
Securing Enterprise Applications: Service-Oriented Security (SOS)

Csilla Farkas and Michael N. Huhns
Department of Computer Science and Engineering

University of South Carolina
Columbia, SC 29208 USA

{farkas,huhns}@engr.sc.edu

Abstract

Some of the characteristics that make service-
oriented architectures appealing for enterprise
applications make them vulnerable to security
breaches. The vulnerabilities are primarily due to the
openness of the service-execution environment, to the
dynamic run-time selection and composition of
services, and to the autonomy of the individual
services. In this paper, we describe these
vulnerabilities, as well as traditional ones, and discuss
ways of mitigating them. Such ways include software
agent technology and distributed database transaction
semantics.

1. Introduction

A Web Service (WS) driven architecture provides a
hardware and language independent way to support
business processes. The main goal is to offer various
services that can be accessed by diverse applications.
Ongoing efforts address the needs to provide clear
description and composition of services, and to support
the management of services [2]. Service-Oriented
Architecture (SOA), built on top of the WS paradigm,
addresses these needs.

Along with the increased capability and flexibility
of SOA applications, new security risks have emerged.
Although Web data and application security research
has come a long way, from the initial syntax-based
XML security to a set of standards to support WS
security, the security needs of SOA are still
unresolved. Independent research efforts target
specific aspects of SOA security without addressing
comprehensive security needs of the SOA. This
myopic view of securing SOA applications can easily
lead to insecure SOA development. This paper is
intended to conceptualize the current research
directions in SOA security, identify research needs,
and discuss uncharted territories that need to be
addressed to achieve SOA security.

In particular, we argue that, while necessary,
current, network-centric security measures are not
sufficient to provide high-assurance security for SOA.

We need to address service-level security needs. This
include security needs of independent services (e.g.,
secure software development, correct execution) and
their combinations (e.g., robustness, deadlock
prevention, workflow requirements, correct execution
history).

We argue that to successfully develop SOA
security, each member service must be securely
designed, developed, deployed, and maintained.
Security vulnerabilities that were introduced during
combination of services must also be addressed and
appropriate mitigation strategies developed. Finally,
based on the unique characteristics of SOA, we can
deploy non-traditional security methods, like
cooperation-dependent integrity verification, intrusion
detection, etc.

After presenting a brief overview of current efforts
concerning the problem of building secure and reliable
software applications, we argue that secure software
development requires that better practices be adopted
and documented by all SOA application developers.
We also show, how cooperative decision making can
enhance application security and reliability. Finally,
arbitrary combinations of services will also create not
only insecure code (e.g., invoking an insecure service)
but may also result in incorrect execution. We study
potential risks, such as deadlocks, livelocks, and
incorrect execution, and analyze the level of assurance
provided by WS transactions.

2. Security for SOA

With the rapid increase of Web-based applications
during the last decade, the need to provide security for
them has emerged. Since XML became a basic
construct of these applications, initial research focused
on providing security and authentication for XML
documents. As the application infrastructure became
more-and-more complex, e.g., distributed and large
scale systems, heterogeneous sources, work flow
requirements, providing security for these applications
became an increasingly challenging task. We group
current security research into three main categories:

Network-level security: These efforts target
security needs that arise from the distributed and open

nature of WS and WS-based SOA applications.
Research directions include federated architectures,
identity management, authentication, trust
management, and secure communication.

Business-level security: These efforts aim to
provide flexibility and ease of use to combine diverse
services into combined services to fulfill business
needs. Security needs range from the need to protect
corresponding metadata to limit the information
available for malicious users, e.g., partial disclosure of
Web Service Description Language (WSDL) and
Universal Description, Discovery and Integration
(UDDI) [7] specification, to the enhancement of
business process composition languages to express
security requirements. For example, the Business
Process Execution Language for Web Services
(BPELWS) is widely used to combine web services.
Ongoing research extends BPELWS with
authentication capabilities. Another direction of current
research addresses some of the security and
transactional properties of complex services.

