q1 ∅ {q3} ∅

q2 ∅ ∅ {q4}

q3 {q5} ∅ ∅

q4 {q5} ∅ ∅

q5 ∅ ∅ ∅

Now let’s do the ε-closures.

1. q0 ∈ ECLOSE(q0)

q1 ∈ ECLOSE(q0) since q1 ∈ δ (q0, ε)
q2 ∈ ECLOSE(q0) since q2 ∈ δ (q0, ε)
So ECLOSE(q0) = {q0,q1,q2}

(This shouldn’t be surprising–ECLOSE of a state is the state together with all
the states that can be reached by only ε-moves.)

2. q1 ∈ ECLOSE(q1)

Nothing more, since there are no ε-moves from q1.
So ECLOSE(q1) = {q1}

3. q2 ∈ ECLOSE(q2)

Nothing more, since there are no ε-moves from q2.
So ECLOSE(q2) = {q2}

10.4. ELIMINATING ε TRANSITIONS 75

4. q3 ∈ ECLOSE(q3)

q5 ∈ ECLOSE(q3) since q5 ∈ δ (q3, ε)
So ECLOSE(q3) = {q3,q5}

5. q4 ∈ ECLOSE(q4)

q5 ∈ ECLOSE(q4) since q5 ∈ δ (q4, ε)
So ECLOSE(q4) = {q4,q5}

6. q5 ∈ ECLOSE(q5)

Nothing more, since there are no ε-moves from q5.
So ECLOSE(q5) = {q5}

Now we build δ ′.

δ ′(q0, 0) = ECLOSE(δ (q0, 0)) ∪ ECLOSE(δ (q1, 0)) ∪ ECLOSE(δ (q2, 0))
= ∅ ∪ {q3,q5} ∪ ∅

= {q3,q5}

δ ′(q0, 1) = ECLOSE(δ (q0, 1)) ∪ ECLOSE(δ (q1, 1)) ∪ ECLOSE(δ (q2, 1))
= ∅ ∪ ∅ ∪ {q4,q5}

= {q4,q5}

δ ′(q1, 0) = ECLOSE(δ (q1, 0)) = ECLOSE(q3) = {q3,q5}

δ ′(q1, 1) = ECLOSE(δ (q1, 1)) = ECLOSE(∅) = ∅

δ ′(q2, 0) = ECLOSE(δ (q2, 0)) = ECLOSE(∅) = ∅

δ ′(q2, 1) = ECLOSE(δ (q2, 1)) = ECLOSE(q4) = {q4,q5}

δ ′(q3, 0) = ECLOSE(δ (q3, 0)) = ECLOSE(∅) = ∅

δ ′(q3, 1) = ECLOSE(δ (q3, 1)) = ECLOSE(∅) = ∅

δ ′(q4, 0) = ECLOSE(δ (q4, 0)) = ECLOSE(∅) = ∅

δ ′(q4, 1) = ECLOSE(δ (q4, 1)) = ECLOSE(∅) = ∅

δ ′(q5, 0) = ECLOSE(δ (q5, 0)) = ECLOSE(∅) = ∅

Thus,

δ ′ 0 1
q0 {q3,q5} {q4,q5}

q1 {q3,q5} ∅

q2 ∅ {q4,q5}

q3 ∅ ∅

q4 ∅ ∅

q5 ∅ ∅

76 LECTURE 10.

We have
F ′ = {q | ECLOSE(q) ∩ {q5} , ∅}

= {q | q5 ∈ ECLOSE(q)}

= {q3,q4,q5}

The diagram could look like this.

q0start q5

q3

q4

0

0, 1

1

Example 2

Let’s look at a simplified automaton similar to that of Figure 2.19. This will accept
strings over an alphabet Σ (provided Σ contains at least the symbols A and B) that
end either in AB or BA.

q0start

q1

q4

q2

q5

q3

q6

ε

ε

Σ

A B

B A

Let’s do the table for δ .

10.4. ELIMINATING ε TRANSITIONS 77

δ ε A B

q0 {q1,q4} {q0} {q0}

q1 ∅ {q2} ∅

q2 ∅ ∅ {q3}

q3 ∅ ∅ ∅

q4 ∅ ∅ {q5}

q5 ∅ {q6} ∅

q6 ∅ ∅ ∅

Now let’s do the ε-closures.

ECLOSE(q0) = {q0,q1,q4}

ECLOSE(q1) = {q1}

ECLOSE(q2) = {q2}

ECLOSE(q3) = {q3}

ECLOSE(q4) = {q4}

ECLOSE(q5) = {q5}

ECLOSE(q6) = {q6}

And we have
F ′ = {q3,q6}

Now we build out δ ′. We have

δ ′(q0,A) = ECLOSE(δ (q0,A)) ∪ ECLOSE(δ (q1,A)) ∪ ECLOSE(δ (q4,A))
= ECLOSE({q0}) ∪ ECLOSE({q2}) ∪ ∅

= {q0,q1,q4} ∪ {q2} ∪ ∅

and

δ ′(q0,B) = ECLOSE(δ (q0,B)) ∪ ECLOSE(δ (q1,B)) ∪ ECLOSE(δ (q4,B))
= ECLOSE({q0}) ∪ ECLOSE({q2}) ∪ ECLOSE({q5})

= {q0,q1,q4} ∪ ∅ ∪ {q5}

The other transitions to nonempty sets are:

δ ′(q1,A) = ECLOSE({q2} = {q2}

δ ′(q2,B) = ECLOSE({q3} = {q3}

δ ′(q4,B) = ECLOSE({q5} = {q5}

δ ′(q5,A) = ECLOSE({q6} = {q6}

From this one can produce a diagram:

78 LECTURE 10.

q0start

q2

q1

q4

q5

q3

q6

A,B

A

A,B

A,B

B

A

B

B

A

Method 2

We construct N ′ via the algorithm below. In the algorithm, the ε-NFA N ′ is initially
N and is then modified in stages. Each modification leaves the language recog-
nized by N ′ the same, and hence the output N ′ at the end is equivalent to N .

1. Set N ′ := N (that is, all components of N ′ are equal to those of N).

2. WHILE there exist states q ∈ Q − F and r ∈ F such that r ∈ δ (q, ε) DO

a) F := F ∪ {q} (that is, add q to F)

3. WHILE there exist q, r , s ∈ Q and a ∈ Σ such that r ∈ δ (q, ε) and s ∈ δ (r ,a) but
s < δ (q,a) DO

a) δ (q,a) := δ (q,a) ∪ {s} (that is, add s to δ (q,a))

4. For all q ∈ Q , set δ (q, ε) := ∅ (that is, remove all ε-transitions from N ′)

5. Return N ′ (N ′ is essentially an NFA)

*Notes on correctness

• Step 2 can iterate at most |Q | many times, as each iteration increases the size
of F by 1.

10.4. ELIMINATING ε TRANSITIONS 79

• No iteration in Step 2 causes N ′ to reject a string that it previously accepted.

• No iteration in Step 2 adding a state q to F causes N ′ to accept a string that it
previously rejected, because any accepting path ending at q can be extended
by a single ε-transition to a state already previously in F .

• Step 3 can iterate at most |Q |2 |Σ| times, as it adds a new transition without
taking any away.

• No iteration in Step 3 causes N ′ to reject a string that it previously accepted.

• No iteration in Step 3 adding a state s to δ (q,a) causes N ′ to accept a string that
it previously rejected, because any accepting path using the new transition
q

a
7→ s can be rerouted to use the previously existing transitions q

ε
7→ r

a
7→ s

instead, for some state r .

• Step 4 does not cause N ′ to accept any string that it previously rejected.

• Step 4 does not cause N ′ to reject any string that it previously accepted: Letw
be any string previously accepted by N ′ (after Step 3 but before Step 4), and
letw = w1 · · ·wn , where eachwi is in Σε and p := 〈s0, . . . , sn〉 is a corresponding
accepting path, as in Theorem 10.3.2. We can remove all the ε-transitions
from p to obtain an accepting path of w with no ε-transitions as follows:

– If the last symbol wn = ε, then we can just remove that transition: since
sn ∈ F and sn ∈ δ (sn−1, ε), we must also have sn−1 ∈ F by Step 2. Thus
〈s0, . . . , sn−1〉 is an accepting path of w = w1 · · ·wn−1. Repeat this until
there are no more ε-transitions at the end of p.

– After the above, if there are still any ε-transitions in p, then there must be
one that is immediately followed by a non-ε-transition. That is, wi = ε
and wi+1 = a for some i ≥ 1 and a ∈ Σ. Then 〈s0, . . . , si−1, si+1, · · · , sn〉
is an accepting path for w = w1 · · ·wi−1wi+1 · · ·wn , because si ∈ δ (si−1, ε)
and si+1 ∈ δ (si ,a) and so by Step 3 we have si+1 ∈ δ (si−1,a). Repeat this
until there are no more ε-transitions in p.

Comparing the Two Methods

Methods 1 uses the ε-closure operation to “push forward” non-ε-transitions through
ε-transitions. Method 2 “pulls back” accepting states and non-ε-transitions through
ε-transitions. Method 1 results in an NFA with the same set of accepting states as
the original ε-NFA, but Method 2 may expand the size of the accepting state set
considerably.

80 LECTURE 10.

10.5 Regular expressions

Used to denote (specify) languages. Syntax. Example: Same as the ε-NFA example
above.

Regexp for short.
Metasyntax
Uses in Unix/Linux, Perl, text processing, search engines, compilers, etc.
Regular expression syntax and semantics are defined recursively.

Regular expression syntax

Fixing an alphabet Σ, we define a regular expression (regexp) over Σ as either

• ∅

• a (for any symbol a ∈ Σ),

• R + S (for any regexps R and S over Σ),

• RS (for any regexps R and S over Σ), or

• R∗ (for any regexp R over Σ).

The first two types of regexps are called the atomic expressions. (The other types are
called nonatomic.) The + operator is called union, and the · (juxtaposition) opera-
tor is called concatenation. These are both binary infix operators and are associative.
The unary postfix ∗ operater is called Kleene closure or Kleene star (named after the
mathematician Stephen Kleene, one of the founders of theoretical computer sci-
ence). We can use parentheses freely to group expressions, and may sometimes
drop them assuming the following precedence rules: Kleene star is highest prece-
dence, followed by concatenation, followed by union (lowest precedence).

Regular expression semantics

A regexp R over some alphabet Σ may or may not match (or equivalently, be matched
by) a string w ∈ Σ∗ according to the following recursive rules, which mirror the
recursive syntax rules for building up regexps given before:

• The regexp ∅ does not match any string.

• Any regexp a (where a ∈ Σ) matches the string a (of length one) and nothing
else.

• If R and S are regexps, then R + S matches exactly those strings that either
match R or match S (or both).

10.6. BUELL’S ADDITIONAL NOTES 81

• If R and S are regexps, then RS matches exactly those strings of the form xy
for some string x matching R and some string y matching S .

• If R is a regexp, then R∗ matches exactly those strings w of the form w1 · · ·wn ,
where n is a natural number and each wi matches R (that is, w is the concate-
nation of zero or more strings, each one matching R).

Note that in the last bullet, n could be 0, in which case w = ε. This means that
R∗ always matches ε, regardless of R. In particular, the regexp ∅∗ matches the empty
string ε and nothing else. It is thus natural to use ε as shorthand for the regexp ∅∗,
and pretend that this is another atomic regexp.

Definition 10.5.1. For every regular expression R over Σ, the language of R, denoted
L(R), is the set of all strings over Σ that are matched by R.

10.6 Buell’s additional notes

Example

Let
L = {00, 011}

and
M = {001, 111, 1011}.

Then
L +M = {00, 011, 001, 111, 1011}

and
LM = {00|001, 00|111, 00|1011, 011|001, 011|111, 011|1011},

where the vertical stroke shouldn’t be there in fact but is there as a guide to what
the concatenations are.

The Kleene closure is probably best looked at as the union of each of the con-
catenations of lengths 0, 1, 2, ...

N = {0, 1, 01}

N 0 = {ε}

N 1 = N = {0, 1, 01}

N 2 = {00, 01, 001, 10, 11, 101, 010, 011, 0101}

N ∗ = N 0 ∪ N 1 ∪ N 2 ∪ ...

Note that in doing the N i we can get repetitions that get discarded because we
are taking a set union. The 01 string, for example, is already there in N but is then
created again by concatenation in N 2.

82 LECTURE 10.

Proving all things equivalent

We have so far introduced DFAs, NFAs, ε-NFAs, and now regular expressions
(REs). Our goal is to show that all of these are the same thing in that each can
be converted into the other and the language accepted/generated by one is ac-
cepted/generated by an instance of any of the others.

Example

ε-NFA

RE

NFA

DFA

PPP P

B

TT

This represents what we know or can prove, with T meaning “trivial” and P
meaning that we have or will prove the connection.

Any DFA is trivially an NFA and thus trivially an ε-NFA.
We have proved that an NFA can be reduced to an equivalent DFA.
The book proves that a DFA can be reduced to an RE.
We will prove that an ε-NFA can be reduced to a RE.

Lecture 11

11.1 Regex Examples

Precedence rules for regular expressions

• Parentheses supersede all precedence

• Kleene star is of the highest precedence

• Concatenation is lower

• union (or +) is lowest

Example: 01∗ + 0∗1 = (0(1∗)) + ((0∗)1)
More examples of regular expressions: more metasyntax. Floating point con-

stants, identifiers, HTML tags, etc.

83

Lecture 12

12.1 Transforming regular expressions into ε-NFAs

Definition 12.1.1. We will say that an ε-NFA N = (Q, Σ, δ ,q0, F) is clean iff

1. it has exactly one final state, and this state is not the start state (that is, F = {r }
for some state r , q0),

2. there are no transitions entering the start state (that is, q0 < δ (q,a) for any
q ∈ Q and a ∈ Σ ∪ {ε}), and

3. there are no transitions out of the final state (that is, for r ∈ F as above, we
have δ (r ,a) = ∅ for all a ∈ Σ ∪ {ε}).

For every ε-NFA N = (Q, Σ, δ ,q0, F), we can construct an equivalent clean ε-NFA
N ′ as follows:

1. Add a new start state q′0 < Q with a single ε-transition from q′0 to q0 (making
q0 a non-start state of N ′).

2. Add a new final state r < Q ∪ {q′0} with ε-transitions from each final state of
N to r .

3. Make all the final states of N non-final states of N ′.

Every regexp has an equivalent ε-NFA.

Theorem 12.1.2. For every regular expression R there exists an ε-NFA N such that L(N) =
L(R).

This theorem is proved by explicit construction, following the recursive defini-
tion of regexp syntax, above.

Proof.

Basis: Three base cases, one for each atomic regular expression.

85

86 LECTURE 12.

1. Nothing (∅)

start

2. The empty string

start
ε

3. A symbol

start
a

Induction: The inductive hypothesis assumes we have (clean) ε-NFAs for the subex-
pressions R and S.

1. R + S . Assume we have automata for R and S . Convert these into clean
automata R′ and S ′ respectively. Connect the final states in R′ and S ′ to
a single final state, and change the final states in R′ and S ′ to non-final
states. Finally, connect them with a single start state as shown:

start

ε

ε

ε

ε

R′

S ′

2. RS

12.1. TRANSFORMING REGULAR EXPRESSIONS INTO ε-NFAS 87

start
εR′ S ′

3. R∗

start
ε

ε

ε

εR′

Possible example from the book: (0 + 1)∗1(0 + 1)

�

Example

Step 1: (0 + 1)

q0start

q1

q2

q3

q4

q5

ε

ε

0

1

ε

ε

Step 2: (0 + 1)∗

88 LECTURE 12.

q−1start q0

q1

q2

q3

q4

q5 qF
ε

ε

ε

ε

0

1

ε

ε

ε
ε

Step 3: 1(0 + 1)

q−2start q−1 q0

q1

q2

q3

q4

q5 qF
1 ε

ε

ε

0

1

ε

ε

ε

Lecture 13

13.1 Transforming ε-NFAs into regular expressions

Note that the book goes from DFAs to regexps. Starting with ε-NFAs is no harder,
so we’ll do that.

We will essentially do the state elimination method. We first define an NFA/regexp
hybrid:

Definition 13.1.1. Given an alphabet Σ, let REGΣ be the set of all regular expres-
sions over Σ. A generalized finite automaton (GFA) with alphabet Σ is a 5-tuple
(Q, Σ, δ ,q0, F), where

• Q is a nonempty, finite set (the state set),

• δ is a function mapping ordered pairs of states to regular expressions over Σ,
that is, δ : Q ×Q → REGΣ,

• q0 is an element of Q (the start state), and

• F is a subset of Q (the set of final or accepting states).

Example from the quiz. Give transition diagram and tabular form. Other pos-
sible examples: multiples of 3 in binary, binary strings that don’t contain 010 as
a substring (start with a DFA to find 010, complement it, then convert to regular
expression).

Define reachability of r from q on w . Define acceptance.

Definition 13.1.2. Let G = (Q, Σ, δ ,q0, F) be a GFA and let w ∈ Σ∗ be a string. For
any states q, r ∈ Q , we say that r is reachable from q reading w iff there exist n ∈ N,
states s0, s1, . . . , sn ∈ Q and strings w1, . . . ,wn ∈ Σ

∗ such that

1. w = w1 · · ·wn ,

2. s0 = q and sn = r , and

89

90 LECTURE 13.

3. for all 1 ≤ i ≤ n, the string wi matches the regexp δ (si−1, si) (that is, wi ∈

L(δ (si−1, si))).

We say that G accepts w iff there exists a final state f ∈ F that is reachable from
the start state q0 reading w . We let L(G) denote the language of all strings accepted
by G.

Given a clean ε-NFA N = (Q, Σ, δ ,q0, { f }), we first convert it into an equivalent
GFA G0 = (Q, Σ, δ0,q0, { f }) by “consolidating edges” as follows: For every pair
of states q, r ∈ Q , let {a1, . . . ,ak } be the set of all elements a of Σ ∪ {ε} such that
r ∈ δ (q,a). Then define

δ0(q, r) := a1 + · · · + ak .

(If the set is empty, then set δ0(q, r) := ∅.) Thus several edges of N from q to r turn
into one edge labeled with the union of the labels from N . If there are no edges,
then we have an edge labeled with ∅. One can prove by induction on the length of
a string that N and G0 are equivalent, i.e., L(N) = L(G0).

G0, is the first of a sequence of equivalent GFAs G0,G1, . . . ,G` where we obtain
Gi+1 from Gi by (i) removing and bypassing an intermediate state of Gi (i.e., a state
that is not the start state or the final state), then (ii) consolidating edges. Formally,
for each 0 ≤ i < `, if Gi = (Qi , Σ, δi ,q0, { f }) has an intermediate state, then we
choose such a state q ∈ Qi − {q0, f } (it doesn’t matter which) and define Gi+1 :=
(Qi+1, Σ, δi+1,q0, { f }), where

• Qi+1 = Qi − {q} and

• for all states r , s ∈ Qi+1, letting R := δi (r ,q), S := δi (q,q), T := δi (q, s), and
U := δi (r , s), define

δi+1(r , s) := U + RS∗T .

The regexp U allows you to traverse the existing edge in Gi directly from r to s,
and RS∗T allows you to move directly from r to s reading a string that would have
taken you through q (which is no longer there). The RS∗T results from bypassing q,
and the union with U is the edge consolidation.

NOTE: you are allowed to simplify any expressions you build above, i.e., re-
place them with simpler, equivalent regexps. For example, if there is “no” self-loop
at q (that is, S = ∅), then

U + RS∗T = U + R∅∗T = U + RεT = U + RT ,

and so you can set δi+1(r , s) := U + RT . Similarly, if U = S = ∅, then you can set
δi+1(r , s) := RT .

13.1. TRANSFORMING ε-NFAS INTO REGULAR EXPRESSIONS 91

Iterate the Gi 7→ Gi+1 step above until you get a GFA G` with no intermediate
states. Then since N was clean and we never introduced any edges into q0 or out
of f , the table for G` looks like

q0 f

q0 ∅ E

f ∅ ∅

where E is some regexp over Σ [draw the transition diagram]. Clearly, L(G`) = L(E),
and so

L(N) = L(G0) = L(G1) = · · · = L(G`) = L(E) ,

making E equivalent to N .
Notice how we could choose an intermediate state arbitrarily going from Gi

to Gi+1. Different choices of intermediate states may lead to syntactically different
final regexps, but these regexps are all equivalent to each other, since they are all
equivalent to N .