Software-level security: These efforts aim to
evaluate the security of the service code, including
traditional software security practices, e.g.,
incorporating security needs in the Software
Development Life Cycle (SDLC) activities and
identifying new types of security vulnerabilities of
SOA applications, e.g., collaborative verification of
program correctness, detection of malfunctioning
code/services, etc.

High assurance security can only be achieved if all
three of the above aspects are considered. Any security
model that addresses only one or two of these aspects,
will be insecure. For example, while it is crucial to
use strong encryption to protect network traffic, it is
not going to be efficient if the attacker can easily gain
access to the end systems due to software
vulnerabilities, such as buffer overflow. In addition to
the above three areas of SOA security, special
properties of SOA must also be considered. For
example, traditional security measures were developed
for human-machine interactions, whereas SOA targets
machine-to-machine interactions, thus embedding
security-relevant materials in the applications
themselves.

This paper focuses on the business-level security
needs of SOA applications. Network-level security
research has drawn lots of attentions during the last
several years. Various standards and models, such as
SAML, SOAP Security, WS-Security, WS-Policy,
WS-Trust, WS-Federation, Identity management
framework, XML security, etc. have been proposed.
Software-level security is gaining momentum, where
security considerations range from automated code
analyzers to a series of best=practices guidelines.

However, business-level security needs are not only
less studied but often ignored or left to the discretion of
individual developers.

3. Business-Level Security

To address business-level security efficiently, we
must consider both the transactional properties of SOA
applications and their security requirements. Although
there is an emerging trend to address both of these
issues, they remain isolated, vendor driven attempts.
In this section, we give a brief overview of the current
support for service compositions, service transactions,
and potential threats against composite services.

3.1. Web Service Composition

Web services as individual components are intended
to expose coherent units of functionality that can serve
as building blocks for the more complex business
needs of enterprises. One of the major features of SOA
is that it enables a loose coupling of the individual
services. The Web Services Business Process
Execution Language, BPEL (also abbreviated
BPEL4WS or WSBPEL) [9] is used to describe the
composition of services and orchestrate their
interactions. BPEL leverages other Web service
standards such as Simple Object Access Protocol
(SOAP) [10] and WSDL [7] for communication and
interface descriptions. BPEL describes the inbound and
outbound process interfaces in WSDL so they can be
easily integrated into other processes or applications.

Web services can be combined in two ways:
• Orchestration
• Choreography
In orchestration, which is usually used in private

business processes, a central process (usually another
WS) takes control of the involved WSs and co-
ordinates the execution of different operations on the
web services involved in the operation. BPEL is the
core language for process orchestration and handling
fault tolerance or compensation actions. Web-service
compositions describe the local process of service
orchestration, Web-Services Choreography (WSC)
describes the observable interactions between services
and their users. WSC is more formally described by the
W3C Web Services Choreography Working group as,
“...the external observable behavior across multiple
clients (which are generally Web Services but not
exclusively so) in which external observable behavior
is defined as the presence or absence of messages that
are exchanged between a Web Service and its clients.”

In a typical scenario, a BPEL business process first
receives a request. To fulfill the request, the process

invokes the necessary WSs and then responds to the
original caller. Because the BPEL process
communicates with other Web services, it relies
heavily on the WSDL description of the Web services
invoked by the composite WS. BPEL consists of two
different types of activities: primitive activities such as
<invoke>, <reply>, and <assign>, and structured
activities such as <sequence>, <flow>, <switch>, and
<while>. However, BPEL does not provide any
support for specifying security requirements.

3.2. Web Service Transactions

Transaction management has been studied
extensively in database applications. Concepts, such as
ACID (Atomicity, Consistency, Isolation, and
Durability) transactions, locking methods, and
serializability, have been successfully applied to
guarantee correct execution of transactions. Can we
apply similar concepts to improve the security of SOA
applications?

BEA Systems, International Business Machines
Corporation, and Microsoft Corporation, Inc, proposed
a WS transaction framework [14] that addresses
correctness criteria of service compositions. They
propose two coordination types: atomic transactions
(AT), or short-term transactions, and long-term
business activity (BA) transactions. ATs are similar to
traditional database transactions and are executed
within limited trust domains. BAs incorporate
business logic, support workflow systems, and may
operate across different trust domains. Consistency is
achieved without locking or a central control. Actual
protocols are presented for both types, aiming for
robustness and security, such as message
authentication, integrity verification, and timestamps.