Theorem 13.1.3. Let L be any language over an alphabet Σ. The following are equivalent:

1. L is denoted by some regular expression.

2. L is recognized by some GFA.

3. L is recognized by some ε-NFA.

4. L is recognized by some clean ε-NFA

5. L is recognized by some NFA.

6. L is recognized by some DFA.

If any (all) of these cases hold, we say that L is a regular language. (There are
even more equivalent ways of characterizing regular languages, including gram-
mars.)

We’ve shown all the nontrivial cases of the theorem. The trivial ones are DFA
7→ NFA 7→ ε-NFA, clean ε-NFA 7→ ε-NFA, and regexp 7→ GFA. You should teach
yourself how these trivial transformations work.

Corollary 13.1.4. For any two regular expressions R and S over an alphabet Σ, there
exist regular expressions over Σ for the complement L(R) of L(R) and for the intersection
L(R) ∩ L(S).

92 LECTURE 13.

Proof. For the complement, convert R into an equivalent DFA A (via an ε-NFA
and/or an NFA), then build the complementary DFA ¬A (swapping final and non-
final states), then convert ¬A back into an equivalent regular expression. For the
intersection, convert R and S into equivalent DFAs A and B, respectively, then use
the product construction to build the DFA A ∧ B for the intersection, then convert
A ∧ B back into an equivalent regular expression. �

These constructions for the complement and intersection may not be very con-
cise. The regexps you get as a result may be significantly more complicated than
the originals.

Example

Let’s do an example of transforming an NFA into a RE.
Consider the NFA accepting all strings that end in 01.

An NFA accepting all strings that end in 01:

q0start q1 q2
0

0, 1

1

We can make this into a clean ε-NFA.

A clean ε-NFA accepting all strings that end in 01:

qIstart q0 q1 q2
ε 0

0, 1

1

Now we construct G0. For this we will build the transition function δ0. (We
will leave blank the boxes in all the following tables if what would go there is the
empty set ∅, so as not to clutter up the presentation with things that don’t matter.)
We have in the sets that prepare us for defining δ0 the following:

I 0 1 2
I ε

0 {0, 1} {0}
1 {1}
2

and thus

13.1. TRANSFORMING ε-NFAS INTO REGULAR EXPRESSIONS 93

δ0 I 0 1 2
I ε

0 0 + 1 0
1 1
2

We now need to remove states q0 and q1. Let’s do the second one first.
We get Q1 = {I , 0, 2} and let’s table the U , R, S , and T , and the final result:

r → s r → q1 q1 → q1 q1 → s
r , s U R S T Result
I,I
I,0 ε ε
I,2 1
0,I 0
0,0 0 + 1 0 0 + 1
0,2 0 1 01
2,I
2,0
2,2 1

This gives a transition table

δ1 I 0 2
I ε

0 0 + 1 01
2

Now we remove q0.

r → s r → q0 q0 → q0 q0 → s
r , s U R S T Result
I,I ε 0 + 1
I,2 ε 0 + 1 01 (0 + 1)∗01
2,I 0 + 1
2,2 0 + 1 01

This gives a final transition table

δ2 I 2
I (0 + 1)∗01
2

and this is the regular expression we actually might expect.

Lecture 14

14.1 Grammars, Type 3 grammars, and regular languages

We have now dealt with DFAs, NFAs, ε-NFAs, and regular expressions, and we
have shown that they were all really the same thing, in that the languages accepted
by one of these will be accepted by some instance of every other one of these.

It’s time to finish that argument with one more variation on the same theme.

Definition 14.1.1. A grammar G is a quadruple

G = (VN ,VT , P, S)

where

• VN is a finite set of variable symbols

• VT is a finite set of terminal symbols

• P is a finite set of productions

• S is a start symbol and is an element of VN

We assume that VN ∩VT = ∅.
We write VN ∪VT = V .
The productions are expressions of the form

α → β

where α is a string in V + and β is a string in V ∗.
If we have a production

α → β

and we have strings γ and δ , then we can write

γαδ
G
=⇒ γ βδ

95

96 LECTURE 14.

to indicate that γ βδ can be directly derived from γαδ by the application of a single
production of G.

We can (in the usual and now obvious way) extend this to a notation

α1
G∗
=⇒ αn

if we have a sequence of direct derivations

α1
G
=⇒ α2

G
=⇒ ...

G
=⇒ αn

Definition 14.1.2. The language generated by G, written L(G), is

L(G) = {w |w ∈ V ∗T and S
G∗
=⇒ w}

Example

Consider the grammar with

1. VN = {S}

2. VT = {0, 1}

3. P = {S → 0S1, S → 01}

We have only one variable, S . We have only two terminals, 0 and 1.
We have only the two productions.
This means that the only things we can generate are

S → 0S1→ 00S11→ ...→ 0n−1S1n−1 → 0n1n

by applying the first production n − 1 times and then the second production once.
So that’s what L(G) is:

L(G) = {0n1n}

Example

Consider the grammar with

1. VN = {S,B,C}

2. VT = {a,b, c}

3. Productions

a) S → aSBC

b) S → aBC

14.1. GRAMMARS, TYPE 3 GRAMMARS, AND REGULAR LANGUAGES 97

c) CB → BC

d) aB → ab

e) bB → bb

f) bC → bc

g) cC → cc

It is not that hard to see that for n ≥ 1, any string anbncn is in the language gener-
ated by this grammar.

It’s somewhat harder (but it can be done) to show that these are all the strings
in the language.

Definition 14.1.3. A grammar as defined above is a Type 0 grammar.

Definition 14.1.4. Given a grammar G, if it is the case that for every production
α → β in P we have |α | ≤ |β |, then we say that the grammar is a Type 1 or context
sensitive grammar.

Definition 14.1.5. Given a grammar G, if it is the case that for every production
α → β in P we have that

• α is a single variable;

• β is any string other than ε.

then we say that the grammar is a Type 2 or context free grammar.

Definition 14.1.6. Given a grammarG, if it is the case that every production in P is
of the form

• A→ aB for a a terminal and variables A,B

• or A→ a for a a terminal and A a variable

then we say that the grammar is a Type 3 or regular grammar.

Before we go to the next major theorem, we need to fudge a little and extend
our definition, but in order to show that we haven’t really changed the languages
that are generated, we will need the following.

Theorem 14.1.7. Let G = (VN ,VT , P, S) be a Type 1, 2, or 3 grammar. Then there exists
a Type 1, 2, or 3 grammar (as appropriate) G1, for which L(G) = L(G1), and such that the
start symbol of G1 does not appear on the right hand side of any production of G1.

98 LECTURE 14.

Proof. We choose a new symbol S1 not inVN or inVT . We letG = (VN∪{S1},VT , P1, S1).
And we let P1 be the set of all productions in P plus productions S1 → α for any
production S → α that is in P .

We claim that L(G) = L(G1).
Suppose that we have a derivation in G

S
G∗
=⇒ w

and wlog assume the first production used in this derivation is

S → α

Then we really have

S → α
G∗
=⇒ w

By the construction of G1, we have a production

S1 → α

in G1, which means that we have

S1
G1
=⇒ α

And since all the productions from G are also in G1, we have a derivation

S1
G1
=⇒ α

G∗1
=⇒ w

so w ∈ L(G1).
This shows that L(G1) ⊆ L(G).
To go the other way around, we assume we have some w ∈ L(G1). Then we

have a derivation

S1
G∗1
=⇒ w

There has to be a first production

S1 → α

used in this derivation, so we have

S1
G1
=⇒ α

G∗1
=⇒ w

We just argue in the other direction. That first production in G1 comes from a
production

S → α

14.1. GRAMMARS, TYPE 3 GRAMMARS, AND REGULAR LANGUAGES 99

in G. And since these are the ONLY productions in G1 that involve S1, the second
part of this derivation

α
G∗1
=⇒ w

cannot involve any productions that use the symbol S1, which means that all the
productions correspond to productions in G and that we have

α
G∗
=⇒ w

We piece these two together to get

S
G
=⇒ α

G∗
=⇒ w

and thus that w ∈ L(G).
So L(G) ⊆ L(G1).
The containment now works both ways, so the languages are the same set.
The Type 1-ness, Type 2-ness, and Type 3-ness, as appropriate, is obviously

maintained. �

Now we can expand the definition of Type 1, 2, and 3 grammars to permit
productions of the form

S → ε

PROVIDED that S does not appear on the RHS of any production.
If we do this, then we can argue that if a language L is generated by a Type 1,

2, or 3 grammar, then there is a grammar of the appropriate type that generates
L ∪ {ε} and there is a grammar of the appropriate type that generates L − {ε}, and
this is found by applying the previous theorem if necessary and then either adding
or deleting a production S → ε.

The use of the term “regular” should be a major warning indicator that the next
theorem is coming ...

Theorem 14.1.8. 1. Let G = (VN ,VT , P, S) be a regular grammar. Then there exists an
NFA M such that L(G) = L(M).

2. Let D = (Q, Σ,q0,) be a DFA. Then there exists a regular grammar G such that
L(D) = L(G).

Proof. We’re going to do part (1) with an NFA, but we’ll do part (2) with a DFA,
and since we know the languages accepted are the same, this will finish off a proof
that

DFA ⇐⇒ NFA ⇐⇒ ε − NFA ⇐⇒ ReдularExpression ⇐⇒ ReдularGrammar

100 LECTURE 14.

The intuitive idea behind the proof should be fairly obvious: A finite automa-
ton consumes symbols and makes state transitions. A formal regular grammar
emits symbols and makes variable symbol transitions. And if we start with a reg-
ular grammar (as opposed to a grammar that is only Type 0, 1, or 2, with fewer
conditions), then we can pair productions in the grammar with transitions in the
automaton.

Proof of Part 1

Given a regular grammar G, we will construct an NFA M .
The states of M are the variables VN together with an additional state A. The

initial state of M is S . If the set of productions P contains the production S → ε,
then the final states of M are {S,A}; otherwise the final state of M is {A};

We note that S will not appear on the right hand side of a production if the
production S → ε is in P . (If there is such a production, then we can create another
variable S1 and replace productions with S on the RHS with productions that go to
S1 instead.)

Given a state B and any terminal symbol a ∈ VT , we include in the set of states
δ (B,a) all the variable symbols C for which we have productions B → aC.

If there is a production B → a, then we also include the final state A in the set
of states for δ (B,a)

We have δ (A,a) = ∅ for all terminal symbols a.
So let’s assume that G generates a string w = a1...an . Then there is a sequence

of variables Ai such that we have the derivation

S =⇒ a1A1 =⇒ a1a2A2 =⇒ a1...an

By our definition of δ , we have that A1 ∈ δ (S,a1), A2 ∈ δ (A1,a2), and so forth, and
the last step takes us to the final state A.

So w is accepted by the automaton M .
The empty string is a special case, but we have that covered as well.
In the other direction, if we have a string w in the language L(M), then we have

a sequence of states S , A1, A2, ... A through which M travels as it reads w . But each
of these transitions is essentially exactly a production in G, so there is a derivation
in G that corresponds exactly to the state transitions of M .

And we have the empty string covered as well.

Proof of Part 2

This is actually somewhat easier. We start with a DFA D = (Q, Σ, δ ,q0, F) and we
create a grammar G. The grammar G has the states Q as the variables VN , the
alphabet Σ as the terminal symbols VT , the start state q0 as the start symbol S , and
we only need to specify the productions P .

14.1. GRAMMARS, TYPE 3 GRAMMARS, AND REGULAR LANGUAGES 101

We have

1. a production B → aC if we have the transition δ (B,a) = C

2. a production B → a if we have the transition δ (B,a) = C for C a final state.

The proof that w ∈ L(D) if and only if w ∈ L(G) is almost identical to the proof
of part 1.o

Now, we have ε ∈ L(D) if and only if q0 is a final state. If not, then ε is in neither
language, and we are done.

If q0 is a final state, and thus ε ∈ L(D), then we need to build a modified gram-
mar to account for ε.

We do this by adding the production S → ε.
�

Lecture 15

15.1 Proving languages not regular

Definition 15.1.1. We say that a language L is pumpable iff

there exists an integer p > 0 such that
for all strings s ∈ L with |s | ≥ p,

there exist strings x,y, z with xyz = s and |xy | ≤ p and |y | > 0 such that
for every integer i ≥ 0,

xyiz ∈ L.

Lemma 15.1.2 (Pumping Lemma for Regular Languages). For any language L, if L is
regular, then L is pumpable.

Proof.
Suppose L is a (nontrivial, infinite) regular language. Then by definition L =

L(A) for some DFA A = 〈Q, Σ, δ ,q0, F 〉. Suppose |Q | = p, in other words A has p
states.

Take w ∈ L(A) such that |w | > p. In other words, w = w0, . . . ,wn−1 where
n > p,wi ∈ Σ. Define

ri B δ̂ (q0,w0 . . .wi−1)

I.e. ri is the state reached after reading in the first i symbols of w
Now consider the sets Q and {ri | 0 ≤ i ≤ n}. In particular, |Q | = p < n = |{ri }|.

By the pigeonhole principle, any function mapping the ri ’s to states in Q can’t be
injective. So we can pick two integers l and k s.t. 0 ≤ l < k ≤ p and rl = rk . Now
we can break up the string like so:

1. x = w0 . . .wl−1

2. y = wl . . .wk−1

3. z = wk . . .wn−1

103

104 LECTURE 15.

r0start rl rp
x = w0 . . .wl−1

y = wl . . .wk−1

z = wk . . .wn−1

�

Here is the contrapositive, which is an equivalent statement:

Lemma 15.1.3 (Pumping Lemma (contrapositive form)). For any language L, if L is
not pumpable, then L is not regular.

We will use the contrapositive form to prove that certain languages are not
regular by showing that they are not pumpable. By definition, a language L is not
pumpable iff

for any integer p > 0,
there exists a string s ∈ L with |s | ≥ p such that

for all strings x,y, z with xyz = s and |xy | ≤ p and |y | > 0,
there exists an integer i ≥ 0 such that

xyiz < L.

The value of p above is called the pumping length.

Lecture 16

16.1 Template for Pumping Lemma Proofs

Here is a template for a proof that a language L is not pumpable (and hence not
regular). Parts in brackets are to be filled in with specifics for any given proof.

Given any p > 0,
let s = [describe some string in L with length ≥ p].
Now for any x,y, z with xyz = s and |xy | ≤ p and |y | > 0,
let i = [give some integer ≥ 0 which might depend on p, s, x , y, and z].
Then we have xyiz < L because [give some reason/explanation].

Note:

• We cannot choose p. The value of p could be any positive integer, and we
have to deal with whatever value of p is given to us.

• We can and do choose the string s, which may differ depending on the given
value of p (so the description of s uses p somehow). We must choose s to be
in L and with length ≥ p, however.

• We cannot choose x , y, or z. These are given to us and could be any strings,
except we know that they must satisfy xyz = s, |xy | ≤ p, and |y | > 0.

• We get to choose i ≥ 0 based on all the previous values.

• The text is enamored of showing that when we write w = xyz ∈ L and apply
the pumping lemma to conclude that xyiz ∈ L for all i, we can conclude that
xy0z = xz ∈ L and get a contradiction. We can equally well use xyyz ∈ L,
xyyyz ∈ L, xyyyyz ∈ L, and so forth, to get the contradiction.

Example 16.1.1. Let L := {0n1n | n ≥ 0}. We show that L is not pumpable using the
template:

105

106 LECTURE 16.

Given any p > 0,
let s := 0p1p . (Clearly, s ∈ L and |s | ≥ p.)
Now for any x,y, z with xyz = s and |xy | ≤ p and |y | > 0,
let i := 0.
Then we have xyiz = xy0z = xz < L, which can be seen as follows:
Since |xy | ≤ p it must be that x and y consist entirely of 0’s, and so
y = 0m for somem, and we further havem ≥ 1 because |y | > 0. But then
xz = 0p−m1p , and so because p −m < p, the string xz is not of the form
0n1n for any n, and thus xz < L.

The next three examples are minor variations of each other.

Example 16.1.2. Let

L :=
{
w ∈ {0, 1}∗ | w has the same number of 0’s as 1’s

}
.

We show that L is not pumpable using the template:

Given any p > 0,
let s := 0p1p . (Clearly, s ∈ L and |s | ≥ p.)
Now for any x,y, z with xyz = s and |xy | ≤ p and |y | > 0,
let i := 0.
Then we have xyiz = xy0z = xz < L, which can be seen as follows:
Since |xy | ≤ p it must be that x and y consist entirely of 0’s, and so
y = 0m for somem, and we further havem ≥ 1 because |y | ≥ 1. But then
xz = 0p−m1p , and so because p −m , p, the string xz does not have the
same number of 0’s and 1’s, and thus xz < L. [Notice that picking any
i , 1 will work.]

Example 16.1.3. Let

L :=
{
w ∈ {0, 1}∗ | w has more 0’s than 1’s

}
.

We show that L is not pumpable using the template:

Given any p > 0,
let s := 0p1p−1. (Clearly, s ∈ L and |s | ≥ p.)
Now for any x,y, z with xyz = s and |xy | ≤ p and |y | > 0,
let i := 0.
Then we have xyiz = xy0z = xz < L, which can be seen as follows:
Since |xy | ≤ p it must be that x and y consist entirely of 0’s, and so
y = 0m for somem, and we further havem ≥ 1 because |y | > 0. But then
xz = 0p−m1p−1, and so because p −m ≤ p − 1, the string xz does not have
more 0’s than 1’s, and thus xz < L. [Notice that i := 0 is the only choice
that works.]

16.1. TEMPLATE FOR PUMPING LEMMA PROOFS 107

Example 16.1.4. Let

L :=
{
w ∈ {0, 1}∗ | w has fewer 0’s than 1’s

}
.

We show that L is not pumpable using the template:

Given any p > 0,
let s := 0p1p+1. (Clearly, s ∈ L and |s | ≥ p.)
Now for any x,y, z with xyz = s and |xy | ≤ p and |y | > 0,
let i := 2.
Then we have xyiz = xy2z = xyyz < L, which can be seen as follows:
Since |xy | ≤ p it must be that x and y consist entirely of 0’s, and so
y = 0m for some m, and we further have m ≥ 1 because |y | > 0. But
then xyyz = 0p+m1p+1, and so because p +m ≥ p + 1, the string xyyz does
not have fewer 0’s than 1’s, and thus xyyz < L. [Notice that picking any
i ≥ 2 will work.]

Example 16.1.5. Let

L :=
{
w ∈ {0, 1}∗ | w = 1P and P is a prime number

}
.

We show that L is not pumpable using the template:

Given any p > 0,
then for any w and x,y, z with w = xyz, |w | = P a prime, and |xy | ≤ p
and |y | > 0,
let |x | = k and |y | = `.
We know that ` > 0 and that xz, xyz, xyyz, ..., are all in L.
If ` is an odd integer, then some string among xy0z, xy2z, xy4z, ... is of
even length greater than or equal to four, and thus not of prime length.
If ` is an even integer, then some string among xz, xyz, xyyz, ..., of lengths
P − 2n, P, P + 2n, P + 4n, ... is of length greater than 3 and divisible by 3
and thus not prime.

We can view use of the pumping lemma as a game with four turns, based on a
language L:

1. Your opponent chooses any positive integer p.

2. You respond with some string s ∈ L such that |s | ≥ p.

3. Your opponent chooses three strings x , y, and z satisfying

a) xyz = s,

108 LECTURE 16.

b) |xy | ≤ p, and

c) |y | > 0.

4. You conclude the game by choosing a natural number i.

You win the game if xyiz < L. Otherwise, your opponent wins. Proving a language
L is not pumpable amounts to describing a winning strategy for yourself in this
game.

Lecture 17

17.1 Closure properties of regular languages.

We show that several constructions on regular languages yield regular languages.
We’ve proved this already:

Proposition 17.1.1. If L and M are regular languages, then so is L ∪M .

Proof. If r is a regular expression for L and s is a regular expression for M , then r + s
is a regular expression for L ∪M , by definition of the “+” operator. �

The same idea proves

Proposition 17.1.2. If L and M are regular languages, then so are LM and L∗.

We’ve proved this, too:

Proposition 17.1.3. If L is regular, then L is regular.

Proof. Let A = (Q, Σ, δ ,q0, F) be a DFA for L. Let B = (Q, Σ, δ ,q0,Q − F). Then we can
see that B is a DFA for L as follows: for every string w ∈ Σ∗,

w ∈ L ⇐⇒ A rejects w

⇐⇒ δ̂ (q0,w) < F

⇐⇒ δ̂ (q0,w) ∈ Q − F

⇐⇒ B accepts w .

Thus L(B) = L, and so L is regular. �

In the proofs of Propositions 17.1.1 and 17.1.2, we transformed regular expres-
sions to show that the new language is regular. In the second proof, we trans-
formed a DFA. Often, one or the other way works best. One may also be conve-
nient to transform an NFA or ε-NFA.

109

110 LECTURE 17.

To illustrate these techniques, we’ll prove the next closure property in two
ways—transforming a regular expression and transforming an ε-NFA. Both tech-
niques are useful.

Recall that wR is the reversal of string w . If L is a language, we define

LR :=
{
wR | w is in L

}
.

So LR just contains the reversals of strings in L. For example, if L = {aab,bca,aaa, ε},
then LR = {baa,acb,aaa, ε}. Notice that (wR)

R
= w for any stringw , and thus (LR)R =

L for any language L.
Next, we show closure under intersection. We’ve already seen this explicitly

with the product construction on DFAs. There is another, much easier proof, as it
turns out.

Proposition 17.1.4. If L and M are regular, then so is L ∩M .

Proof. Let L and M be regular. By one of De Morgan’s laws,

L ∩M = L ∪M .

Since regularity is preserved under complements and unions, the right-hand side
is regular, and so L ∩M is regular. �

Corollary 17.1.5. If L and M are regular (and over the same alphabet), then L − M is
regular.

Proof. Notice that L −M = L ∩M , and the right-hand side is regular because com-
plementation and intersection both preserve regularity. �

Lecture 18

Proposition 18.0.1. If L is regular, then so is LR .

For our first proof of Proposition 18.0.1, we give an explicit way to transform
any regular expression r for a language L into a new regular expression rR for the
reversal language LR . To justify the transformation we use the following lemma:

Lemma 18.0.2. Fix an alphabet Σ.

1. ∅R = ∅.

2. {ε}R = {ε},

3. For any symbol a ∈ Σ, {a}R =
{
aR

}
= {a}.

For any two languages L and M over Σ,

3. (L ∪M)R = LR ∪MR ,

4. (LM)R = MRLR ,

5. (L∗)R = (LR)∗.

Proof. Facts (1) and (2) are obvious. In particular, any string of length 1 is its own
reversal.

Facts (3)–(5) maybe less so. Let’s verify (3): let w be any string.

w ∈ (L ∪M)R ⇐⇒ wR ∈ L ∪M

⇐⇒ wR ∈ L or wR ∈ M

⇐⇒ w ∈ LR or w ∈ MR

⇐⇒ w ∈ LR ∪MR .

Thus (3) is true.

111

112 LECTURE 18.

For (4), let w be any string. First, suppose w ∈ (LM)R . Then wR ∈ LM , and thus
there exist strings x ∈ L and y ∈ M such that wR = xy. But notice that (xy)R = yRxR .
So

w = (wR)
R
= (xy)R = yRxR ∈ MRLR .

Conversely, suppose w ∈ MRLR . Then w = uv for some u ∈ MR and v ∈ LR . Thus
uR ∈ M and vR ∈ L, which means that vRuR ∈ LM , and so

wR = (uv)R = vRuR ∈ LM,

which implies that w ∈ (LM)R .
Finally (5): let w be any string in (L∗)R . Then wR is in L∗, and so wR = x1 · · · xk

for some k ≥ 0 and strings xi ∈ L for all 1 ≤ i ≤ k. Then,

w = (wR)
R
= (x1 · · · xk)

R = xRk · · · x
R
1 ∈ (L

R)
∗
,

because each xRi is in LR . Conversely, if w is in (LR)∗, then w = z1 · · · zk for some k
and each zi ∈ L

R , which means zRi ∈ L. Then

wR = (z1 · · · zk)
R = zRk · · · z

R
1 ∈ L

∗,

and so w ∈ (L∗)R . �

We’ll now use this lemma to recursively transform any regular expression r
into rR .

First proof of Proposition 18.0.1. We transform r into rR by the following rules, which
are justified by Facts (1)–(5) of Lemma 18.0.2 above.

1. If r = ∅, then define rR = ∅R := ∅.

2. If r = ε, then define rR := ε.

3. If r = a for some a ∈ Σ, then define rR = aR := a.

4. If r = s + t for some regular expressions s and t , then define rR = (s + t)R :=
sR + tR (use recursion to find sR and tR).

5. If r = st for some regular expressions s and t , then define rR = (st)R := tRsR

(note the reversal).

6. If r := s∗ for some regular expression s, then define rR = (s∗)R := (sR)∗.

By facts (1)–(5) above, this procedure correctly produces an regular expression for
LR given one for L. More formally, we have the following claim, which suffices to
prove the proposition:

113

Claim 18.0.3. L(rR) = L(r)R for any regexp r over Σ.

Proof of the claim. The proof is by induction on the length of r . We have two base
cases and three inductive cases, and these mirror the five rules for building regexps
as well as the five facts of Lemma 18.0.2:

Case 1: r = ∅. We have

L(∅R) = L(∅) = ∅ = ∅R = L(∅)R .

(The first equality is by definition, i.e., ∅R := ∅; the second follows from how
we defined regexp semantics (particularly, the regexp ∅ does not match any
strings); the third is Fact (1) of Lemma 18.0.2; the last is again by regexp
semantics.)

Case 2: r = a for some a ∈ Σ. We have

L(aR) = L(a) (definition of aR)
= {a} (regexp semantics)

=
{
aR

}
(Fact (2) of Lemma 18.0.2)

= {a}R (definition of the reversal of a language)

= (a)R (regexp semantics again)

Case 3: r = s + t for regexps s, t . Since s and t are both shorter than r , we can as-
sume by the inductive hypothesis that the claim holds for s and t , that is,
L(sR) = L(s)R and L(tR) = L(t)R . Then

L((s + t)R) = L(sR + tR) (definition of (s + t)R)

= L(sR) ∪ L(tR) (regexp semantics)

= L(s)R ∪ L(t)R (inductive hypothesis)

= (L(s) ∪ L(t))R (Fact (3) of Lemma 18.0.2)

= L(s + t)R (regexp semantics)

Case 4: r = st for regexps s, t . The inductive hypothesis applies to s and t , so we
have

L((st)R) = L(tRsR) (definition of (st)R)

= L(tR)L(sR) (regexp semantics)

= L(t)RL(s)R (inductive hypothesis)

= (L(s)L(t))R (Fact (4) of Lemma 18.0.2)

= L(st)R (regexp semantics)

114 LECTURE 18.

Case 5: r = s∗ for regexp s. The inductive hypothesis applies to s, so we have

L((s∗)R) = L((sR)
∗
) (definition of (s∗)R)

= L(sR)
∗ (regexp semantics)

= (L(s)R)
∗

(inductive hypothesis)

= (L(s)∗)R (Fact (5) of Lemma 18.0.2)

= L(s∗)R (regexp semantics)

This proves the claim. �

Now Proposition 18.0.1 follows immediately from the claim: If L is regular, then
L = L(r) for some regular expression r . But then LR = L(r)R = L(rR) by the claim, and
so LR is regular, being denoted by the regexp rR . This proves Proposition 18.0.1. �

The key to the whole proof above is the inductive definition of rR given at the
beginning. The rest of the proof is just verifying that the transformation works as
advertised.

For example, let’s use the rules to find rR where r = b(a + bc∗)∗.

(b(a + bc∗)∗)R = ((a + bc∗)∗)RbR

= ((a + bc∗)R)
∗
b

= (aR + (bc∗)R)
∗
b

= (a + (c∗)RbR
)
∗
b

= (a + (cR)∗b)
∗
b

= (a + c∗b)∗b.

The only real change in going from r to rR is that concatenations are reversed.
So you can write down rR quickly by just reversing all the concatenations in r and
leaving the other operations intact.

Instead of transforming regular expressions, another way to prove Proposi-
tion 18.0.1 is to transform an ε-NFA.

Second proof of Proposition 18.0.1. Let A be an ε-NFA recognizing L. We can assume
that A has only one final state (say, by making A clean). Let B be the ε-NFA con-
structed from A as follows:

• Make the state set and alphabet of B the same as that of A.

• Make the start state of B to be the final state of A.

• Make the only final state of B to be the start state of A.

115

• Reverse the arrows on all the transitions of A to get the transitions of B, i.e.,
if q

a
−→ r is a transition from state q to state r reading symbol a (or ε), then

make q
a
←− r the corresponding transition of B.

Now it is clear thatA accepts a stringw just when there is a path from A’s start state
to its final state readingw . But this is true if and only if there is a path from B’s start
state (A’s final state) to B’s final state (A’s start state) reading wR . This is just the
path in A followed in reverse. So A accepts w iff B accepts wR . Hence B recognizes
LR , and so LR is regular. �

Just for brevity’s sake, we left out formal details in the second proof. A good
exercise for you is to supply those formal details, i.e., define B formally as a 5-
tuple from a given 5-tuple for A, then prove formally by induction on the length
of a string w that B accepts w if and only if A accepts wR , hence concluding that
L(B) = L(A)R .

Lecture 19

19.1 String Homomorphisms

Next we consider images and inverse images under string homomorphisms

Definition 19.1.1. Let Σ andT be alphabets. A string homomorphism (or just a homo-
morphism) from Σ∗ to T ∗ is a function h that takes any string w ∈ Σ∗ and produces a
string in T ∗ (that is, if w ∈ Σ∗, then h(w) ∈ T ∗) such that h preserves concatenation,
i.e., if w and x are any strings in Σ∗, then h(wx) = h(w)h(x).

In this definition, it may or may not be the case that Σ = T .
A string w ∈ Σ is the concatenation of its individual symbols: w = w1w2 · · ·wn

for some n ≥ 0. And so if h is a homomorphism,

h(w) = h(w1w2 · · ·wn) = h(w1)h(w2 · · ·wn) = · · · = h(w1)h(w2) · · ·h(wn)

is the concatenation of all the strings h(wi) for 1 ≤ i ≤ n. This means that to
completely specify a homomorphism h, we only need to say what string h(a) is for
each symbol a ∈ Σ.

What if w = ε? It is always the case that h(ε) = ε for any homomorphism h.
We can see this by noticing that ε = εε and so h(ε) = h(εε) = h(ε)h(ε), that last
equation because h is a homomorphism. If we let w := h(ε), then we just showed
thatw = ww . But the only stringw that satisfies this equation is ε, and thus h(ε) = ε.

For example, let Σ = {a,b, c} and let T = {0, 1}. Define the homomorphism h by
h(a) = 01, h(b) = 110, and h(c) = ε. Then h(abaccab) = (01)(110)(01)(ε)(ε)(01)(110) =
011100101110.

Definition 19.1.2. Let Σ andT be alphabets, and let h be a homomorphism from Σ∗

to T ∗.

1. For any language L ⊆ Σ∗, we define the language h(L) ⊆ T ∗ as

h(L) = {h(w) | w is in L}.

We say that h(L) is the image of L under h.

117

118 LECTURE 19.

2. For any language M ⊆ T ∗, we define the language h−1(M) ⊆ Σ∗ as

h−1(M) = {w ∈ Σ∗ | h(w) is in M}.

We say that h−1(M) is the inverse image of M under h.

Regularity is preserved under taking images and inverse images of a homo-
morphism.

Proposition 19.1.3. Let h, L, and M be as in the definition above.

1. If L is regular, then so is h(L).

2. If M is regular, then so is h−1(M).

We’ll prove (1) by transforming regular expressions and we’ll prove (2) by
transforming DFAs.

Proof of (1). Let r be any regular expression. We show how to convert r into an-
other regular expression, which we denote h(r), such that L(h(r)) = h(L(r)). Thus
if L = L(r), then h(L) = L(h(r)) and hence h(L) is regular, because h(r) is a regular
expression.

The (recursive) transformation rules are derived in a way similar to the proof
for reversals, by noting how applying h interacts with the operators used to build
regular expressions. The following five facts are easy to see, and we won’t bother
to prove them:

1. h(∅) = ∅.

2. h({ε}) = {ε}. (Note that we always have h(ε) = ε for any homomorphism h.)

3. h({a}) = {h(a)} for any a ∈ Σ.

4. For any L,M ⊆ Σ∗, h(L ∪M) = h(L) ∪ h(M).

5. For any L,M ⊆ Σ∗, h(LM) = h(L)h(M).

6. For any L ⊆ Σ∗, h(L∗) = h(L)∗.

Facts (1)–(5) tell us how to transform any regular expression r for a regular lan-
guage L into the regular expression h(r) for h(L):

1. If r = ∅, then define h(r) := ∅.

2. If r = ε, then define h(r) := ε.

3. If r = a for any a ∈ Σ, then define h(r) := h(a) (that is, the regular expression
which is the concatenation of the symbols forming the string h(a) and which
denotes the language {h(a)}).

19.1. STRING HOMOMORPHISMS 119

4. If r = s + t for some regular expressions s and t , then define h(r) := h(s) + h(t).
(The regular expressions h(s) and h(t) are computed recursively using these
rules.)

5. If r = st for some s and t , then define h(r) := h(s)h(t).

6. If r = s∗ for some s, then define h(r) = h(s)∗.

Facts (1)–(5) imply (by induction on r) that this construction works as advertised.
�

Using the h of the last example, let’s compute h(r), where r = b(a + bc∗)∗.

h(b(a + bc∗)∗) = h(b)h((a + bc∗)∗)
= h(b)(h(a + bc∗))∗

= h(b)(h(a) + h(bc∗))∗

= h(b)(h(a) + h(b)h(c∗))∗

= h(b)(h(a) + h(b)h(c)∗)∗

= 110(01 + 110(ε∗))∗

= 110(01 + 110)∗ .

Thus if L is given by b(a + bc∗)∗, then h(L) is given by 110(01 + 110)∗.

Proof of (2). Let A = (Q,T , δ ,q0, F) be a DFA recognizing M . From A we build a DFA
B = (Q, Σ,γ ,q0, F) as follows:

• The state set, start state, and set of final states are the same in B as in A.

• The alphabet of B is Σ.

• The transition function γ for B is defined as follows for every state q ∈ Q and
a ∈ Σ:

γ (q,a) := δ̂ (q,h(a)).

The idea is that to compute γ (q,a) for some q ∈ Q and a ∈ Σ, we look in the DFA
B to see where we would go from q by reading h(a). We then make a single edge
transition on a from q to this new state.

To show that this construction is correct, we show that γ̂ (q0,w) = δ̂ (q0,h(w)) for
any w ∈ Σ∗. Since both automata A and B share the same state set, start state, and
final states, this equality implies B accepts w if and only if A accepts h(w) (and thus

120 LECTURE 19.

L(B) = h−1(M), and thus h−1(M) is regular). Given any string w = w1w2 · · ·wn ∈ Σ∗,
we have

γ̂ (q0,w) = γ (· · ·γ (γ (q0,w1),w2) · · · ,wn)

= δ̂ (· · · δ̂ (δ̂ (q0,h(w1)),h(w2)) · · · ,h(wn))

= δ̂ (q0,h(w1)h(w2) · · ·h(wn))

= δ̂ (q0,h(w1w2 · · ·wn)) = δ̂ (q0,h(w)) .

�

Remark. That does it. Alternatively, there is an inductive (on |w |) proof that
avoids ellipses. I’ll leave it to you to come up with it.

For example, supppose A is the DFA below:

q0start q1

q2 q3

0

1

0

1
0

1

0

1

We have h(a) = 01. Following 01 from q0 in A, we get q0
0
−→ q1

1
−→ q2, so we

draw an edge q0
a
−→ q2 in B. Similarly, h(b) = 110, and reading 110 from q0 gives

the path q0
1
−→ q2

1
−→ q3

0
−→ q1, so we draw an edge q0

b
−→ q1 in B. Now h(c) = ε,

which does not take us anywhere from q0, so we draw a self-loop q0
c
−→ q0.

We do the same computation for states q1,q2,q3, obtaining the DFA B:

19.2. USING CLOSURE PROPERTIES TO SHOW NONREGULARITY 121

q0start q1

q2 q3

c

b

a

b, c

a

a, c

b

c

b

a

Note that q3 is unreachable from q0, and so it can be removed. B accepts all
strings that contain at least one symbol other than c. That is,

L(B) =
{
w ∈ {a,b, c}∗ | w has at least one symbol other than c

}
.

B is not the simplest DFA that recognizes this language. In fact, we can collapse
the two final states into one, getting an equivalent DFA with only two states. Later,
we will see a systematic way to find the simplest DFA (i.e., fewest states) for any
regular language.

19.2 Using closure properties to show nonregularity

The pumping lemma is a good tool to show that a language is not regular, but it
doesn’t always suffice. For example, the language {0n1m | n , m} is not regular,
and it is difficult (but not impossible) to show this using the pumping lemma alone.
This is where closure properties can be useful when combined with the pumping
lemma. A proof that a language L is not regular might take the form of a proof by
contradiction:

Suppose L is regular. Then by such-and-such a closure property of reg-
ular languages, we know that such-and-such other language L′ is also
regular. But L′ cannot be regular because it is not pumpable [insert use
of pumping lemma here for L′]. Contradiction.

So proving L not regular reduces to proving L′ not regular. Although we may not
be able to apply the pumping lemma to L directly, we may be able to apply it to
L′ instead. Even if we can apply the pumping lemma to L directly, it may still be
easier to use closure properties.

122 LECTURE 19.

Let’s apply this idea to the language L := {0n1m | n ,m}. This language is
actually not pumpable, that is, there is a direct proof via the pumping lemma that
L is not regular. Can you find it? However, we now give a much easier proof using
closure properties.

Proposition 19.2.1. The language L := {0n1m | n ,m} over the binary alphabet Σ =
{0, 1} is not regular.

Proof. Suppose L is regular. Then since the class of regular languages is closed un-
der complements, it follows that the language L1 := L is also regular. The language
L2 := {0n1m | m,n ≥ 0} is also regular, because L2 is just L(0∗1∗). Then the language
L3 := L1 ∩ L2 is also regular, because the class of regular languages is closed under
intersection. But L3 is exactly the language {0n1m | n =m} = {0n1n | n ≥ 0}, which
as we have already seen is not pumpable (this was our first example of using the
pumping lemma, above) and thus not regular. Contradiction. Thus L is not regu-
lar. �

Next, we apply the technique to a language that is pumpable (so we cannot
use the pumping lemma directly). The language L in question is the union of two
languages D and E over the four-letter alphabet {a,b, c,d}, where E is the set of all
strings with the same number of b’s as c’s, and D is the set of all strings that contain
a “close duplicate”, that is, two occurrences of the same symbol with at most one
other symbol in between. More formally, letting s := (a +b + c +d + ε), the language
D is the regular language given by the regular expression

D := L(s∗(asa + bsb + csc + dsd)s∗) .

We show below that the language L := D ∪ E is not regular, but we cannot use
the pumping lemma directly to do this, because L is actually pumpable. The way to
see that L is pumpable is by using the usual pumping lemma template but instead
describing a winning strategy for our opponent:

Let p := 5. Clearly, p > 0.
Let s = w1w2 . . .wn be any string in L of length n ≥ 5. Since the first
five symbols w1, . . . ,w5 are chosen from a four-letter alphabet, by the
pigeonhole principle there must be a duplicate, i.e., there exist 1 ≤ j <
k ≤ 5 such that w j = wk .
Now choose x,y, z as follows:

1. If k = j + 1 or k = j + 2, then choose any ` ∈ {1, 2, 3, 4, 5} such
that either ` < j or ` > k, and pump on w` , i.e., set y := w` , x :=
w1 · · ·w`−1, and z := w`+1 · · ·wn .