If business processes can be represented as a series
of transactions [6,11,12,13], can we rely on traditional
database transaction management concepts to provide
security and consistency for SOA application? Is
compensation-based transaction management [14]
sufficient to guarantee correct execution history? What
are the main differences between SOA composition
and traditional database transactions? What additional
capabilities of SOA can we employ to enhance the
chance of correctness?

One of the main differences between SOA
applications and traditional transactions is that in SOA,
several compensating services may exist. This
increases the robustness of the system and allows new
approaches to be employed that verify correctness and
security of service executions. In the following section
we give an overview of some of these new approaches.

3.3. Service-Level Dependencies

Figure 1. Centralized architecture for
combining N versions of an algorithm into a
single, more robust system

Threats, resulting from service-level (transactional)

dependencies, affect both network-level and service-
level security risk. Network-level threats include
deadlocks, livelocks, information overload, denial of
service, and network flooding, Service-level threats
include service invocation overload, information
starvation, and secure service compositions. These
will take advantage of the following inherent
characteristic of services: although developed and
managed independently, services have dependencies
when used as part of system-wide workflows. The
services typically have no information about the
workflows, and the workflows have no information
about the internals of the services, their status, or any
changes that might have occurred to the services. Basic
network defense [1] will require and be based on an
increase in the intelligence of each node in the SOA.

We are investigating a distributed network defense
approach [3] that integrates the network, service, and
software aspects of SOA security within a uniform
framework. Our approach is different in kind from the
current system of token verification, where breaking
token verification gives system access. Distributed
network defense depends on detecting and thwarting
intruder’s behavior. One protection approach is to use
collaborative intrusion detection systems that pool
knowledge of individual nodes across organizational
boundaries to make a variety of simultaneous diverse
approaches to intrusion detection [5]. Another uses
software-based deception to deploy intelligent software
decoys [4]. A variety of intelligent agents can be
applied to detect intrusions. SOA nodes are more
independent than nodes in standard systems to begin
with and, moreover, must understand the messages
they respond to at a deeper semantic level (beyond

Choose Algorithm based on: (1) data type, (2) time & space constraints

Sort #1 Sort #2 Sort #3 Sort #4 Sort #5

Single Task

Single Result

XML to possibly using SAWSDL and OWL-S).
Distributed network defense techniques should be
more easily and effectively applied to SOA than to
conventional systems. They can initiate, grow, and
maintain a trust and reputation layer.

We propose a multiagent approach to handle
independent versions of the software. This is done by
wrapping or “agentizing” each algorithm. This
produces a flexible and adaptable platform to handle
multiple versions. A centralized approach, as shown in
Figure 1, would use an omniscient preprocessing
algorithm to receive the input data (demand) and
would choose the best algorithm to perform the task.
Each module’s characteristics would have to be
encoded into the central unit. The central unit could
use a simplistic algorithm for determining best, based
on known facts about each of the modules. The
difficulties with this approach are (1) the preprocessing
algorithm might be flawed and (2) its maintenance is
difficult as new algorithms are added and existing
algorithms become unavailable. Also, only one
module at-a-time executes, there is low CPU usage,
and results are taken as-is when completed.

4. Conclusions

In this paper we describe vulnerabilities of SOA
applications and discuss approaches to mitigate
security risk. We argue that current security solutions,
focusing on network-centric security needs, are
necessary but not sufficient to secure SOA. We call
for a comprehensive approach to SOA security,
ranging from secure code development to transactional
properties of SOA. We also recommend novel security
methods, such as software agent technology and
distributed database transaction semantics, to enhance
security capabilities. While there are some efforts in
progress to provide comprehensive SOA security,
additional work is needed. This paper is intended to
encourage collaboration between academia and
industry experts in defining and developing methods
and techniques to achieve SOA security

5. References

[1] Distributed System Security Architecture,

http://en.wikipedia.org/wiki/Distributed_Syste
m_Security_Architecture

[2] J. Epstein, S. Matsumoto, and G. McGraw,
Software Security and SOA: Danger, Will
Robinson!, Building Security In, 2008.