2. Otherwise, either k = j +3 or k = j +4. Pump on y := w j+1w j+2 with
x := w1 · · ·w j and z := w j+3 · · ·wn .

19.2. USING CLOSURE PROPERTIES TO SHOW NONREGULARITY 123

In either case, one checks for all i , 1 that xyiz contains a close dupli-
cate, whence xyiz ∈ D: In case (1),w j andw j form a close duplicate, and
this is unaffected by pumping y. In case (2), if i = 0 (“pumping down”),
then the original w j are wk are made close; if i ≥ 2 (“pumping up”),
then yy contains a close duplicate.
Thus xyiz ∈ L for all i ∈ N: if i , 1, then xyiz ∈ D ⊆ L, and if i = 1, then
xyiz = xyz = s ∈ L.

Proposition 19.2.2. The language L := D ∪ E described above is not regular.

Proof. Suppose for the sake of contradiction that L is regular. Leth : {0, 1}∗ → {a,b, c,d}∗

be the homomorphism given by

h(0) = abd

h(1) = acd

Letting L′ := h−1(L), we have that L′ is also regular by one of the closure properties
of regular languages. Now letw ∈ {0, 1}∗ be any binary string, and notice that h(w)
has no close duplicates, i.e., h(w) < D. It follows that h(w) ∈ L ⇐⇒ h(w) ∈ E for
any w , and thus L′ = h−1(L) = h−1(E). Also notice that the number of 0’s in w equals
the number of b’s in h(w), and the number of 1’s in w equals the number of c’s in
h(w), and thus

L′ := h−1(E) =
{
w ∈ {0, 1}∗ | w has the same number of 0’s as 1’s

}
.

But we already know that this language is not pumpable (one of our first examples
of using the pumping lemma), hence not regular. Contradiction. Thus L must not
be regular. �

Lecture 20

20.1 DFA minimization

We say that a DFA is minimal if there is no equivalent DFA with fewer states.
We will show (the Myhill-Nerode theorem) that for any regular language L

there is a unique minimal DFA recognizing L. We will also describe how to con-
struct such a DFA, given any other DFA recognizing L. By uniqueness, we mean
that any two minimal DFAs recognizing L are actually the same DFA, up to rela-
beling of the states. (In technical terms, the two DFAs are isomorphic.)

Example 20.1.1. Consider this 7-state DFA that accepts a binary string iff its second
to last symbol is 1:

0 1
→ qε q0 q1

q0 q00 q01
q1 q10 q11
q00 q00 q01
q01 q10 q11
∗q10 q00 q01
∗q11 q10 q11

The states record in their labels the most recent two characters read. This DFA is
not minimal; in fact, there is an equivalent DFA with only four states.

[Example] To find the minimal equivalent DFA, we find pairs of states that are
indistinguishable and collapse them into one state.

Definition 20.1.2. Let N = 〈Q, Σ, δ ,q0, F 〉 be any DFA.

1. We say that N is sane iff every state in Q is reachable from the start state q0.
That is, N is sane if and only if, for every q ∈ Q , there exists w ∈ Σ∗ such that
q = δ̂ (q0,w).

125

126 LECTURE 20.

2. For any state q ∈ Q , define Nq := 〈Q, Σ, δ ,q, F 〉, the DFA obtained from N by
moving the start state to q. (Of course, Nq0 = N .)

Note:

• For every DFA N there is an equivalent sane DFA with as many or fewer
states: simply remove the states of N (if any) that are unreachable from the
start state. The removed states clearly have no effect on whether a string is
accepted or not.

• Thus every minimal DFA must be sane. We’ll restrict our attention then to
sane DFAs.

At this point, depending on time, we may skip the following and go straight to
Lecture 21.1.

Definition 20.1.3. Let L be any language over alphabet Σ.

1. For any w ∈ Σ∗, define Lw := {x | wx ∈ L}.

2. Define CL := {Lw | w ∈ Σ∗}.

Notice that we always have L = Lε .
Lemmas 20.1.4 and 21.0.2 below imply the Myhill-Nerode theorem.

Lemma 20.1.4. Let N = 〈Q, Σ, δ ,q0, F 〉 be any sane DFA, and let L = L(N). Fix any
w ∈ Σ∗, and let q = δ̂ (q0,w). Then

Lw = L(Nq) . (20.1)

It follows that CL = {L(Nq) | q ∈ Q}, and so ‖CL ‖ ≤ ‖Q ‖.

Proof. For any string x ∈ Σ∗,

x ∈ Lw ⇐⇒ wx ∈ L

⇐⇒ δ̂ (q0,wx) ∈ F

⇐⇒ δ̂ (δ̂ (q0,w), x) ∈ F

⇐⇒ δ̂ (q, x) ∈ F

⇐⇒ x ∈ L(Nq).

This shows that Lw = L(Nq), from which it follows immediately that CL ⊆
{
L(Nq) | q ∈ Q

}
.

The fact that
{
L(Nq) | q ∈ Q

}
⊆ CL comes from fact that, since N is sane, for every

q ∈ Q there exists w ∈ Σ∗ such that q = δ̂ (q0,w) (and thus Lw = L(Nq)). �

Corollary 20.1.5. If L is regular, then CL is finite.

Lecture 21

Lemma 21.0.2 below is essentially the converse of Lemma 20.1.4. First we need to
prove:

Lemma 21.0.1. Let L be any language over Σ, let w and w ′ be any strings in Σ∗, and let a
be any symbol in Σ. Then if Lw = Lw ′, then Lwa = Lw ′a .

Proof. We’ll show that if Lw ⊆ Lw ′, then Lwa ⊆ Lw ′a . This is enough, because to get
equality we just run the same argument with w and w ′ swapped.

Suppose Lw ⊆ Lw ′ and let x be any string in Σ∗. Then

x ∈ Lwa =⇒ wax ∈ L

=⇒ ax ∈ Lw

=⇒ ax ∈ Lw ′

=⇒ w ′ax ∈ L

=⇒ x ∈ Lw ′a .

Thus Lwa ⊆ Lw ′a . �

Lemma 21.0.2. Let L ⊆ Σ∗ be any language over Σ. If CL is finite, then L is recognized by
the following minimal DFA:

Nmin := 〈CL, Σ, δmin,q0,min, Fmin〉,

where

• q0,min := Lε = L,

• δmin(Lw ,a) := Lwa for all w ∈ Σ∗ and a ∈ Σ, and

• Fmin := {L′ ∈ CL | ε is in L′}.

Note that the transition function δmin is well-defined because of Lemma 21.0.1.
The output state Lwa only depends on the language Lw , and does not change if we
substitute another string w ′ such that Lw = Lw ′.

127

128 LECTURE 21.

Proof of Lemma 21.0.2. Fix a string w ∈ Σ∗. First we prove that

Lw = δ̂min(q0,min,w) . (21.1)

This may be obvious, based on how we defined δmin but we’ll prove it anyway by
induction on |w |.

Base case: |w | = 0. In this case, w = ε, and we have

Lw = Lε = L

= q0,min

= δ̂min(q0,min, ε)

= δ̂min(q0,min,w).

Inductive case: |w | > 0. Then w = xa for some a ∈ Σ and some x ∈ Σ∗ with |x | =
|w | − 1. Assuming (the inductive hypothesis) that Equation (21.1) holds for x
instead of w (that is, assuming that Lx = δ̂min(q0,min, x)), we get

Lw = Lxa = δmin(Lx ,a)

= δmin(δ̂min(q0,min, x),a)

= δ̂min(q0,min, xa)

= δ̂min(q0,min,w).

Now we can show that L = L(Nmin):

w ∈ L ⇐⇒ wε ∈ L

⇐⇒ ε ∈ Lw

⇐⇒ Lw ∈ Fmin

⇐⇒ δ̂min(q0,min,w) ∈ Fmin

⇐⇒ w ∈ L(Nmin).

Finally, Nmin is a minimal DFA by Lemma 20.1.4. �

Corollary 21.0.3. If CL is finite, then L is regular.

Theorem 21.0.4 (Myhill-Nerode). A language L is regular iff CL is finite. If such is the
case, the size of CL equals the number of states of the unique minimal DFA recognizing L.

Proof. We’ve proved most of this already. The first sentence of the theorem is clear
by Corollaries 20.1.5 and 21.0.3. For the second sentence, we already constructed a
minimal DFA Nmin recognizing L with state set CL in Lemma 21.0.2. The only thing
left to show is that Nmin is unique among minimal DFAs recognizing L.

21.1. CONSTRUCTING THE MINIMAL DFA 129

To that end, we first show that the map q 7→ L(Nq) of Lemma 20.1.4 preserves
the structure of the DFA. As in Lemma 20.1.4, let N = 〈Q, Σ, δ ,q0, F 〉 be any sane
DFA (not necessarily minimal) recognizing L. Recall that CL = {L(Nq) | q ∈ Q} by
Lemma 20.1.4. The correspondence q 7→ L(Nq)mapping Q (the state set of N) onto
CL (the state set of the DFA Nmin constructed in the proof of Lemma 21.0.2) may or
may not be one-to-one, depending on whether or not Q has the same size as CL.
But in any case, the mapping preserves all the structure of the DFA N :

1. We have L(Nq0) = L(N) = L = Lε = q0,min, and so the start state q0 of N is
mapped to the start state q0,min of Nmin.

2. Given any q ∈ Q and a ∈ Σ, let r = δ (q,a). Fix some (any) string w ∈ Σ∗ such
that q = δ̂ (q0,w). (N is sane because it is minimal, therefore w exists.) Now
using Equation (20.1) of Lemma 20.1.4 twice—first for q then for r—we get

δmin(L(Nq),a) = δmin(Lw ,a) = Lwa = L(Nr),

the last equality holding because r = δ (q,a) = δ (δ̂ (q0,w),a) = δ̂ (q0,wa). This
shows that an a-transition q

a
→ r in N corresponds to an a-transition L(Nq)

a
→

L(Nr) between the corresponding states in Nmin.

3. For any q ∈ Q ,

q ∈ F ⇐⇒ ε ∈ L(Nq) ⇐⇒ L(Nq) ∈ Fmin.h

Thus the accepting states of N map to accepting states of Nmin, and the reject-
ing states of N map to rejecting states of Nmin.

Now suppose that N is minimal. Since N and Nmin are both minimal and equiv-
alent, they have the same number of states: ‖Q ‖ = ‖CL ‖. Then by the Pigeonhole
Principle we must have L(Nq) , L(Nr) for all q, r ∈ Q with q , r , because the two
sets have the same size. So the mapping q 7→ L(Nq) is a natural one-to-one corre-
spondence between Q and CL.

The preservation of the structure of N under this correspondence makes it clear
that N and Nmin are the same DFA, via the relabeling q ↔ L(Nq). �

21.1 Constructing the minimal DFA

The proof of Theorem 21.0.4 holds the seeds of an algorithm for converting a sane
DFA N into its minimal equivalent DFA Nmin.

Definition 21.1.1. Let N = 〈Q, Σ, δ ,q0, F 〉 be any DFA. For any states q, r ∈ Q and
x ∈ Σ∗, we say that q and r are distinguished by string x iff x is in one of the languages
L(Nq) and L(Nr) but not both. We say that q and r are distinguishable if there exists
some string that distinguishes them; otherwise, they are indistinguishable.

130 LECTURE 21.

This fact is obvious based on the definition above.

Fact 21.1.2. Two states q and r of N are indistinguishable iff L(Nq) = L(Nr).

Thus indistinguishable states of N are those that are mapped to the same state
of Nmin. We now give a method for finding pairs of indistinguishable states of N .
By merging groups of mutually indistinguishable states of N into single states, we
effectively convert N into Nmin.

The idea of the algorithm is to record pairs of states that are distinguishable,
until we can’t find any more of those. Then any pairs left over must be indistin-
guishable. Here is the algorithm.

Algorithm: DFA Minimization Algorithm — Table of Distinguishabilites
Input : A DFA N = 〈Q, Σ, δ ,q0, F 〉
Output: A two dimensional array T

1 T ← Array2D(|Q |, |Q |,‘ ’) // init. a 2D array with all blanks
2 for p,q ∈ Q do
3 if (p ∈ F ∧ q < F) ∨ (p < F ∧ q ∈ F) then
4 T [p,q] = T [q,p] =‘X ’ // These states are distinguished by

ε

5 end
6 end
7 repeat
8 if [(∃p,q ∈ Q) T [p,q] =‘ ’] ∧ [(∃a ∈ Σ) T [δ (p,a), δ (q,a)] =‘X ’] then
9 T [p,q] = T [q,p] =‘X ’

10 end
11 until T does not change

After this algorithm finishes, the remaining blank entries of T are exactly the
pairs of indistinguishable states.

The minimal DFA will then result from merging groups of indistinguishable
states into single states. (Note that the algorithm still can be run even if N is not
sane, but then the collapsed DFA may not be sane.)

[Running the algorithm on the DFA of Exercise 4.4.1 and drawing the resulting
DFA]

An Example

So let’s do the example of Exercise 4.4.1 of the text. We have a transition table

21.1. CONSTRUCTING THE MINIMAL DFA 131

0 1
→ A B A

B A C
C D B
∗D D A
E D F
F G E
G F G
H G D

The first thing we are going to observe is that we don’t need H at all. There are
no transitions into H , so it is unreachable. That simplifies some things.

We write the matrixT , putting dots instead of blanks just to make things a little
more visible.

A B C D E F G

A
B
C
D
E
F
G

The first loop, lines 2-5 of the algorithm, have us flagging states as distinguish-
able if one is final and the other is not. This produces

A B C D E F G

A . . . X . . .
B . . . X . . .
C . . . X . . .
D X X X . X X X
E . . . X . . .
F . . . X . . .
G . . . X . . .

Now we iterate the second loop until nothing changes. If δ (p, 0) = p ′ and
δ (q, 0) = q′ and p ′ is already distinguishable from q′, we flag p and q.

δ (A, 0) = B, δ (C, 0) = D, and B is dist from D, so A and C are dist.
δ (A, 0) = B, δ (E, 0) = D, and B is dist from D, so A and E are dist.
δ (A, 1) = A, δ (H , 1) = D, and A is dist from D, so A and H are dist.
This produces

132 LECTURE 21.

A B C D E F G

A . . X X X . .
B . . . X . . .
C X . . X . . .
D X X X . X X X
E X . . X . . .
F . . . X . . .
G . . . X . . .

We iterate.
δ (A, 1) = A, δ (B, 1) = C, and A is dist from C, so A and B are dist.
δ (A, 1) = A, δ (F , 1) = E, and A is dist from E, so A and F are dist.
This produces

A B C D E F G

A . X X X X X .
B X . . X . . .
C X . . X . . .
D X X X . X X X
E X . . X . . .
F X . . X . . .
G . . . X . . .

We iterate.
δ (B, 0) = A, δ (C, 0) = D, and A is dist from D, so B and C are dist.
δ (B, 0) = A, δ (E, 0) = D, and A is dist from D, so B and E are dist.
δ (B, 0) = A, δ (G, 0) = F , and A is dist from F , so B and G are dist.
Thus

A B C D E F G

A . X X X X X .
B X . X X X . X
C X X . X . . .
D X X X . X X X
E X X . X . . .
F X . . X . . .
G . X . X . . .

δ (C, 0) = D, δ (F , 0) = G, and E is dist from G, so C and F are dist.
δ (C, 1) = B, δ (G, 1) = G, and B is dist from G, so C and G are dist.
Thus

21.1. CONSTRUCTING THE MINIMAL DFA 133

A B C D E F G

A . X X X X X .
B X . X X X . X
C X X . X . X X
D X X X . X X X
E X X . X . . .
F X . X X . . .
G . X X X . . .

δ (E, 0) = D, δ (F , 0) = G, and D is dist from G, so E and F are dist.
δ (E, 0) = D, δ (G, 0) = F , and D is dist from F , so E and G are dist.

A B C D E F G

A . X X X X X .
B X . X X X . X
C X X . X . X X
D X X X . X X X
E X X . X . X X
F X . X X X . X
G . X X X X X .

It would seem at this point that we are done. We might have A and G indistin-
guishable, B and F indistinguishable, and C and E indistinguishable.

134 LECTURE 21.

If we rewrite the transition table, this would be conversion of

0 1
→ A B A

B A C
C D B
∗D D A
E D F
F G E
G F G
H G D

into

0 1
→ A,G B, F A,G

B, F A,G C, E
C, E D B, F
∗D D A,G
C, E D B, F
B, F A,G C, E
A,G B, F A,G

and a four-state DFA.

Lecture 22

22.1 Another Language Representation

So far, we’ve dealt with languages using a couple representations. In general, lan-
guages are sets, but we’ve seen we can represent regular languages using various
types of automata as well as regular expressions. We also saw that extending au-
tomata to gain power is not a trivial task (e.g. adding nondeterminism does not
give DFAs more power). However, there is another representation that may be
easier to extend: a grammar.

Consider the following DFA D = 〈Q, Σ, δ ,q0, F 〉 recognizing multiples of 3 in
binary:

q0start q1 q2

0

1 0

1 0
1

We can represent each edge in the following way:

A→ αB (A,B ∈ Q), (α ∈ Σ)

C → ε (C ∈ F)

135

136 LECTURE 22.

Resulting in the following ‘rules’1:

q0 → 0q0

q0 → 1q1

q0 → ε

q1 → 0q2

q1 → 1q0

q2 → 0q1

q2 → 1q2

This form of representing a language is called a grammar. In order to see
whether or not a grammar ‘recognizes’ a particular string, you start with the start
symbol (in this case q0) and use the rules above as ‘replacement rules’, where you
are allowed to replace something on the left of an arrow with whatever comes to
the right. For example, to derive the string ‘110’ we would use this series of re-
placements:

q0 ⇒ 1q1 ⇒ 11q0 ⇒ 110q0 ⇒ 110

Note how the last step replaces q0 with ε, corresponding to the rules above.

Definition 22.1.1. Formally, a context-free grammar G is a 4-tuple: G = 〈V ,T , P, S〉:

• V is a finite set of symbols called variables or nonterminals. These are things
that appear to the left of an arrow. In our example above, V = {q0,q1,q2}

• T is a finite set of symbols called terminals or terminal symbols. These are all
symbols that appear in any rule but never appear on the left of a rule (this is
what makes it ‘context-free’). Again, per our example, T = {0, 1, ε}

• P is the (finite) set of rules themselves, often called (somewhat boringly) rules
or productions.

• S ∈ V is the start symbol; for our case S = q0.

It should be easy to see that using the above method of converting NFAs to
grammars, one will always end up with productions yielding exactly one nonter-
minal followed by one terminal symbol. However, this is a representation of a
language that is easily modified, which begs the question: can we use it to recog-
nize more than just regular languages? It turns out, by allowing nonterminals to

1sometimes we abbreviate multiple rules with the same left-hand side with ‘|’ representing ‘or’,
e.g. q0 → 0q0 | 1q1 | ε

22.2. (*) CONVERTING REGULAR LANGUAGES TO GRAMMARS 137

appear to the right of terminal symbols (in the body of a production) we can do
just that. Consider the grammar below:

S → 0S1 | 01

It is immediately clear that any string (and only strings) from the language L =
{0n1n | n ∈ N} can be derived from this grammar. For example: S ⇒ 0S1 ⇒
00S11⇒ 0011

We’ve been using ‘⇒’ informally, so we should define what it actually means

Definition 22.1.2. Let G = 〈V ,T , P, S〉 be a grammar. Let αAβ ∈ (V ∪T)∗, where
A ∈ V , and let A→ γ be a production. Then we say αAβ ⇒

G
αγ β or αAβ ⇒ αγ β if G

is understood. ‘⇒’ is read as derives.

Analogous to defining the extended transition function, we want to extend the
derives relationship to account for multiple steps.

Definition 22.1.3. Let G be a grammar as above.

Basis For any string α ∈ (T ∪V)∗, we say α
∗
⇒
G
α .

Induction If α
∗
⇒
G
β and β ⇒

G
γ then α

∗
⇒
G
γ .

Again, if G is understood we would write α
∗
⇒ γ

Given the above, we can now define the language of a grammar:

Definition 22.1.4. Let G = 〈V ,T , P, S〉 be a grammar. The language of G is written
L(G) and is defined as

L(G) =

{
w ∈ T ∗ | S

∗
⇒
G

w

}
22.2 (*) Converting Regular Languages to Grammars

We can also now formalize how to convert a regular language to a grammar.

Theorem 22.2.1. Given a DFA D = 〈Q, Σ, δ ,q0, F 〉, we can construct a grammar G =
〈Q, Σ, P,q0〉 in the following way:

• Notice: V = Q , T = Σ, and the start symbol S = q0

• For all q, r ∈ Q and a ∈ Σ such that δ (q,a) = r , add the production q → ar to P

• For all f ∈ F , add the production f → ε to P

138 LECTURE 22.

Then L(D) = L(G).

Proof. It suffices to show that the extended transition function and the grammar
agree on all strings derivable from the start state. Symbolically:

δ̂ (q0,w) = r ⇐⇒ q0
∗
⇒
G

wr

Both directions proceed by induction on |w |. Notice the base case (w = ε) is trivially
true by definition:

δ̂ (q0, ε) = q0 ⇐⇒ q0
∗
⇒
G

q0

Let w = xa where x ∈ Σ∗ and a ∈ Σ

(⇒) Letting δ̂ (q0, x) C p, our inductive hypothesis is δ̂ (q0, x) = p ⇒ q0
∗
⇒
G

xp

r = δ̂ (q0, xa) = δ (δ̂ (q0, x),a) = δ (p,a)

Since we have δ (p,a) = r , then by construction of G, we have ‘p → ar ’ ∈ P . So

q0
∗
⇒
G

xp ⇒
G

xar

∴ q0
∗
⇒
G

wr

Note: if r ∈ F , then ‘r → ε’ ∈ P so δ̂ (q0,w) ∈ F ⇒ q0
∗
⇒
G

w

(⇐) Here, our inductive hypothesis is for any p ∈ V :

q0
∗
⇒
G

xp ⇒ δ̂ (q0, x) = p

Given q0
∗
⇒
G

xar , there must be an intermediate step such that

q0
∗
⇒
G

xp ⇒
G

xar

for some variable p, which implies the rule ‘p → ar ’ ∈ P . Given the construc-
tion of G, this means the corresponding state p has a transition δ (p,a) = r .
So

δ̂ (q,w) = δ̂ (q, xa) = δ (δ̂ (q, x),a)

= δ (p,a)

= r

�

Lecture 23

23.1 Sentential Forms

It is useful to talk about any strings derivable from a grammar, including those
with nonterminal symbols. These strings have a special name:

Definition 23.1.1. Let G = 〈V ,T , P, S〉 be a context-free grammar. Then any string
α ∈ (V ∪T)∗ such that S

∗
⇒ α is a sentential form.

We can also differentiate between left-sentential forms (where S
∗
⇒
lm

α) and right-

sentential forms (where S
∗
⇒
rm

α).

Notice that L(G) = {w ∈ T ∗ |w is a sentential form of G}

Sentential forms, the⇒ and
∗
⇒ operators. Leftmost and rightmost derivations.

23.2 Parse Trees

Parse trees, yield of a parse tree is the concatenation of leaves (which may or may
not be terminal). We’re primarily interested in those parse trees which start at S
and yield a string in L(G)

Equivalence with Derivations.

Theorem 23.2.1. Let G = 〈V ,T , P, S〉 be a context free grammar, and suppose we have a
parse tree with root labeled by variable A and with yield w , where w ∈ T ∗. Then there is a
leftmost derivation A

∗
⇒
lm

w in grammar G

Proof. The proof is by induction on the height of the parse tree.

Basis:
We start the base case at a height of 1, so the tree must be as below:

139

140 LECTURE 23.

N

w0 w1 wk−1◦ ◦ ◦

Since this is a parse tree, there must be a production A → w . So A
∗
⇒
lm

w is a

leftmost production.

Induction: If the height of the tree is n > 1, then the tree must be of the following
form:

N

X0 X1 Xk−1

w0 w1 wk−1

◦ ◦ ◦

The X ’s are either terminals or variables.

1. If Xi is a terminal, define wi to be the string consisting of Xi alone.

2. If Xi is a variable, then it must be the root of some subtree with a yield
of terminals, which we shall call wi . Note that in this case, the subtree
is of height less than n, so the inductive hypothesis applies to it. That is,
there is a leftmost derivation Xi

∗
⇒
lm

wi

First note that w = w0w1 . . .wk−1

We construct the leftmost-derivation as follows. First, start with the deriva-
tion A ⇒

lm
X0X1 . . .Xk−1. Then for each i = 0, 1, . . . ,k − 1 we show that A

∗
⇒
lm

w0w1 . . .wi−1XiXi+2 . . .Xk−1. To do so, we need another induction on i.

Sub-Basis: For i = 0, we already know A
∗
⇒
lm

X0X1 . . .Xk−1

Sub-Induction: Our inductive hypothesis isA
∗
⇒
lm

w0w1 . . .wi−2Xi−1Xi . . .Xk−1.

1. If Xi−1 is a terminal, do nothing. However, we mentally replace Xi−1
as the terminal string wi−1. Therefore we have

A
∗
⇒
lm

w0w1 . . .wi−2wi−1Xi . . .Xk−1

23.2. PARSE TREES 141

2. If Xi−1 is a variable, continue with a derivation of wi−1 from Xi−1,
in the context of the derivation being constructed. That is, if this
derivation is

Xi−1
∗
⇒
lm

α0
∗
⇒
lm

α1 · · ·
∗
⇒
lm

wi−1

then we proceed with

w0w1 · · ·wi−2Xi−1Xi · · ·Xk−1
∗
⇒
lm

w0w1 · · ·wi−2α0Xi · · ·Xk−1

∗
⇒
lm

w0w1 · · ·wi−2α1Xi · · ·Xk−1

...
∗
⇒
lm

w0w1 · · ·wi−2wi−1Xi · · ·Xk−1

which is a derivation A
∗
⇒
lm

w0w1 · · ·wi−1XiXi+1 · · ·Xk−1.

�

The language L(G) of a grammar G.
Originally devised by Noam Chomsky and others to study natural language.

This did not succeed very well, but they found heavy use in programming lan-
guage syntax and parsing.

Example 23.2.2. L = {anbmcn | m,n ∈ N}

S → aBc | ac

B → bB | b

Example 23.2.3. L =
{
aib jck | i ≤ j

}
Here it is easier to consider a subset of the language first: L =

{
aib j | i ≤ j

}
A→ aAb | B

B → Bb | ab | b

Now, we can augment it by adding any number of c’s to the right:

S → A | AC

C → cC | c

142 LECTURE 23.

A grammar for expressions in arithmetic:

E → E + E

E → E − E

E → E ∗ E

E → E/E

E → (E)

E → c

E → v

Parse tree for v + c −v ∗ (v + c).
Conventions and shorthand: head of first production is start symbol, can col-

lapse productions with same head with the | separator, etc.

Lecture 24

Ambiguity. Example: two parse trees for c+c ∗c. One is “better” than the other, be-
cause it more closely resembles the intended evaluation order given by the prece-
dence and associativity rules (operators applied to left and right siblings only).
Removing ambiguity is a good thing to eliminate “bad” parse trees, if it is possible
(it is not always possible).

Recall the grammar for arithmetic expressions from before:

E → E + E | E − E | E ∗ E | E/E | (E) | c | v

We can build an equivalent, unambiguous grammar whose parse trees properly re-
flect the order of evaluation. Idea: define a hierarchy of three syntactic categories
(variables): E (expression), T (term), and F (factor), based on the three precedence
levels: +,− (lowest), ∗, / (middle), and atomic and parenthesized expressions (high-
est), respectively. Each category generates just those expressions whose top-level
operator has at least the corresponding precedence (E for any operator, T for ∗, /
and above, and F for only the highest). So the equivalent, unambiguous grammar
is

E → E +T | E −T | T

T → T ∗ F | T /F | F

F → c | v | (E)

So, for example: E
∗
⇒ T ±T ±T ±· · ·±T , andT generates a series of factors separated

by ∗ and /, etc. Note that instead of E → E +T | E −T | T , we could have used the
equivalent E → T +E | T −E | T . We didn’t, however, because the latter productions,
while generating the same sentential forms, do not correctly reflect the left-to-right
associativity of the + and − operators: the last operator applied is the rightmost.

Example: parse tree for c + c ∗ c ∗ (c + c), etc.

143

Lecture 25

25.1 Pushdown Automata

We’ve seen that we can use grammars to derive more powerful languages, but the
process of ‘deriving’ strings from a grammar seems somewhat distinct from using
an automaton to ‘accept’ a string. It’s as if grammars require user intervention to
choose a parse tree while automata run on their own. In fact, this distinction is
superficial and we can construct a new type of automaton that recognizes context-
free languages. We call these automata pushdown1 automata.

A pushdown automaton is essentially an ε-NFA with one addition: it has a
stack that it can use for side calculations.

δ

Finite Control

0 · · · 0

Input Tape

(a) A Finite Automaton

δ

Finite Control

0 · · · 0

Input Tape

Z0X· · ·

Stack

(b) A Pushdown Automaton

1pushdown comes from the British-English name for a stack — a pushdown store

145

146 LECTURE 25.

Example 25.1.1 (L = {0n10n | n ∈ N}).

q0start q1 q2

0,X/XX
0,Z0/XZ0

1,X/X
1,Z0/Z0

0,X/ε

ε,Z0/Z0

A transition labeled as ‘a, x/Y ’ means that on reading symbol a, replace x at the
top of the stack with Y

We can formalize this just as we did for other types of automata, however now
there are more ‘moving parts’, so there are more elements in the tuple for PDAs.
Things to notice from the above:

• The stack can have different symbols from the input (e.g. {Z0,X })

• The stack needs to have some start symbol (e.g. Z0)

• The transition function has more information to account for pushing/popping
the stack

25.2 Formal Definition

Definition 25.2.1 (Pushdown Automata). A pushdown automaton P is a seven-tuple
P = 〈Q, Σ, Γ, δ ,q0,Z0, F 〉 where each component is as follows:

• Q is a finite set of states

• Σ is the input alphabet

• Γ is the stack alphabet

• δ : Q × Σ × Γ → P (Q × Γ∗) is the transition function. Notice that now, δ takes
as input a triple — one state, one input symbol, and one stack symbol — and
returns a set of state/stack string pairs. The input stack symbol is popped off
the stack, while the output string is pushed onto the stack.

• q0 is the start state

• Z0 is the start stack symbol

• F is the set of accepting states.

25.3. INSTANTANEOUS DESCRIPTIONS 147

25.3 Instantaneous Descriptions

With the addition of a stack, tracing the computation of a PDA through its tran-
sition function is significantly more complex. To simplify this, we use the idea of
a PDA transitioning from configuration to configuration, rather than merely from
state to state. In order to represent the configuration, we need all the information
about the PDA at any given time. The following three items suffice:

• q ∈ Q , the state that the PDA is in.

• w ∈ Σ∗, the unconsumed portion of the input.

• γ ∈ Γ∗, the contents of the stack. By convention, the topmost element of the
stack is shown to the left.

Definition 25.3.1. An instantaneous description of a PDA is a 3-tuple consisting of
the three elements listed above.

To represent chaining instantaneous descriptions as in the process of a compu-
tation, we create the turnstile relation ‘`’

Definition 25.3.2. Let P = 〈Q, Σ, Γ, δ ,q0,Z0, F 〉 be a PDA; q ∈ Q be states; a ∈ Σ be an
input symbol; and X ∈ Γ be a stack symbol. If δ (q,a,X) contains the pair (p,α), then
we say (q,aw,Xβ) `

P
(p,w,αβ) or just (q,aw,Xβ) ` (p,w,αβ) if P is understood.

This is meant to reflect the idea that we consume a single symbol a, replace X
on the stack with α , and move from state q to state p

Now we can define our analogue of the extended transition function: turnstar.

Definition 25.3.3.

Basis: I
∗
` I for any ID I

Induction: If I
∗
` J and J ` K then I

∗
` K .

Example 25.3.4. Consider PDA from Example 25.1.1 on input 00100. We can trace
the computation with the following sequence of ID’s:

(q0, 00100,Z0) ` (q0, 0100,XZ0)

` (q0, 100,XXZ0)

` (q1, 00,XXZ0)

` (q1, 0,XZ0)

` (q1, ε,Z0)

` (q2, ε,Z0)

148 LECTURE 25.

25.4 Acceptance Criteria

Acceptance by final state

Definition 25.4.1. Let P = 〈Q, Σ, Γ, δ ,q0,Z0, F 〉 be a PDA. Then define the language
accepted by P by final state L(P) as follows:

L(P) B
{
w | (q0,w,Z0)

∗
` (q, ε,α)where q ∈ F

}

Acceptance by empty stack

Definition 25.4.2. Let P be a PDA as above. Then define the language accepted by P
by empty stack N (P) as follows:

N (P) B
{
w | (q0,w,Z0)

∗
` (q, ε, ε)

}
Theorem 25.4.3. Let L be any language. The following are equivalent:

1. L = L(P) for some PDA P .

2. L = N (P) for some PDA P .

3. L = L(G) for some CFG G.

Proof. We only prove (1) ⇐⇒ (2) for now.

(N (P) ⇒ L(P ′)) The main idea is to start with a PDA PS = 〈Q, Σ, Γ, δS ,q0,Z0〉, which
recognizes by empty stack, and add the transition ‘ε,Z0/ε’ from every state
to a new accepting state to form PA such that L(PA) = N (PS). However, notice
that there might already be transitions of this form, so naïvely adding in these
transitions could result in a PDA that recognizes a different language. In
order to deal with this ambiguity, we can change the start stack symbol and
add a new start state to immediately push the old start stack symbol onto the
stack. This is illustrated in figure 25.2.

25.4. ACCEPTANCE CRITERIA 149

r0start q0 rf
ε,X0/Z0X0

ε,X0/ε

ε,X0/ε

ε,X0/ε

ε,X0/ε

PS

PA

Figure 25.2

To show this works, we must define PA formally:

PA B 〈Q ∪
{
r0, rf

}
, Σ, Γ ∪ {X0}, δA, r0,X0,

{
rf

}
〉

where we construct δA as an extension of δS with the additional rules:

• δA(r0, ε,X0) = {(q0,Z0X0)}.

• For all states q ∈ Q , inputs a ∈ Σ ∪ {ε} and stack symbols Y ∈ Γ,
δA(q,a,Y) = δS (q,a,Y) ∪ (rf , ε).

Now we must show for arbitrary w ∈ Σ∗,w ∈ N (PS) ⇐⇒ w ∈ L(PA).

(⇒) We assume that (q0,w,Z0)
∗
`
PS
(q, ε, ε) for some state q.

First notice that given an arbitrary PDA P , if (q, x,α)
∗
`
P
(r ,y, β), it is also

true that (q, xw,αγ)
∗
`
P
(r ,yw, βγ) (this can be easily shown by induction).

So, we can insert the new start stack symbol into the assumed computa-
tion: (q0,w,Z0X0)

∗
`
PN
(q, ε,X0). Combining this with the construction for

PA we have

(r0,w,X0) `
PA
(q0,w,Z0X0)

∗
`
PA
(q, ε,X0)

∗
`
PA
(rf , ε, ε)

So PA accepts w by final state.

(⇐) This is clear from the fact that the only way to reach the accepting state
is through a transition where the stack would have been empty in PS .

(L(P) ⇒ N (P ′)) We’ll save this for next time.

�

Lecture 26

(L(P) ⇒ N (P ′)) The basic idea is to add a ‘drain’ state that is reachable from all
previous accepting states, whose only purpose is to empty the stack. This is
illustrated in Figure 26.1

r0start q0 rf
ε,X0/Z0X0

ε, Γ/ε

ε, Γ/ε

ε, Γ/ε

ε, Γ/ε

PA

PS

Figure 26.1

Notice that we need to add a fresh stack symbol X0 to avoid PA having an
empty stack where it should not accept.

Theorem 26.0.1. Let L = L(PA) for some PDA PA = 〈Q, Σ, Γ, δA,q0,Z0, F 〉. Then
there exists a PDA PS such that L = N (PS)

Proof. The proof is just a formal treatment of Figure 26.1. Let

PS = 〈Q ∪ {p0,p}, Σ, Γ ∪ {X0}, δS , r0,X0, ∅〉

where we δS is an extension of δA with the following additions:

1. We start by pushing the old start stack symbol onto the stack, so

δS (r0, ε,X0) = {(q0,Z0X0)}.

151

152 LECTURE 26.

2. All accepting states can enter the ‘drain state’ rf if there is no input left:

(∀q ∈ Q)(∀Y ∈ Γ ∪ {X0}),

δS (q, ε,Y) = δA(q, ε,Y) ∪ (rf , ε).

3. The ‘drain’ state rf empties the stack:

(∀Y ∈ Γ ∪ {X0}), δS (rf , ε,Y) =
{
(rf , ε)

}
.

To show the construction works, we must show for w ∈ Σ∗, w ∈ N (PS) ⇐⇒
w ∈ L(PA).

(⇒) Since we added a fresh stack symbol X0 to the bottom of the stack, the
only way to remove this symbol is to enter the drain state rf , since any
state ‘inside’ PA can’t reference X0 by construction. So every accepting
computation in PS must be of the form:

(r0,w,X0) `
PS
(q0,w,Z0X0)

∗
`
PS
(q, ε,αX0)

∗
`
PS
(rf , ε, ε)

for q ∈ F . But this must follow an accepting path in PA, namely

(q0,w,Z0X0)
∗
`
PS
(q, ε,αX0)

⇒ (q0,w,Z0)
∗
`
PA
(q, ε,α)

(⇐) We assume for some q ∈ F ,α ∈ Γ∗ that (q0,w,Z0)
∗
`
PA
(q, ε,α). Since δA ⊆ δF

we can add an arbitrary stack string to the bottom of the stack on both
sides:

(q0,w,Z0X0)
∗
`
PS
(q, ε,αX0)

Adding in the new start and ‘drain’ states gives

(r0,w,X0) `
PS
(q0,w,Z0X0)

∗
`
PS
(q, ε,αX0)

∗
`
PS
(rf , ε, ε)

�

26.1 Pushdown Automata From Grammars

Now we aim to show that any grammar can be converted to an equivalent push-
down automata. The general idea is to simulate the derivations entirely in the
stack of the PDA, so ultimately our PDA will have only one state. We use leftmost
derivations out of convenience, since PDAs read their input left-to-right. Also,
since the PDA has only one state, it is more convenient to use empty-stack as the
acceptance criterion.

26.1. PUSHDOWN AUTOMATA FROM GRAMMARS 153

Definition 26.1.1. Consider a grammar G = 〈V ,T , P, S〉. An arbitrary left-sentential
form of this grammar looks like xAα for x ∈ T ∗, A ∈ V , and α ∈ (V ∪T)∗. Then we
call Aα the tail of this (left-)sentential form. If the sentential form is only terminals,
its tail is ε.

Each step of the computation of the PDA should directly follow a step in the
leftmost derivation of the input string. To do so, we want to guarantee that if the
current sentential form of the derivation looks like xAα as above, then the PDA will
have consumed x as input while the stack will consist of the tail of the derivation
(with A at the top). Symbolically, if we use w ∈ T ∗,w = xy as input, then the
sentential form xAα will correspond to the ID (q,y,Aα).

Definition 26.1.2. Let G = 〈V ,T ,Q, S〉. Then construct the PDA

P = 〈{q},T ,V ∪T , δ ,q, S, ∅〉

where the transition function is constructed by the following rules:

1. For each A ∈ V

δ (q, ε,A) = {(q, β) | ‘A→ β ′ ∈ Q}

Note that β ∈ (V ∪T)∗. This ensures the tails of sentential forms are the only
strings to appear on the stack.

2. For each a ∈ T

δ (q,a,a) = {(q, ε)}

This ensures we only pop terminal symbols off the stack.

Claim 26.1.3. For G and P as defined above, L(G) = N (P).