[3] D. Frincke and E. Wilhite, “Distributed
Network Defense,” Proceedings of the 2001

IEEE Workshop on Information Assurance
and Security, United States Military
Academy, West Point, NY, 5-6 June, 2001

[4] J. B. Michael, N. C. Rowe, H. S. Rothestein,
M. Auguston, and D. Drusinsky, “Phase I
Report on Intelligent Software Decoys:
Technical Feasibility and Institutional Issues
in the Context of Homeland Security,”
Defense Technical Information Center No.
ADA410039, December 2002.

[5] Morton Swimmer, “Using the danger model
of immune systems for distributed defense in
modern data networks,” Computer Networks,
vol. 51, no. 5, 11 April 2007, pp. 1315-1333.

[6] M. Verma, “Web services transactions,” IBM
Publications, 2005.

[7] W3C Schools, WSDL and UDDI,
http://www.w3schools.com/WSDL/wsdl_uddi
.asp, 2008.

[8] IBM, Business Process Execution Language
for Web Services version 1.1, 2007,
http://www.ibm.com/developerworks/library/s
pecification/wsbpel/ , 2008.

[9] OASIS Web Services Business Process
Execution Language (WSBPEL), 2007,
http://www.oasisopen.org/committees/tc_hom
e.php?wg_abbrev=wsbpel , 2008.

[10] W3C, Simple Object Access Protocol
(SOAP), 2007, http://www.w3.org/TR/soap/ ,
2008.

[11] OASIS Web Services Coordination (WS-
Coordination), 2007, http://docs.oasis-
open.org/wstx/wscoor/2006/06 , 2008.

[12] OASIS Web Services Atomic Transaction
(WS-AtomicTransaction), 2007,
http://docs.oasis- open.org/ws-
tx/wsat/2006/06 , 2008.

[13] OASIS Web Services Business Activity (WS-
BusinessActivity), 2007, http://docs.oasis-
open.org/ws-tx/wsba/2006/06 , 2008.

[14] W. Cox, F. Cabrera, G. Copeland, T.Freund,
J. Klein, T. Storey, S. Thatte, Web Services
Transactions, BEA Systems, International
Business Machines Corporation, Microsoft
Corporation, Inc, 2004.

	1. Introduction
	2. Security for SOA
	3. Business-Level Security
	3.1. Web Service Composition
	3.2. Web Service Transactions
	3.3. Service-Level Dependencies

	4. Conclusions
	5. References
	[1] Distributed System Security Architecture, http://en.wikipedia.org/wiki/Distributed_System_Security_Architecture
	[2] J. Epstein, S. Matsumoto, and G. McGraw, Software Security and SOA: Danger, Will Robinson!, Building Security In, 2008.
	[7] W3C Schools, WSDL and UDDI, http://www.w3schools.com/WSDL/wsdl_uddi.asp, 2008.
	[8] IBM, Business Process Execution Language for Web Services version 1.1, 2007, http://www.ibm.com/developerworks/library/specification/wsbpel/ , 2008.
	[9] OASIS Web Services Business Process Execution Language (WSBPEL), 2007, http://www.oasisopen.org/committees/tc_home.php?wg_abbrev=wsbpel , 2008.
	[10] W3C, Simple Object Access Protocol (SOAP), 2007, http://www.w3.org/TR/soap/ , 2008.
	[11] OASIS Web Services Coordination (WS-Coordination), 2007, http://docs.oasis-open.org/wstx/wscoor/2006/06 , 2008.
	[12] OASIS Web Services Atomic Transaction (WS-AtomicTransaction), 2007, http://docs.oasis- open.org/ws-tx/wsat/2006/06 , 2008.
	[13] OASIS Web Services Business Activity (WS-BusinessActivity), 2007, http://docs.oasis-open.org/ws-tx/wsba/2006/06 , 2008.