Before we prove the claim, first it is helpful to see an example:

Example 26.1.4. Lets use a simplified version of the expression grammar we have
used previously:

G = 〈{E}, {v, c},Q, E〉

where Q consists of the single production

E → E + E | E ∗ E | (E) | v | c

So, we construct P = 〈{q}, {v, c}, {v, c, E}, δ ,q, E, ∅〉 with δ given by

δ (q, ε, E) = {(q, E + E), (q, E ∗ E), (q, (E)), (q,v), (q, c)}

δ (q,v,v) = {q, ε}

δ (q, c, c) = {q, ε}

154 LECTURE 26.

Written graphically gives the following transition diagram:

qstart

ε, E/E + E
ε, E/E ∗ E
ε, E/(E)
ε, E/v
ε, E/c
v,v/ε
c, c/ε

Proof of Claim 26.1.3. We aim to show w ∈ L(G) ⇐⇒ w ∈ N (P)

(⇒) If w ∈ L(G) then there is a leftmost derivation

γ0 ⇒
`m

γ1 ⇒
`m
· · · ⇒

`m
γn−1

Where S = γ0 and w = γn−1

Each γi is a left-sentential form, so we can break it into its head and tail:

γi = xiαi

Letting yi be the string such that w = xiyi , we aim to show for any i ∈ N, 0 ≤
i < n

(q,w, S)
∗
`
P
(q,yi ,αi)

Basis: For i = 0, γ0 = S , so x0 = ε and yi = w . So we are trying to show that
(q,w, S)

∗
`
P
(q,w, S). But this is true by definition.

Induction: The inductive hypothesis is (q,w, S)
∗
`
P
(q,yi ,αi), and we aim to

show (q,w, S)
∗
`
P
(q,yi+1,αi+1)

Notice that αi is a tail, so it begins with some stack symbol A. In addi-
tion, the derivation step γi ⇒

`m
γi+1 involves replacing A by the body of

one of its productions, say β .
By construction of δ , we can replace A at the top of the stack by β , then
consume any terminals on the stack by reading in their corresponding

26.1. PUSHDOWN AUTOMATA FROM GRAMMARS 155

input symbols. This produces the ID (q,yi+1,αi+1), which corresponds to
the next sentential form γi+1.

Finally, note αn−1 = ε, since γn−1 = w and therefore the tail of γn−1 is
empty.

Therefore (q,w, S)
∗
`
P
(q, ε, ε)

(⇐) We will prove something more general, which will in turn prove this direction
as a corollary.

We seek to show that if (q, x,A)
∗
⇒
P
(q, ε, ε), then A

∗
⇒
G

x . That is, if reading in

x while A is on the stack gives an accepting computation, then A derives x in
the grammar. Again, we show this by induction (this time on the number of
steps in the computation).

Basis: If the PDA reaches an accepting computation on one move, then the
transition function must have δ (q, ε,A) = (q, ε) (since in δ moves on vari-
ables can only read ε). But this rule will only exist in the PDA if A → ε
is a production in G, so clearly it is true that A⇒ ε.

Induction: Here we assume P takes n > 1 moves. Since the nonterminal A is
at the top of the stack, the first move must be of the form δ (q, ε,A) = (q,γ)
where γ is some string in the stack alphabet.

Suppose γ = Y0Y1 . . .Yk−1 (i.e in the grammar we used the production
A→ Y0Y1 . . .Yk−1) for each Yi ∈ (V ∪T). The rest of the moves of the PDA
must consume x and ultimately pop each Yi off the stack. Break up x
into k strings so that x = x0x1 . . . xk−1 where x0 is the portion of input
consumed until Y0 is popped, then x1 is the remaining input until Y1 is
popped, etc. Notice that if Yi is a terminal, then xi = Yi .

From these definitions, we know the following:

(q, xi ,Yi)
∗
` (q, ε, ε)

which by necessity takes a smaller number of steps than the compu-
tation we are using for the proof, so by the inductive hypothesis we
conclude

Yi
∗
⇒ xi

156 LECTURE 26.

Now we have the following derivation

A
∗
⇒
`m

Y0Y1 . . .Yk−1

∗
⇒
`m

x0Y1 . . .Yk−1

...
∗
⇒
`m

x0x1 . . . xk−1

i.e.

A
∗
⇒ x

Letting A = S and x = w , by assumption we have (q,w, S)
∗
` (q, ε, ε) and

by the above we have S
∗
⇒ w .

�

26.2 An Alternative Proof

Let’s do an alternative proof that PDAs and CFGs are the same thing.

Theorem 26.2.1. Let L be a context-free-language. Then there exists a PDA M such that
L = N (M), the language accepted by M by empty stack.

Proof. Let G = (VN ,VT , P, S) be a CFG. We will assume that ε is not in G (extending
the proof to account for this case is not hard and we will skip it). We will assume
that the productions P of G are all in Greibach normal form (GNF). This means that
all productions are of the form

A→ aB1...Bn

or
S → ε

where A and the Bi are variable symbols and a is a terminal symbol. We will not
prove that any CFG can be converted to a CFG in GNF. This also isn’t actually hard.

We define the PDA to be

M = ({q1},VT ,VN , δ ,q1, S, ∅)

where δ (q1,a,A) contains (q1,γ)whenever A→ aγ is a production in P .
(Note that the PDA only needs one state.)

26.2. AN ALTERNATIVE PROOF 157

What this does, obviously, is set up a PDA that mimics the derivation of strings
in the grammar.

Now, consider a production
A→ aα

where α is a sequence of variable symbols as mentioned above as the requirement
for being in Greibach normal form.

Then we have, for any strings x and β , that the use of this production, namely

xAβ →
G

xaαβ

corresponds exactly with transitions in M

a : (q1,Aβ) ` (q1,αβ)

We can now induct on the number of steps in a derivation in the grammar that,
for x,y ∈ V ∗T , A ∈ VN , α, β ∈ V ∗N , a multi-step derivation

xAβ
∗
→ xyα

happens if and only if we can mimic it exactly in the PDA:

y : (q1,Aβ)
∗
` (q1,α)

This means that a string x ∈ V ∗T is derived in G from the start state if and only if
the PDA reads x and empties the stack. �

And now we do the other direction.

Theorem 26.2.2. If L is the language accepted by empty stack by some PDA M , the L =
L(G) for some context free grammar.

Proof. Let
M = (K, Σ, Γ, δ ,q0,Z0, ∅)

be the PDA and let and
G = (VN , Σ, P, S)

be the context free grammar. We let VN be the set of objects of the form

[q,A,p]

where q and p are states in K and A is in Γ, plus the new symbol S . The productions
in P are

1. S → [q0,Z0,q] for each q ∈ K .

158 LECTURE 26.

2.
[q,A,p] → a[q1,B1,q2]...[qm,Bm,qm+1]

for every sequence of states q,q1, ...,qm+1 in K , where p = qm+1, each a ∈ Σ ∪ ε,
and A,B1, ...,Bm ∈ Γ such that

(q1,B1...Bm) ∈ δ (q,a,A)

In the case that m = 0, we have p = q1, (p, ε ∈ δ (q,a,A), and the production is
just

[q,A,p] → a

Intuitively, the productions have been constructed so that a derivation from
left to right (of variable symbols) in G of a sentence x is a simulation of the PDA M
when presented with the input string x .

The idea is that the terminal symbols generated by the grammar are exactly the
symbols read by the PDA, and we use the stack of the PDA to store up the variable
symbols as they are produced by the grammar.

We prove the L(G) = N (M) by (what else?) induction on the number of steps in
the derivation in G, which is equivalent to the number of moves using δ in M . We
need to prove that

[q,A,p]
∗
⇒ x if and only if x : (q,A)

∗
` (p, ε)

If we have that x ∈ L(G), then we have productions

S
∗
⇒ [q0,Z0,q]

∗
⇒ x

for some state q.
But that means that we can continue in the PDA

x : (q0,Z0)
∗
` (q, ε)

which means that x ∈ N (M). Going the other direction is almost the same. If we
have x ∈ N (M) then we have

x : (q0,Z0)
∗
` (q, ε)

This means we can prepend the start symbol production and have

S
∗
⇒ [q0,Z0,q]

∗
⇒ x

so x ∈ L(G).
�

Lecture 27

Give an example using the unambiguous arithmetic expression grammar, giving
an accepting execution trace for the expression c ∗ (c + c).

For (2) =⇒ (3), we make a modification to the book: a restricted PDA is one
that can only push or pop a single symbol on every transition.

Definition 27.0.1. A restricted PDA is a PDA P = (Q, Σ, Γ, δ ,q0,Z0, F) such that, for
every q ∈ Q , a ∈ Σ ∪ {ε}, and X ∈ Γ, the only elements of δ (q,a,X) are of the
following two forms:

1. (r ,YX) for some r ∈ Q and Y ∈ Γ, or

2. (r , ε) for some r ∈ Q .

A transition of form (1.) we call push Y and abbreviate it (r ,push Y). A transition
of form (2.) we call pop and abbreviate it (r ,pop).

This does not decrease the power of a PDA. Restricted PDAs can recognize the
same languages as general PDAs.

Lemma 27.0.2. For every PDA P = (Q, Σ, Γ, δ ,q0,Z0, F), there is a restricted PDA P ′ with
the same input alphabet Σ such that L(P ′) = L(P) and N (P ′) = N (P).

Proof sketch. In this proof (and more generally), the adjective “fresh” refers to an
object that has not appeared before or been mentioned before. The stack alphabet
of P ′ is Γ′ := Γ ∪ {X0}, where X0 is a fresh symbol (i.e., X0 < Γ ∪ Σ) that is also the
bottom stack marker used by P ′. The state set Q ′ of P ′ includes all the states in Q
together with a fresh state p0 < Q used as the start state of P ′ and another fresh state
e, as well as other fresh states described below. The final states of P ′ are those of
P . Thus P ′ := (Q ′, Σ, Γ′, δ ′,p0,X0, F), where the transitions of δ ′ are of the following
types:

1. δ ′(p0, ε,X0) := {(q0,push Z 0)};

2. for all q ∈ Q , δ ′(q, ε,X0) := {(e,pop)};

159

160 LECTURE 27.

3. for every transition (r ,γ) ∈ δ (q,a,X), where q, r ∈ Q , a ∈ Σ ∪ {ε}, X ∈ Γ, and
ε , γ = Yk · · ·Y1 for some k ≥ 1 and Y1, . . . ,Yk ∈ Γ, we replace this transition
in δ ′ as follows: introduce fresh states s0, . . . , sk−1, and, setting sk := r , let
δ ′(q,a,X) :=

{
(s0,pop)

}
. In addition, for all 1 ≤ i ≤ k and all Y ∈ Γ′, include

the transition δ ′(si−1, ε,Y) :=
{
(si ,push Yi)

}
.

4. All other sets δ ′(q,a,X) are empty.

The idea in (3.) is that instead of replacing X by γ on the stack all at once, we
cycle through some new intermediate states, first popping X then pushing on γ
one symbol at a time, eventually arriving at state r . Note that if γ = ε, then the
existing transition is already a pop and need not be replaced. Having X0 always on
the bottom of the stack (and nowhere else) ensures that we don’t empty the stack
by popping X . The only way of getting X0 itself popped is by making a transition
to state e, after which one cannot move.

It is not horrendously difficult to prove by induction on the number of steps of
the trace that

(q,w,αX0) `
∗
P ′ (r , ε, βX0) ⇐⇒ (q,w,α) `∗P (r , ε, β) (27.1)

for all q, r ∈ Q , w ∈ Σ∗, and α, β ∈ Γ. It follows from this that, for all w ∈ Σ∗,

w ∈ L(P ′) ⇐⇒ (∃r ∈ F)(∃γ ∈ Γ∗)[(p0,w,X0) `
∗
P ′ (r , ε,γX0)]

⇐⇒ (∃r ∈ F)(∃γ ∈ Γ∗)[(q0,w,Z0X0) `
∗
P ′ (r , ε,γX0)]

⇐⇒ (∃r ∈ F)(∃γ ∈ Γ∗)[(q0,w,Z0) `
∗
P (r , ε,γ)]

⇐⇒ w ∈ L(P) .

The first equivalence follows from the definition of final-state acceptance in P ′ (re-
member that X0 remains on the bottom of the stack in all states except e). The sec-
ond equivalence takes into account the initial transition from p0 to q0 pushing Z0.
The third equivalence is just (27.1) above, and the last equivalence is the definition
of final-state acceptance in P .

Similarly,

w ∈ N (P ′) ⇐⇒ (∃r ∈ Q ′)[(p0,w,X0) `
∗
P ′ (r , ε, ε)]

⇐⇒ (p0,w,X0) `
∗
P ′ (e, ε, ε)

⇐⇒ (∃r ∈ Q)[(p0,w,X0) `
∗
P ′ (r , ε,X0)]

⇐⇒ (∃r ∈ Q)[(q0,w,Z0X0) `
∗
P ′ (r , ε,X0)]

⇐⇒ (∃r ∈ Q)[(q0,w,Z0) `
∗
P (r , ε, ε)]

⇐⇒ w ∈ N (P) .

The first equivalence is the definition of empty-stack acceptance in P ′. The second
follows from the fact that e is the only state of P ′ at which the stack can be empty.

161

The third follows from the fact that all transitions to e pop X0 (and this can happen
from any state in Q). The fourth takes into account the initial transition from p0 to
q0 pushing Z0. The fifth equivalence uses (27.1) again, and the last is the definition
of empty-stack acceptance in P .

So we have L(P ′) = L(P) and N (P ′) = N (P). �

Now back to showing (2) =⇒ (3) in Theorem 25.4.3. By Lemma 27.0.2, it
suffices to define a grammar equivalent to a given restricted PDA using empty-
stack acceptance. Suppose we are given a restricted PDA P = (Q, Σ, Γ, δ ,q0,Z0)

(the final states are irrelevant). Our grammar GP = (V ,T , P, S) has the following
ingredients:

• a special start symbol S ,

• terminal set T := Σ,

• variables (other than S) of the form [pXq] for all states p,q ∈ Q and stack
symbols X (note that we treat this as a single variable symbol),

• The following productions:

1. for every state r ∈ Q , the production

S → [q0Z0r]

(these are the only productions with head S),

2. for every transition (r ,pop) ∈ δ (q,a,X), where q, r ∈ Q , a ∈ Σ ∪ {ε}, and
X ∈ Γ, the production

[qXr] → a

and

3. for every transition (r ,push Y) ∈ δ (q,a,X), where q, r ∈ Q , a ∈ Σ ∪ {ε},
and X ,Y ∈ Γ, the productions

[qXt] → a[rYs][sXt]

for all states s, t ∈ Q .

The idea of the variable [pXq] is to generate exactly those strings in Σ∗ that the PDA
can read going from state p to state q, where the net effect on the stack is having the
single symbol X popped off at the end. That is, we want the following equivalence
for all states p,q ∈ Q , stack symbols X , and strings w ∈ Σ∗:

[pXq]
∗
⇒ w ⇐⇒ (p,w,X) `∗ (q, ε, ε) . (27.2)

162 LECTURE 27.

This can be proved by induction, and it follows from this and the S-productions
that

w ∈ L(GP) ⇐⇒ S
∗
⇒ w

⇐⇒ (∃r ∈ Q)[[q0Z0r]
∗
⇒ w]

⇐⇒ (∃r ∈ Q)[(q0,w,Z0) `
∗ (r , ε, ε)]

⇐⇒ w ∈ N (P) .

So L(GP) = N (P) as desired.
We’ll start with a simple PDA as an example of this construction. Let

P = ({q,p}, {0, 1}, {X ,Z0}, δ ,q,Z0) ,

where

1. δ (q, 0,Z0) =
{
(q,push X)

}
.

2. δ (q, 0,X) =
{
(q,push X)

}
.

3. δ (q, 1,X) =
{
(p,pop)

}
.

4. δ (p, 1,X) =
{
(p,pop)

}
.

5. δ (p, ε,Z0) =
{
(p,pop)

}
.

One can check that N (P) = {0n1n | n ≥ 1}. The grammar GP then has the following
productions:

S → [qZ0q] | [qZ0p]

[qXp] → 1
[pXp] → 1
[pZ0p] → ε

[qZ0q] → 0[qXq][qZ0q] | 0[qXp][pZ0q]

[qZ0p] → 0[qXq][qZ0p] | 0[qXp][pZ0p]

[qXq] → 0[qXq][qXq] | 0[qXp][pXq]
[qXp] → 0[qXq][qXp] | 0[qXp][pXp]

163

It will be easier to read if we rename the variables by single letters: A = [qXp],
B = [pXp], C = [pZ0p], D = [qZ0q], E = [qZ0p], F = [qXq], G = [pZ0q], and H = [pXq]:

S → D | E

A→ 1 | 0FA | 0AB
B → 1
C → ε

D → 0FD | 0AG
E → 0FE | 0AC
F → 0FF | 0AH

This grammar can be simplified a lot. Notice that there are noG- or H -productions;
this means that if eitherG or H show up in any sentential form, they can never dis-
appear, and so no string of all terminals can be derived. This means that the second
D-production and the second F -production are useless and can be removed. Also,
since B only derives 1 and C only derives ε, we can bypass these two productions,
substituting 1 and ε directly for B and C respectively in the bodies of the other
productions:

S → D | E

A→ 1 | 0FA | 0A1
D → 0FD
E → 0FE | 0A
F → 0FF

Now notice that if F ever shows up in any sentential form, it can never disappear.
Thus any productions involving F are useless and can be removed:

S → D | E

A→ 1 | 0A1
E → 0A

Removing F eliminated the only remaining D-production, and so any productions
involving D are useless and can be removed:

S → E

A→ 1 | 0A1
E → 0A

Finally, the only places where E occurs are in the two productions S → E and
E → 0A, and so we can bypass the E-production entirely:

S → 0A
A→ 1 | 0A1

164 LECTURE 27.

Now it should be evident that the language of this grammar is indeed N (P) =
{0n1n | n ≥ 1}.

Lecture 28

28.1 Pumping Lemma For CFGs

The pumping lemma for context-free languages: proof and applications

Example 28.1.1. L = {ambncmdn | m,n ≥ 0}

Example 28.1.2. L = {anbncn | n ≥ 0}

Example 28.1.3. L =
{
ajbkc` | 0 ≤ j ≤ k ≤ `

}
Lemma 28.1.4 (Pumping Lemma for CFLs). Let L be any context-free language. There
exists p > 0 such that, for any string s ∈ L with |s | ≥ p, there exist strings v,w, x,y, z
such that: (i) s = vwxyz, (ii) |wxy | ≤ p, (iii) |wy | > 0 (i.e., wy , ε); and for all i ≥ 0,
vw ixyiz ∈ L.

Proof. Since L is context-free, there exists a CFG G such that L = L(G). Let n be the
number of nonterminals of G, and let d be the maximum of 2 and the body length
of any production of G. Note that parse trees of G have branching at most d , and
so any parse tree of depth ≤ n has ≤ dn many leaves.

Let p := dn+1. Given any string s ∈ L such that |s | ≥ p, let T be a minimum-size
parse tree of G yielding s. Since |s | ≥ p > dn , T must have depth ≥ n + 1. Let q be
a maximum-length path in T from the root to a leaf. Since q has maximum length,
the internal nodes of q, starting at the bottom, have heights 1, 2, 3, . . . , that is, there
are no skips in the heights; the height of a node along q is given by the length of q
below that node. Thus the first n + 1 internal nodes along q, counting up from the
leaf, all have height ≤ n + 1. By the pigeonhole principle, some nonterminal A of G
is repeated among the internal nodes of heights ≤ n + 1 along q. Let A1 and A2 be
two such nodes both labeled A, of heights h1 and h2, respectively, and assume that
h1 < h2 (and we know that h2 ≤ n + 1).

Now define v,w, x,y, z to be the following strings:

• v is the portion of T ’s yield that lies to the left of the yield of (the subtree
rooted at) A2.

165

166 LECTURE 28.

• w is the portion of A2’s yield that lies to the left of the yield of A1.

• x is the yield of A1.

• y is the portion of A2’s yield that lies to the right of the yield of A1.

• z is the portion of T ’s yield that lies to the right of the yield of A2.

Then clearly, vwwxyz = s, which is the yield of T . Moreover, wxy is the yield of A2,
and because A2’s tree has depth h2, it follows that |wxy | ≤ dh2 ≤ dn+1 = p. We save
the verification that |wy | > 0 for last.

Let W be the “wedge” obtained from the tree at A2 by pruning at A1. W has
yield wy. Let T0 be the tree obtained from T by removing W and grafting the tree
at A1 onto A2. Then T0 is a parse tree of G yielding vxz = vw0xy0z. This shows that
vw0xy0z ∈ L. For any i > 0, let Ti be the tree obtained from T0 by inserting i many
copies of W , one on top of another, starting at A2, and grafting on A1’s tree to the
bottommost copy ofW . ThenTi is a parse tree ofG yielding vw ixyiz, and hence the
latter string is also in L. This shows that vw ixyiz ∈ L for all i ≥ 0.

Finally we verify that |wy | > 0. Suppose |wy | = 0. Then w = y = ε, and so
s = vxz, which is the yield of T0. But T0 is strictly smaller than T , which contradicts
the choice of T as a minimum size tree yielding s. Thus |wy | > 0. �

Working arithmetic expression evaluator in C?

Lecture 29

29.1 Turing Machines

What we now refer to as a Turing Machine was invented for the purpose of ana-
lyzing “that which is considered to be ‘computation’ ”. The Turing Machine quite
literally is the abstract notion of a “computer”, as summarized by what we call the
Church-Turing Thesis, after Alonzo Church and Alan Turing:

Every action that we would intuitively think to be a “computation” can
be computed by a Turing Machine.

Definition 29.1.1. A TM is a tuple (Q, Σ, Γ, δ ,q0,B, F), where

• Q is a finite set (the state set),

• Σ is an alphabet (the input alphabet),

• Γ is an alphabet (the tape alphabet), and we have Σ ⊆ Γ (by relabeling if neces-
sary, we also can assume that Γ ∩Q = ∅),

• δ is the transition function, a partial function Q × Γ → Q × Γ × {L,R},

• q0 ∈ Q is the start state,

• B ∈ Γ − Σ is the blank symbol, and

• F ⊆ Q is the set of accepting, or final, states.

This is similar to, but more general than, previous notions of automata and of
abstract versions of “computing devices”. The TM has a tape head positioned over
some symbol on the tape, which extends infinitely to the left and write. From any
given state, reading the symbol over which the tape head is positioned, the TM
writes a symbol back onto the tape (this could be the same symbol already there),
moves to the right or to the left, and changes state (which could be the same state).

167

168 LECTURE 29.

As we have done throughout this course, we will be interested in a computa-
tional process that reads an input string and possibly transitions eventually to an
accepting/final state. If this happens, the TM will be said to halt and accept the input
string. If the TM reaches an accepting state, it won’t read any more symbols, and it
won’t care if it has read all the symbols or if there are any symbols still on the tape.

We note that the actions of TMs that halt on given inputs are finite but un-
bounded. That is, since the TM halts, it will halt after a finite number of steps,
and thus it will have read only finitely many symbols from the tape. But there is
no integer K that bounds the number of steps or the number of symbols that are
read; given any fixed K , we can describe a TM and an input string such that the
TM reads more than K distinct symbols and takes more than K steps before it halts.

29.2 Examples

Given the Church-Turing thesis, we would expect that for anything we would
think of as a computation, we should be able to devise a TM that performs that
computation. Since we have said above that a TM is a more general notion of com-
putation than what we have seen before, we should be able to compute things with
a TM that we could not compute will less general devices.

Example computations: recognizing {0n1n | n ≥ 0}, recognizing palindromes,
etc. Basic ops: moving a block down the tape (to make room), copying a string,
reversing a string, binary increment/decrement, converting unary to binary and
vice versa, unary and binary addition, unary multiplication, etc., proper subtrac-
tion, monus, etc. (spill over to next lecture)

• Recognizing {0n1n |n ≥ 0}

q0start q1 q2 q3

q4

0/ ,R

/ ,R

1/1,R
0/0,R

/ , L 1/ , L

1/1, L
0/0, L

/ ,R

– In q0, reading 0, write B, change to q1, and move R. (We have now read
and blanked the leftmost 0.)

29.2. EXAMPLES 169

– In q1, reading 0 or 1, write that back, stay in q1, and move R. (Read and
move past all the zeros and ones until we move right to the blank that
is just beyond the input data.)

– In q1, reading B, write B, change to q2, and move L. (We are at the blank
just past the rightmost non-blank. Change state to reflect that fact and
move to the position of the rightmost non-blank.)

– In q2, reading 1, write B, change to q3, and move L. (We have now read
and blanked the rightmost 1.)

– In q3, reading 0 or 1, write that back, stay in q3, and move L. (Read and
move past all the zeros and ones until we move left to the blank that is
just before the ((now modified)) input data.)

– In q3, reading B, write B, change to q0, and move R. (Go back to the top
of the loop.)

– In q0, reading B, write B, change to q4, and move R. (q4 is the one final
state; we’re done.)

• Recognizing Palindromes

q0start

q1

q2

q3

q4

q5

q6

0/ ,R

1/ ,R

/ ,R

1/1,R
0/0,R

/ , L

1/1,R
0/0,R

/ , L

0/ , L/ , L

/ , L

1/ , L

1/1, L
0/0, L

/ ,R

170 LECTURE 29.

Very similar to the previous example. We need to read the leftmost symbol,
write the blank, and retain the knowledge (by moving to one of two different
states) of whether we read a 0 or a 1. We then move all the way to the blank
just past the (possibly modified) input data. If the rightmost symbol matches
the state we are in, that has retained the knowledge of what we read as the
leftmost symbol, we blank the rightmost symbol, change to a “moving left”
state, and start moving left. We match up all symbols (meaning we had a
palindrome) if and only if we blank the entire input string, and if so, we
move to a final state.

• Moving a block

q0start q1 q2

q3

q4

. . .

1/1,R
0/0,R

/#, L

1/1, L
0/0, L
#/#, L

/ ,R

0/ ,R

1/ ,R

#/??

1/1,R
0/0,R
#/#,R

/0, L

1/1,R
0/0,R
#/#,R

/1, L

Note: copying and reversing a string is very similar to the above.

• Copying a string

– In q0, reading 0, write X , change to qX1, and move R. (Remember what
we have read, write something we can recognize later, and move right.)

– In q0, reading 1, write Y , change to qY 1, and move R. (Same as just
above.)

– In q0, reading B, write B, change to qF , and move R. (We will finish with
the tape head positioned over the first symbol of the copied string.)

29.2. EXAMPLES 171

– In qX1 or qY 1, reading 0 or 1, write that back, stay in the same state, and
move R. (Move past zeros and ones looking for the end of the original
string.)

– In qX1, reading B, write that back, change to qX2, and move R.

– In qY 1, reading B, write that back, change to qY 2, and move R.

– In qX2 or qY 2, reading 0 or 1, write that back, stay in the same state, and
move R. (Move past zeros and ones looking for the end of the partially
copied string.)

– In qX2, reading B, write 0, change to qZ , and move L.

– In qY 2, reading B, write 1, change to qZ , and move L.

– In qZ , reading 0 or 1, write that back, stay in the same state, and move
L. (Move past zeros and ones in the copied string, looking for the blank
that separates the copied from the original.)

– In qZ , reading B, write that back, change to qW , and move L. (Now we’re
going to read left in the original string.)

– In qW , reading 0 or 1, write that back, stay in the same state, and move
L. (Move past zeros and ones in the original string, looking for the last
symbol that we copied.)

– In qW , reading X , write 0, change to q0, and move R. (Put back the sym-
bol we remembered, and get ready to iterate.)

– In qW , reading Y , write 1, change to q0, and move R. (ditto)

• Unary addition

• Binary increment on N (i.e., adding 1 to a binary number)

We write the number from left to right and not right to left so the possible
last carry makes the string of bits longer to the right.

– In q0, reading 0, write 1, change to qD , and move L. (We have incre-
mented by 1, there is no carry, and we are Done. Note that this should
only happen if the initial input is just a single 0.)

– In q0, reading 1, write 0, change to qC , and move R. (We have incre-
mented by 1, and there is a Carry.)

– In qC , reading 0, write 1, change to qD , and move L. (The carry does not
propagate any further than here, so we are Done.)

– In qC , reading 1, write 0, stay in qC , and move R. (The carry propagates
further.)

172 LECTURE 29.

– In qC , reading B, write 1, change to qD , and move L. (The carry has
propagated to make the binary number one more digit in length, but
we are now Done.)

– In qD , reading 0 or 1, write that back, stay in qD , and move L. (Read and
move past all the zeros and ones until we move left to the blank that is
just before the ((now modified)) input data.)

– In qD , reading B, write that back, change to qF , and move R. (This puts
us back to the initial position at the ones digit.)

Note that this increments by one and then accepts. If we wanted this to be a
subprogram, we could change in the last step to q0 instead of qF so as to set
up for doing it again.

• Binary decrement on (N − 0) (ones complement, then add one, then ones
complement)

Lecture 30

30.1 Instantaneous Descriptions (IDs) of a TM
computation

State diagrams and/or transition tables are cumbersome for TM’s, and they don’t
include the tape. We need some other notation for describing the current state of
the machine.

Notice: even though TMs may run for an infinitely long time, if we ask how
many cells were visited after n steps this must be some finite number. Therefore,
at any given step in the computation there are only a finite number of (non-blank)
symbols on the tape. To fully describe the TM state then, we need:

• The current state q

• The position the TM is currently scanning

• The full contents of the tape

We represent this as X1X2 · · ·Xi−1qXiXi+1 · · ·Xm where the TM is in state q and each
X j is a symbol on the tape listed in order, where the TM will scan symbol Xi to
determine the next transition.

To represent transitions of a TM M to a new configuration, we use the `M oper-
ator. If the TM we are talking about is obvious, we just use ` For example, suppose
for the previous configuration δ (q,Xi) = (p,Y , L). We can represent this as the in-
stantaneous description (ID)

X1X2 · · ·Xi−1qXiXi+1 · · ·Xm ` X1X2 · · ·Xi−2pXi−1YXi+1 · · ·Xm

Be careful of the edge cases:

• If the above TM was scanning the leftmost symbol, then we would have to
“add” a blank to the new configuration:

qX1X2 · · ·Xm ` qBYX2 · · ·Xm

173

174 LECTURE 30.

• If we were scanning the rightmost symbol and Y = B, then the new blank
would be “absorbed” by the rest of the tape

X1 · · ·Xm−1qXm ` X1 · · ·qXm−1

NOTE:A ` B is commonly read as “A turnstile B”, “A yields B”, “B is derivable
from A” or “B is provable by A”

Similar to the extended transition function, we define
∗
` to represent zero or

moves of the TM

Definition 30.1.1. Instantaneous descriptions are defined inductively

Basis: I
∗
` I for any ID I

Induction: I
∗
` J if there exists some ID K such that I ` K and K

∗
` J

Definition 30.1.2. Given a Turing machine M = 〈Q, Σ, Γ, δ ,q0,B, F 〉, the language it
recognizes is defined as

L(M) B
{
w ∈ Σ∗ | q0w

∗
` αpβ ;α, β ∈ Γ∗;p ∈ F

}
In other words, beginning in the start state the TM M reaches a final state after
reading in w . What is left on the tape is irrelevant.

Definition 30.1.3. A language is Turing recognizable if some Turing machine recog-
nizes it.

Because we defined rejection to be either “halt and reject” or loop, we may not
be able to guarantee that the machine halts on strings outside of the language.

Definition 30.1.4. A decider is a Turing machine that halts on all possible inputs.
Languages recognized by deciders are called decidable

TMs can also act as transducers, where instead of acceptance/rejection they
compute functions (this was how Turing originally envisioned them).

Definition 30.1.5. A Turing machine M = 〈Q, Σ, Γ, δ ,q0,B, F 〉 defines a (possibly
partial) function f : Σ∗ → Γ∗. For any string w ∈ Σ∗, if p is a “halting state” then

f (w) B αβ where q0
∗
` αpβ

TM tricks: addition, proper subtraction (monus), multiplication? Maintaining
lists, moving strings around, etc. Marking with symbols (example comparing two
binary numbers), remembering data in the state, etc.

30.1. INSTANTANEOUS DESCRIPTIONS (IDS) OF A TM COMPUTATION 175

Examples: Converting between unary and binary (requires binary increment
and decrement). Simulating a two-way infinite tape with a one-way infinite tape
(with end marker). Comparisons (binary and unary).

Church-Turing thesis: TMs capture our intuitive notion of computation. Any-
thing conceivable as “computation” can be done by a TM, and vice versa.

Lecture 31

TEXT TO BE REPLACED BY NEW TEXT:

Encoding problem inputs as strings. Any finite object can be encoded as
a string, including numbers, graphs, finite lists of finite objects, strings
over another, perhaps bigger, alphabet, etc., even descriptions of finite
automata and TMs, themselves. For any finite object O, let 〈O〉 be a
string encoding O in some reasonable way (varying with the type of
object). Example: encoding a TM as a string. Thus TMs can be inputs
(and outputs) of TMs!

Universal TMs: served as the inspiration for stored-program electronic
computers. Your computer’s hardware is “essentially” a universal TM.

The diagonal halting problem (language)

AD B
{
〈M〉 | M is a TM that eventually accepts on input 〈M〉

}
Theorem 31.0.1. AD is undecidable.

(The proof uses Cantor-style diagonalization.)

Corollary 31.0.2. AT B
{
〈M,w〉 | M accepts on input w

}
is undecidable

31.1 Universal Turing Machines

Definition 31.1.1 (Informal?). A Universal Turing Machine is a TM U that, when
presented with an encoding of another TM T and an input string w , will simulate
the action of T on input w .

Rather than go into abstract detail at the outset, let’s do an example of what
an encoding would look like. Consider a TM (Q, {0, 1}, {0, 1,B}, δ ,q0,B, F) whose
transition function is:

177

178 LECTURE 31.

B 0 1
1 − − 2, 0,R
2 3, 1, L 3, 1, L 2, 1,R
3 4, 0,R 4, 0,R 3, 1, L
4 − − −

We are going to encode this TM as a string using an additional symbol c (that
is sometimes repeated) as a marker, and we’ll write this on several lines so as to
make things more clear.

ccc 0 c 0 c 11R0
cc 111L1 c 111L1 c 11R1
cc 1111R0 c 1111R0 c 111L1
cc 0 c 0 c 0
ccc

The encoding should be intuitively clear. We have ccc as the demarcation of the
encoding of the TM (and thus can separate the encoding from the input string). We
separate each line of the transition function with a cc marker, and we separate the
transition on each symbol by a c. States are encoded with an appropriate number
of strings of 1s. Left and Right are encoded with their symbols, as is the writing of
0s and 1s.

So, for example, in state 1 (the initial row), reading a 1 (the last column), we
transition to state 2 (which is encoded as 11), write a 0, and move right. That’s
what 11R0 means.

We will assume that any state with no transitions from it is an accepting state.
In this case, that’s state 4.

Note that we don’t actually have to pre-allocate an arbitrary number of states
(this wouldn’t be possible). We can achieve the effect of pre-allocation by recom-
puting everything every time. That is, we copy, for example, the 1111 for a transi-
tion to state 4, and then we run a subprogram that walks through all the cc markers,
checking off each of the 1 digits in the 1111 string. When the 1111 is completely
checked off, we know to stop with that cc-marked input.

This has an analog in a higher level language. We normally think of setting up
arrays and then doing direct lookup with subscripts. But if we had a linked list
and not an array, we would find the k-th entry by walking the array one item at a
time, incrementing a counter once for every step we take. When our counter value
matches k, we stop walking and access that value.

We take as an accepting state of the TM any state that has no moves at all.
Now, how is the simulation of this TM by a UTM going to happen?
We would like to do this with a two-tape Turing machine, so we need to de-

scribe what that is.

31.1. UNIVERSAL TURING MACHINES 179

Definition 31.1.2. A multi-tape Turing machine has k tapes and k tape heads, with
each tape infinite in both directions. On a single move, depending on the state and
the symbols read by all the tape heads, the TM can:

1. change state;

2. print a new symbol on each of the cells under each of the tape heads;

3. move each of the tape heads independently one cell to the left or to the right,
or not move at all.

Theorem 31.1.3. If a language L is accepted by a multitape TM, then it is accepted by a
single-tape TM.

Proof. We won’t do this formally, but think about it. Since the theory of computing
is mostly concerned about the existence of the ability to compute something, not
about the efficiency of that computation, we can be sloppy about performance and
yet still get existence.

Consider a TM T with two tapes and two tape heads. We’ll build a TM V that
has one tape and one head and simulates T .

Instead of laying out the input tapes for T in two pieces t1 and t2, lay them out
for V one after the other, with a change-of-tape marker X in between them, so the
tape for V is

t1Xt2.

Consider, instead of a single state s of T , that each state splits into two states s1
and s2, depending on whether one is simulating the upper tape head action or the
lower tape head action of T .

Your initial objection to doing this should be that you are constraining the orig-
inal first tape t1 to be of fixed length, since it’s followed on theV tape by the second
tape t2 fromT . But remember that if we have to, if we run out of cells to hold what
would be t1, we can run a “subprogram” that goes all the way to the end of V ’s
tape and shifts the t2 part one cell to the right. This would be horribly inefficient as
an algorithm, but we don’t care about efficiency.

We will also need a marker M1 and a marker M2 on the single tape for V that
indicates where the tape heads are positioned. And we’ll need the little subpro-
gram that flips the order of two cells, so we can move the Mi markers right or left
as needed.

Now, we simply sequentialize the action of the two heads of T .
�

Our simulation of a TM T by a universal Turing Machine U goes as follows.
We put the encoding of T , followed by the input data for T , on the second tape

and we use the first tape to hold the cells we write with U . These will either be

180 LECTURE 31.

m, a marker, or B, the blank. There will initially be two m cells, one that lies over
the last c symbol before the encoding for the transition for state 1, and one that lies
over the leftmost input symbol on the second tape. This second m simulates the
position of the tape head for T .

Now, using state changes as appropriate, U moves to the right, to the second
markerm, reads that first symbol (and exchangesm with that symbol), and changes
state to record what symbol has been read.

U now moves left to the first of the m markers. It now moves right to find the
appropriate block encoding for that column in the tableau. That is, if U has read a
blank, then it looks for the first column. IfU has read a zero, it looks for the second
column. If U has read a one, it looks for the third column. And it knows about
columns because they are separated by a single c marker in the tableau.

With state changes, U can now determine what T would do, and make that
transition.

Definition 31.1.4. We define a procedure to be a TM that may or may not halt on all
the inputs presented to it.

Definition 31.1.5. We define an algorithm to be a TM that will halt, either accepting
or not accepting, on all the inputs presented to it.

Definition 31.1.6 (The Halting Problem). Does there exist an algorithm (i.e., a TM
U that always halts) which, when presented with the encoding of an arbitrary TM
T and an arbitrary input configuration, will halt and accept exactly when T halts
and accepts on that input?

Theorem 31.1.7 (The Halting Problem). No.

Proof. The set of TMs can be encoded as strings over

{0, 1, c, L,R}

and we can order them by length. Not all strings will be legal TMs, but a UTM
reading such an encoding would simply halt without accepting.

We can similarly encode all possible inputs as strings over

{0, 1}

and we can order them by length.
We can thus enumerate until we have the i-th TM Ti and the i-th string xi .
We then define a language

L1 = {xi |xi is not accepted by Ti }

Claim 31.1.8. We claim that L1 is not a language accepted by any TM.

31.1. UNIVERSAL TURING MACHINES 181

Proof. (of the claim)
If some Tj were to accept L1, we would have that

x j ∈ L1

and thus that
x j < L(Tj)

But since L1 ⊆ L(Tj)we have that

x j ∈ L(Tj).

And that’s a contradiction. �

Now, let’s assume that we have a UTM U that always halts when given the
encoding of any TM M and an input string w for that TM, and it halts and accepts
if M halts on w , and halts and rejects if M halts and rejects w .

We are going to use U to build a TM T that accepts L1, and that’s going to be
the contradiction, because we just showed that no such TM exists.

1. T enumerates sentences until xi is enumerated.

2. T generates an encoding of the Ti that is the i-th TM in our enumeration of
TMs.

3. T turns control over to U .

4. If U determines that Ti does not halt on xi , then T halts and accepts xi .

5. IfU determines thatTi does halt on xi , thenU simulates Ti on xi . If Ti halts in
the simulation, then U halts and determines if Ti accepts or rejects.

a) If Ti rejects xi , then T accepts xi .

b) If Ti accepts xi , then T rejects xi .

So, if we had a UTM U that would determine whether an arbitrary TM M ,
presented with an arbitrary input string w , halted or not, we could use U to build
a TM T that accepts L1.

This is a contradiction, so no such U can exist.
�

Techno-Culture

This theorem is A Very Big Deal. What this says is that we can prove that there is
no algorithmic way to determine if a program has an infinite loop. We would wish
the world to be otherwise, but it isn’t.

Lecture 32

Recall that languages can be viewed as problems:

Definition 32.0.1. Given a problem (or language) L over an alphabet Σ, an instance
is some stringw ∈ Σ∗ together with a solution, where the solution as a boolean value
that is indicative of whether w ∈ L

Notice: Finding our first undecidable language (AD) was hard, but finding our
second (AT) was trivial: since all instances of AD are instances of AT , it’s clear that
AD is no harder than AT and we represent this as AD ≤m AT

Definition 32.0.2. Given languages A ∈ Σ∗,B ∈ T ∗, we say A is many-one reducible
or m-reducible to B if there exists some computable function f : Σ∗ → T ∗ with the
property that given a string w , w ∈ A⇐⇒ f (w) ∈ B. We write this as A ≤m B.

In other words,A ≤m B if and only if there is some Turing machine that converts
instances of A into instances of B.

This allows us to leverage languages that we know to be undecidable to prove
the undecidability of other languages. Generally, to prove a language B is unde-
cidable we use one of two strategies:

Undecidability Proof Strategies

1. Show that given a decider for B, we can decide A for some undecidable lan-
guage (proof by contradiction).

2. Show A ≤m B for some language A which is known to be undecidable. We
show this works by using Strategy 1 above.

Theorem 32.0.3. For two languages A ∈ Σ∗,B ∈ T ∗ If A is undecidable, and A ≤m B, then
B is also undecidable.

Proof. Notice that because A ≤m B, we have some TM that converts yes instances
of A to yes instances of B and no instances of A to no instances of B. Call this TM
MA→B .

183

184 LECTURE 32.

Assume for the sake of contradiction that we have a decision procedure for
B. That is, assume we have some TM DB that decides B. Then we can construct a
decider for A as follows:

Algorithm: DA decider for A
Input : A string w ∈ Σ∗

Output: yes/no for w ∈ A
1 Run MA→B on input w to obtain w ′, an instance of B
2 Run DB on input w ′ to determine to obtain the boolean b
3 return b

b true⇐⇒ w ′ ∈ B ⇐⇒ w ∈ A

But this is impossible, since A is undecidable. Therefore, MB cannot exist (B is also
undecidable). �

Theorem 32.0.4. HT is undecidable, where HT B
{
〈M,w〉 | M halts on input w

}
Proof. Here we show that AT ≤m HT

Algorithm: MAT→HT A reduction from AT to HT

Input : 〈M,w〉 where M is a TM and w ∈ {0, 1}∗

Output: 〈R, x〉 where R is a TM and x ∈ {0, 1}∗ such that
M accepts w ⇔ R halts on x

1 CreateTM R such that
2 Begin to simulate M on input x
3 while simulating do
4 if M accepts then
5 reject and halt
6 else if M halts and rejects then
7 loop
8 end
9 end

10 end
11 return 〈R,w〉 // A description of R above, plus the input

string w

Notice that MAT→HT does not accept/rejects: all it has to do is augment the
description of M by turning its accepting state to a rejecting state, and making all
other possible “halting” states into potential infinite loops.

185

Notice too that the new machine R never accepts any input. It only rejects (and
halts) where M accepted, and loops otherwise. Therefore, R halts iff M accepts,
exactly the behavior we wanted.

Because MAT→HT is constructible, AT ≤m HT �

One more example:

Theorem 32.0.5. Lne B {M is a TM | L(M) , ∅} is undecidable. (The language of all
Turing machines that do not accept anything).

Proof. We show AT ≤m Lne

Algorithm: MAT→Lne A reduction from AT to Lne

Input : 〈M,w〉 where M is a TM and w ∈ {0, 1}∗

Output: 〈R〉 where R is a TM that accepts something
1 CreateTM R taking input x such that
2 Ignore input and simulate M on input w
3 while simulating do
4 if R accepts then
5 accept
6 else if M halts and rejects then
7 loop
8 else
9 keep looping

10 end
11 end
12 end
13 return 〈R〉 // A description of R

Notice that R only accepts strings if M acceptsw (and then it accepts all strings).
�

Definition 32.0.6. A property is a set of Turing recognizable languages.
A property is trivial if it is empty, or it is all Turing recognizable languages.

Theorem 32.0.7 (Rice’s Theorem). Every nontrivial property of Turing recognizable lan-
guages is undecidable.

Proof. Let P be a nontrivial property.

Case ∅ < P)
Since P nontrivial, there is some language LP ∈ P. Let ML be a recognizer for
LP . We will show AT ≤m LP

186 LECTURE 32.

Algorithm: MAT→LP A reduction from AT to LP

Input : 〈M,w〉 where M is a TM and w ∈ {0, 1}∗

Output: 〈R〉 where L(R) = LP if M accepts w , otherwise L(R) = ∅
1 CreateTM R taking input x such that
2 Simulate M on input w
3 while simulating do
4 if R accepts then
5 simulate ML on input x
6 else if M halts and rejects then
7 loop
8 else
9 keep looping

10 end
11 end
12 end
13 return 〈R〉 // A description of R

Case ∅ ∈ P) TBD

�

Lecture 33

Other undecidable problems:

H B
{
〈M,w〉 | M is a TM that eventually halts on input w

}
Hε B

{
〈M〉 | M is a TM that eventually halts on input ε

}
IG B {〈G1,G2〉 | G1 and G2 are CFGs and L(G1) ∩ L(G2) , ∅}

EG B
{
〈G〉 | G is a CFG that yields all strings over its input alphabet

}
We can prove these undecidable by leveraging the fact that HD is undecidable.
A typical proof goes like: Suppose there is a decision procedure for L, then we
can use this procedure to build a decision procedure for (some previously known
undecidable problem). This is impossible, hence L is undecidable.

Theorem 33.0.1. Hε is undecidable.

Proof. Suppose thatHε is decided by some deciderD. Given an a TMM = (Q, Σ, Γ, δ ,q0,B, F)
and a string w ∈ Σ∗, we can then use D to decide (algorithmically) whether M halts
on w , thus contradicting the fact that H is undecidable. This decision algorithm
works as follows: Given M and w as above, we first algorithmically construct a
TM R, based on M and w , which acts as follows on any input string x : simulate M
on input w , and do whatever M does. Note that R ignores its own input string x
entirely. After constructing 〈R〉, we then simulate D on input 〈R〉. If D accepts, then
we accept; otherwise D rejects (because D halts), and so we reject in this case.

The algorithm described above then decides whether M halts on input w , for
the following reasons:

• If M halts onw then R halts on all its input strings, including ε. Thus D accepts
〈R〉 and so we accept.

• If M loops on input w , then R loops on all its input strings, including ε. Thus
D rejects 〈R〉, and so we reject.

�

187

188 LECTURE 33.

Theorem 33.0.2. The IG is undecidable.

Proof. Let M = (Q, Σ, Γ, δ ,q0,B, F) be an arbitary TM. By adding a new start state
and transition if necessary, we can assume that δ (q0, _) is defined, so that M takes
at least one step before halting. This change to M can be done algorithmically in a
way that does not alter the eventual halting vs. nonhalting behavior of M . Let $ be
a symbol not in Q ∪ Γ. We start by recalling the languages L1 and L2 from the last
assignment:

L1 :=
{
w$xR | w and x are IDs of M and w ` x

}
L2 :=

{
wR$x | w and x are IDs of M and w ` x

}
Here is a grammar F1 for L1:

S1 → _S1 | S1_ | O1

O1 → aO1a (for each a ∈ Γ)
O1 → T1

T1 → qacIcrb (for each transition (q,a) → (r ,b,R) and c ∈ Γ)
T1 → cqaIbcr (for each transition (q,a) → (r ,b, L) and c ∈ Γ)
I → aIa (for all a ∈ Γ)
I → B

B → _B | B_ | $

Similarly, a grammar F2 for L2:

S2 → _S2 | S2_ | O2

O2 → aO2a (for each a ∈ Γ)
O2 → T2

T2 → caqIbrc (for all (q,a) → (r ,b,R) and c ∈ Γ)
T2 → aqcIrcb (for all (q,a) → (r ,b, L) and c ∈ Γ)
I → aIa (for all a ∈ Γ)
I → B

B → _B | B_ | $

(F1 and F2 “share” the nonterminals I and B and their productions.) It is easy for
an algorithm to construct F1 and F2 given a description of M as input.

Here is the idea. M halts on input ε if and only if there is a finite sequence of
IDs

q0_ ` w1 ` w2 ` · · · ` wn−1 ` wn ,

189

where n is the number of steps taken and wn is a halting ID of M (the transition
function is undefined for wn). Consider the string obtained by reversing every
other ID in the sequence, then ending each ID with$. If n is even, then we get the
string

s := q0_$wR
1 $w2$wR

3 $ · · · $(wn−1)
Rwn ,

and if n is odd, we get the string

s ′ := q0_$wR
1 $w2$wR

3 $ · · · $(wn−1)$wR
n $.

In either case, we want to make both G1 and G2 generate this string, but if no such
string exists (i.e., M does not halt), then we want L(G1) and L(G2) to be disjoint.
Suppose M halts in an even number of steps. (The case of an odd number of steps
is handled similarly.) Then G1 will generate s as follows:

q0_$wR
1︸ ︷︷ ︸

S1

$w2$wR
3︸ ︷︷ ︸

S1

$ · · · · · · $(wn−1)
R︸ ︷︷ ︸

S1

wn

by generating a string of S1’s separated by dollar signs, followed by a halting ID
and final $. Notice that the S1’s ensure that q0_ ` w1, w2 ` w3, etc. G2 will generate
the same string s in a different way:

q0_$wR
1 $w2︸ ︷︷ ︸
S2

$wR
3 $ · · ·︸ ︷︷ ︸
S2

· · · $ (wn−1)
R$wn︸ ︷︷ ︸

S2

$

by generating q0_ followed by a string of S2’s terminated by dollar signs. Notice
that the S2’s ensure that w1 ` w2, w3 ` w4, etc. Thus if both grammars generate
the same string, that string must look like either s or s ′, and so we must have
q0_ ` w1 ` w2 ` · · · ` wn and wn is a halting configuration, whence M halts on ε.

Now the formal details. Let A be a new nonterminal generating all strings over
Γ, that is, A has productions A → ε and A → aA for each a ∈ Γ. Let H and HR be
new nonterminals with productions H → AqaA and HR → AaqA for all q ∈ Q and
a ∈ Γ such that δ (q,a) is undefined. Then H generates all halting configurations of
M , and HR generates the reversals of all halting configurations of M .

Now let G1 be the grammar with start symbol R1 obtained from F1 by adding
the three productions:

R1 → S1$R1 | H | ε .

Similarly, let G2 have start symbol R2 and be obtained from F2 by adding a new
nonterminal C and the three productions

R2 → q0_C

C → S1$C | HR | ε

Then G1 and G2 are as desired. �

Lecture 34

34.1 PCP and Undecidability

Having proved that the Halting Problem cannot be solved, we can use this result
to prove that other important problems are also unsolvable.

We remember that we can view a language as a problem. For example, we
know how we could encode a graph as a string of symbols. A graph consists of
nodes and arcs, so we can encode a graph as

XXXNodeCountXXi1X j1XXetc .XXX

in much the same way we encode a Turing Machine for a UTM. The node count
could be a binary number, and then we have for the arcs pairs of numbers that
represent an arc from the i node to the j node. Unlike with a finite automaton,
for which this won’t work (since we can’t have an arbitrary number of states), we
could design a TM that would use an auxiliary tape to count up and keep track
of node numbers. This input string could be read by a program in a higher level
language, and the only difference between your program and the TM is that the
programming language and the computer on which it ran would have built-in
features for storing numbers, hardware for doing addition, and such, which for
the TM you would have to construct as subprograms.

Consider L, then, the language of all possible strings representing all possible
graphs with a finite number of nodes. We can now ask some of the obvious ques-
tions we ask about graphs, for example:

Is there a Turing Machine which, when presented with an arbitrary
string from L, will always halt and will accept the string exactly when
the string represents a graph with only one connected component?

In the case of this problem, the answer is a clear “yes” and one could create the
appropriate TM by creating a TM that ran a breadth-first search on the graph of
the input string. This would be tedious as a TM problem, but it’s not intellectually
hard.

191

192 LECTURE 34.

Definition 34.1.1. A problem, expressed as a language L, is solvable if there is a
Turing Machine that will take as input any of the strings of L, always halt, and
accept exactly the strings for which the answer to the problem is “yes”.

One of the most important problems in this part of theoretical computer sci-
ence is Post’s Correspondence Problem (PCP), named for the logician Emil Post (1897-
1954).

We have a finite alphabet Σ, and two lists of strings in Σ∗:

A = {w1, ...,wk }

B = {x1, ..., xk }

We note that the lists have the same length k. This instance of PCP has a solution if
there is a sequence of indices i1, ..., im form ≥ 1 such that

wi1 ...wim = xi1 ...xim

We can refer to the pairs (w j , x j) as corresponding pairs of strings.

Example 34.1.2. Let Σ = {0, 1} and consider the lists

List A List B
i wi xi
1 1 111
2 10111 10
3 10 0

This instance of PCP has a solution with (i1, i2, i3, i4) = (2, 1, 1, 3), where we can
see that

10111|1|1|10 = 10|111|111|0

with the stroke character inserted for readability.

Example 34.1.3. On the other hand, there are instances of PCP with no solution.
Let Σ = {0, 1} and consider the lists

List A List B
i wi xi
1 10 101
2 011 11
3 101 011

34.1. PCP AND UNDECIDABILITY 193

Clearly, if we are to have a solution, then the first pair of strings must be index
1, since the other two pairs don’t start with the same symbol. That gives us

10
101

and the next index must be either 1 or 3, since the A list string must start with a 1.
But 1 won’t work; it would produce 1010 from the A list and 101101 from the B list.
So our second index is 3, and we get

10101
101011

At this point we are locked in: all subsequent index values must be 3, and the
strings will never be of the same length.

MPCP and Undecidability

In order to simplify things somewhat, we work with the modified Post’s correspon-
dence problem (MPCP). In the MPCP, we insist that the first index be 1. As with
many things in this course, the change in constraints makes things easier to prove
but doesn’t change what it is that we are proving things about.

We won’t prove the following, but these are some of the major first theorems in
this part of theoretical computer science.

Theorem 34.1.4. If PCP were solvable, then MPCP would be solvable.

Theorem 34.1.5. PCP is not solvable.

(We prove Theorem 34.1.5 in the obvious way, by contradiction, showing that
MPCP is not solvable. And we prove that MPCP is not solvable using the one
sledgehammer we have in fact just proved: If MPCP were solvable, then the Halt-
ing Problem would be solvable.)

We can now use this to prove that a number of problems involving context-free
languages are not solvable. Recall that a grammar is context-free if all produc-
tions have a single variable symbol on the left and any string other than the empty
string on the right. We didn’t prove it, but it’s in the notes: The languages gener-
ated by context-free grammars (cfgs) are exactly the languages accepted by some
pushdown automaton.

In dealing with regular languages, we had several closure properties of union,
intersection, and complement. Backing off from Type 3 (regular) grammars to Type
2 (context-free) grammars, things change.

194 LECTURE 34.

The reduction of a question about cfgs to PCP proceeds as follows. Let A and
B be the two sets of strings in Σ+, and choose k additional symbols K = {a1, ...,ak }
not in Σ. We define two grammars

GA = ({SA,VT , PA, SA}

GB = ({SB,VT , PB, SB}

whereVT = Σ∪K and the productions PA and PB are defined as follows: For each i,
1 ≤ i ≤ k, PA has productions

SA → wiSAai

SA → wiai

and PB has productions
SB → xiSBai

SB → xiai

Then we have
LA = L(GA) = {wi1 ...wimaim ...ai1}

LB = L(GB) = {xi1 ...ximaim ...ai1}

Theorem 34.1.6. It is unsolvable whether the intersection of the languages generated by
two arbitrary cfgs is empty.

Proof. We will do this proof, because it’s easy.
The intersection LA ∩ LB is empty if and only if PCP with the lists A and B has

no solution.
So if we could solve emptiness of the intersection, we could solve PCP.

�

We will state but not prove the following that shows that context-free and regu-
lar are really different things. We letG1 andG2 be arbitrary context-free grammars,
and we let R be a regular language.

Theorem 34.1.7. The following are all unsolvable.

1. Determining that G1 generates all strings over its terminal alphabet.

2. Determining that L(G1) is the particular regular set R.

3. Determining that L(G1) is a regular set.

4. L(G1) ⊇ R.

5. L(G1) = ∅.

6. Determining that L(G1) ∩ L(G2) is a context-free language.

7. Determining that L(G1) is a context-free language.

	1
	1.1 Logical Connectives
	1.2 Methods of proof
	1.3 Notation

	2
	2.1 Methods of Proof (cont.)
	2.2 Summations
	2.3 Proof by induction
	2.4 Proof by contradiction
	2.5 And Finally ...

	3
	3.1 Strong induction and the well-ordering principle
	3.2 Proof that 2 is irrational

	4
	4.1 ``Proofs'' that fail

	5
	5.1 Describing sets
	5.2 Subsets and the empty set
	5.3 Boolean set operations
	5.4 Sets of sets, ordered pairs, Cartesian product
	5.5 Relations and functions
	5.6 The pigeonhole principle
	5.7 Countable sets
	5.8 Uncountable sets
	5.9 Why should we care?
	5.10 Constructing the nonnegative integers

	6
	6.1 Alphabets and Strings
	6.2 Languages
	6.3 Finite automata

	7
	7.1 String Search
	7.2 DFAs, formally
	7.3 *An Alternate Characterization of DFA Acceptance
	7.4 Product and Complement Constructions

	8
	8.1 Nondeterministic finite automata (NFAs)
	8.2 Subset construction

	9
	9.1 Optimized/Lazy subset construction
	9.2 Proof of Correctness
	9.3 An Example of the Worst Case

	10
	10.1 -transitions
	10.2 -NFAs
	10.3 *Alternate Characterizations of NFA and -NFA Acceptance
	10.4 Eliminating transitions
	10.5 Regular expressions
	10.6 Buell's additional notes

	11
	11.1 Regex Examples

	12
	12.1 Transforming regular expressions into -NFAs

	13
	13.1 Transforming -NFAs into regular expressions

	14
	14.1 Grammars, Type 3 grammars, and regular languages

	15
	15.1 Proving languages not regular

	16
	16.1 Template for Pumping Lemma Proofs

	17
	17.1 Closure properties of regular languages.

	18
	19
	19.1 String Homomorphisms
	19.2 Using closure properties to show nonregularity

	20
	20.1 DFA minimization

	21
	21.1 Constructing the minimal DFA

	22
	22.1 Another Language Representation
	22.2 (*) Converting Regular Languages to Grammars

	23
	23.1 Sentential Forms
	23.2 Parse Trees

	24
	25
	25.1 Pushdown Automata
	25.2 Formal Definition
	25.3 Instantaneous Descriptions
	25.4 Acceptance Criteria

	26
	26.1 Pushdown Automata From Grammars
	26.2 An Alternative Proof

	27
	28
	28.1 Pumping Lemma For CFGs

	29
	29.1 Turing Machines
	29.2 Examples

	30
	30.1 Instantaneous Descriptions (IDs) of a TM computation

	31
	31.1 Universal Turing Machines

	32
	33
	34
	34.1 PCP and Undecidability

